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1. Introduction

   Leishmaniasis is the third most common vector-borne 
disease and a very important protozoan infection. It is 
contracted through bites from sand flies and can result 
in chronic and non-healing sores. This mostly occurs 
on exposed skin and can be disfiguring and painful. The 
burden of the disease is overwhelming and the psychological 
effect can be disturbing. In some societies, women infected 
with this disease are stigmatized and deemed unsuitable for 
marriage and motherhood[1]. The World Health Organization 
(WHO) in 2000 reported that there are an estimated 1.5 
million annual cases of Leishmaniasis worldwide and 
Afghanistan, Algeria, Saudi Arabia, Brazil, Iran, Iraq, Peru 
and Syria account for over 90% of the cases[2].
  There are about 250 000 estimated new cases of cutaneous 
Leishmaniasis incidence in Afghanistan and 67 000 cases 

in Kabul, thus making it the city with the largest incidence 
worldwide[3]. Humanitarian relief efforts since the fall of 
the Taliban in Afghanistan has seen more than 2 billion 
US dollar spent on the health sector according to the most 
recent statistics. However, despite this huge investment, 
health indicators in Afghanistan have shown very little 
improvement[4,5].
  Several different methods from epidemiology, geostatistics 
and small area modeling have been used to analyze 
disease incidence rates. The simplest model assumes a 
Poisson log-linear relationship between disease rates and 
other covariates with random effects used to capture extra 
variation in the Poisson model. The simple model ignores 
the spatial pattern and may be inadequate to explain 
the variation in the occurrence of the disease. Bayesian 
modeling has the advantage of allowing the exact analysis 
of random effects and coefficient models. The impact of 
environmental factors on the transmission of Leishmaniasis 
cannot be ruled out and human activity is likely to play 
a significant role in the dispersion of the vectors thereby 
changing the geographical distribution of the disease.
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Objective: To analyze the spatial pattern of Leishmaniasis disease in Afghanistan, using 
provincial level geo-referenced data. The disease is contracted through bites from sand flies 
and is the third most common vector-borne disease. Leishmaniasis is a serious health concern 
in Afghanistan with about 250 000 estimated new cases of cutaneous infection nationwide and 
67,000 cases in Kabul. This makes Kabul the city with the largest incidence of the disease 
worldwide. Methods: We use a Bayesian hierarchical Poisson model to estimate the influence 
of hypothesized risk factors on the relative risk of the disease. We use random components 
to take into account the lack of independence of the risk between adjacent areas. Results: 
Statistical inference is carried out using Markov Chain Monte Carlo simulation. The final model 
specification includes altitude, two random components (intercept and slope) and utilizes a 
conditional autoregressive prior with a deviance information criterion of 247.761. Spatial scan 
statistics confirm disease clusters in the North-Eastern and South-Eastern regions of Afghanistan 
with a p-value of less than 0.0001. Conclusions: The study confirms disease clusters in the 
North-Eastern and South-Eastern regions of Afghanistan. Our findings are robust with respect to 
the specification of the prior distribution and give important insights into the spatial dynamics of 
Leishmaniasis in Afghanistan. 
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   The purpose of this paper is to model the transmission 
dynamics of Leishmaniasis (the quantification and 
prediction of the disease incidence rates), across provinces 
in Afghanistan. We estimate the incidence of Leishmaniasis 
at the provincial level and explore the effect of altitude 
on the outbreak of Leishmaniasis. We use a spatial 
hierarchical Bayesian model to model the over-dispersion 
of the relative risk of the disease. This specification allows 
the risk dependence between close areas to be taken into 
account. By introducing random components into the model 
specification, the lack of independence of the risk between 
areas are taken into account. 
   Most literature on Leishmaniasis in Afghanistan ranges 
from the economics of the disease burden to epidemiological 
evaluation. An investigation into the association of 
household-level characteristics with the incidence of 
Anthroponotic Cutaneous Leishamaniasis (ACL) in Kabul, 
identified that household construction material, design, 
density (in terms of household members per room) and 
presence of disease in other households are significant 
risk factors for the incidence of ACL[6]. An epidemiological 
evaluation of Zoonotic Cutaneous Leishamaniasis (ZCL) 
outbreak conducted around Mazar-e Sharif revealed the role 
played by high rodent infestations as the ZCL natural host in 
the outbreak[2]. The results further showed that seasonality 
in the occurrence of ZCL in humans can be attributed to 
seasonal activity of the ZCL vector (sand fly). Other studies 
include the cost-effectiveness of treating Cutaneous 
Leishamaniasis in Afghanistan[5].
   The contribution of this paper is the first application 
of spatial Bayesian models to study the outbreak of 
Leishmaniasis in Afghanistan.

2. Methods

2.1. Data

   In this paper data are analyzed on cases of Leishmanaisis 
incidence reported to the Health Management Information 
System (HMIS) of the Ministry of Public Health (MoPH) in 
Afghanistan. The data were collected and aggregated at 
the provincial level and includes a total of 148 564 new 
cases of Leishmaniasis observed annually in Afghanistan 
over the period 2003 to 2009. Population sizes for this 
period were obtained from Central Statistics Organization 
(CSO) of Afghanistan and the latitude and longitude of the 
central district was supplied by Afghanistan Information 
Management Services (AIMS). 
   Out of the 34 provinces in Afghanistan cases of Leishamaniasis 
were not available for the following provinces:  Badghis, 
Bamyam, Frah, Ghazni, Ghor, Nimroz, Nuristan, Paktika, 
Sari Pul, Uruzgan and Zabul (Figure 1). The data indicates 
that the incidence of Leishmaniasis disease in Afghanistan 
has been on the rise especially in Kabul (Figure 2). While the 
number of cases of the disease reported across the provinces 
has not been consistent, Kabul province has recorded a 
steady increase since 2003 and accounts for about 30% of the 
total cases (Figure 2).

2.2. Estimation results

   Exploratory data analysis on incidents of Leishmaniasis in 
Afghanistan reveals geographical disparity in the occurrence 
of the disease (Figure 1). The standard incidence rate (SIR) 
for each of the provinces in Afghanistan (i=1,..., 34) was 
calculated and then mapped in Figure 3. The map shows 
areas with high and low risk; dark regions indicating high 

Figure 1. Top: SRTM30 1km digital mapping of continuous elevation 
surfaces data of Afghanistan aggregated to 30 seconds. Bottom: 
Distribution of cases of Leishmaniasis incidence in Afghanistan 
2003-2009.
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risk of Leishmaniasis and the light regions indicating low 
risk. The SIR can be defined as 

ni

 34

  1
Yi

 34

  1
ni

(1)                           SIRi  =         =                 Yi

Ei

Yi

where Yi is the observed count of cases at provincial level 
and ni is the number of individuals at risk. 
   The expected number of Leishmaniasis cases, Ei is 
calculated as indicated by the denominator of equation (1).
Estimation of standard incidence rates are deficient because 
of small area disease count where extreme rates occur. 
The populations that are smallest and geographically close 
areas tend to have similar disease rates[7] . Leishamaniasis 
disease is a non-contagious vector borne disease and the 
observed cases at provincial level (Yi) are assumed to occur 
independently and follow a Poisson distribution. 
   To overcome the limitations of SIR a spatial hierarchical 
Bayesian (SHB) model was implemented. This model makes 
it possible to combine the specific provincial rate with the 
influence of the spatial neighbourhood. The altitude of 
the province capital is included as a covariate in the SHB. 
The reason for implementing the latter is that the SIRi is a 
crude estimate of relative risk and covariate adjustment can 
improve this estimate by providing an estimate of logarithm 
of the relative risk, log(毴i) . Another approach is the use 
of random effects and random coefficients in generalized 
linear mixed models (GLMMs) to model extra variation in the 
Poisson model[8].
   A simple model constructed for this scenario assumes a 
Poisson log-linear relationship between numbers of cases 
of Leishmaniasis Yi, with mean 毺i and independently 
distributed as 
(2)                     yi 暙 Poisson (毺i)
                        E(yi) = 毺i =ei毴i

where ei is the expected rate of Leishmaniasis at province i 
and毴i   is the relative risk for the ith province.

2.3. Spatial hierarchical bayesian modeling

   When the observed data are sparse, maximum likelihood 
(ML) estimation may lead to unstable and largely 
uninformative estimates of the area-specific linear trends 
due to Poisson sampling variation[9] . Bayesian modeling 
has the advantage of allowing the exact analysis of random 
effects and coefficient models[10] . Several authors have used 
the spatial hierarchical Bayesian approach to model disease 
epidemics[10-13] . In this paper we use a SHB Poisson model 
to capture over-dispersion of the relative risk and take into 
account the risk dependence between spatially close areas. 
We use the SHB Poisson model to quantify the influence of 
the hypothesized risk factors on provincial level relative 
risk of Leishmaniasis disease. To take into account the lack 

of independence of the risk between provinces, a random 
component is used. 
   In the Bayesian context, the likelihood of the data is 
defined as L (y 佐毴) where y is the vector of counts of the 
disease occurrence in the small areas and毴is a parameter 
vector describing underlying disease rate. The parameters,   
毴's, have prior distributions that define the investigator’s 
beliefs about the extra or unobserved random variation; the 
reader is referred to[10] for more information on choice of the 
prior distribution. 
   The joint prior distribution of毴is denoted by p (毴). The 
analysis seeks to examine the posterior distribution of 毴
given the data, denoted by

(3)                        p (毴佐y)毩L (y 佐毴) p (毴) 

   All models were implemented in WINBUGS Software using 
Gibbs sampling[14], this allows the iterative exploration of 
the posterior surface and leads to a set of parameter values 
rather than a single value which is typical of ML methods[10].

2.4. Prior distribution

   When modeling using a Bayesian framework, one needs 
to specify a prior distribution for the observed data. Several 
prior distributions for this study were explored, namely 
flat distributions thus providing a non-informative prior, a 
gamma distribution and a conditional autoregressive (CAR) 
distribution. The prior in the spatial model is similar to 
that proposed by Lunn, et al[14], where alpha0 is assumed to 
follow a flat distribution, and the unstructured variability 
parameter (ui) is assumed to follow a normal distribution with 
mean 0 and a precision variable; the structured variability 
term (vi)  was allowed to depend on the neighbours. This is 
sometimes called the convolution Gaussian distribution or 
intrinsic Gaussian CAR[15] .

2.5. Model selection and assessment

   For this study different classes of Bayesian Poisson 
hierarchical models of increasing complexity were 
formulated. The models closely follow the approaches of 
Lawson and Zhou[10] and Stevenson et al.[12]. These models 
include a random component with and without spatial 
structure. Several adjustments were made to the model to 
give rise to what was called spatially smoothed and non-
spatially smoothed models and were explored with varying 
prior distributions for the random effect. The model is 
defined as

 (4)                          log(毺i)=X’毬+Z’b

  where X’ and Z’ are vectors of explanatory variables - the 
location of the disease and altitude,毬 is a parameter vector, 
the  bi’s are random effects.
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   For all models three chains were ran to help assess 
convergence and was visualized with time series plots and 
Gelman-Rubin statistics. The deviance information criterion 
(DIC) was used to compare all models and the model with the 
smallest DIC is said to be the “best fit”.

2.6. Areas of high risk 

   Several tests are available for spatial randomness that 
enables adjustment for unevenness in the background 
population. The latter tests produce statistics to test whether 
or not the geographical distribution of the disease is random. 
Previous studies have shown that the spatial scan statistic 
has good power in detecting hot spot clusters[16]. SaTScan is 
a software program written to implement the scan statistic; it 
can be used to find clusters in space and/or time[16].

 

3. Results 

   The data consist of cases of Leishmaniasis incidence 
from 34 provinces in Afghanistan for the period 2003 to 2009 
collected by a health provider and reported to HMIS. A total 
of 148 564 new cases were reported to HMIS and MoPH during 
this period with Kabul recording the highest number (30%), 
followed by Kandahar (13%) and Balkh (10% of all new cases). 
As indicated in Figure 4 (the graph on the left), there seems 
to be an association between Leishmaniasis and altitude. 
  The North Eastern region of Afghanistan recorded the 
highest incidence of the disease, while some provinces in 
the South Western region recorded no cases of the disease 
(Figure 1). The expected number of cases was estimated for 

To
ta

l c
as

es
 o

f l
ei

sh
m

an
ia

sis

40 000

30 000

20 000

10 000

0

500          1000         1500          2000         2500         3000

Altitude

To
ta

l c
as

es
 o

f l
ei

sh
m

an
ia

sis

50 000

40 000

30 000

20 000

10 000

0
62         64        66        68        70         72

Longitude

La
tit

ud
e

3837

36

35

34

33

32

31

Figure 4. Left: Scatter plots of total cases of Leishmaniasis against altitude. Right: 3D scatter plot of total cases of Leishmaniasis against the 
latitude and longitude of the Centrum of the province.

each province and displayed as maps in Figure 5.
   The standard incidence rate provides an assessment of 
excess risk expected in a province. The map of the standard 
incidence rate also indicates geographical disparities in the 
risk of the disease. The North Eastern region has high risk of 
the disease, more than the rest of the country. 
   These crude rates (SIR) must be interpreted carefully and 
may be misleading, because they are influenced by the 
population size of the regions and neighbouring provinces. 
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Figure 5. Expected incidence of Leishmaniasis in Afghanistan during 
the period 2003-2009.
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Figure 6. Relative risk estimated by hierarchical Bayesian model 
for Leishmaniais cases in Afghanistan from 2003 to 2009 with non-
structured and spatial random intercept and random slope controlling 
for altitude and population.

   

As mentioned before, the SIR has drawbacks because it 
assumes provinces are independent. However, from a spatial 
point of view, this is not the case and more interest lies in 
the more global, spatial distribution of the number of cases 
of Leishmaniasis. A spatial hierarchical Bayesian analysis 
with random components to take into account the lack of 
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Table 2
Posterior summary of results of hierarchical Bayesian models from WinBUGs : non-spatial regression  models; spatial regression models  with 
random intercept only and spatial regression with both random intercept and slope models

 Model Mean Standard error MC error Credible interval 
2.5% 97.5%

Non-spatial random effects: 
Intercept (non-structured)      
   Intercept -0.1060     0.1471  0.0101 -0.4595 0.1120
   Variance of random intercept (non-spatial)   2.3490 165.1000 1.3540   0.0072 0.0316
Spatial random effects:
Intercept (non-structured & spatial)
   Intercept -0.4203 0.1345    0.0092 -0.6200 -0.1696
   Altitude 480.2533 679.0460    6.3778 0.4797 2400.7896
   Variance of random intercept (non-spatial) 3.5801 0.1E-0.6 255.1184 2.0947 0.0112
   Variance of random intercept (spatial) 0.0680 0.0483    0.0028 0.0043 0.1861
Spatial random effects: 
intercept (non-structured & spatial) & slopes
   Intercept -0.1426 0.1825 0.0125 -0.4883 0.2016
   Altitude 0.0001 0.0001 0.0000 -0.0001 0.0002
   Variance of random intercept (non-spatial) 19770 7476 107.6000 8349 36120
   Variance of random intercept (spatial) 208 489.1000 23.7200 1.7770 1389
   Variance of random slope 1176 1629 74.8300 21.4100 5641

Table 3
Areas with high risk of Leishmaniasis cases for 2003-2009 in provinces of Afghanistan: From SaTScan purely spatial analysis

Clusters Province Observed cases Expected cases Relative risk P-value
Primary Logar 11765 2271.482 2.95 <0.0001

Paktya 0 3153.842 2.95 <0.0001
Kabul 45631 22154.17 2.95 <0.0001

Parwan 3759 4032.448 2.95 <0.0001
Khost 5836 3178.188 2.95 <0.0001

Paktika 0 2528.328 2.95 <0.0001
Kapisa 10546 2567.591 2.95 <0.0001
Wardak 4132 3428.202 2.95 <0.0001

Secondary Kandahar 19568 6795.969 3.18 <0.0001
Balkh 15246 7321.016 2.08 <0.0001

Table 1
Summary of results of hierarchical Bayesian models from WinBUGs with different complexities.
Model Description Dbar Dhat pD DIC
Non-spatial random effects      
   Model 1 Non-structured random intercept   245.357  201.060  44.297 289.653
   Model 2 Altitude with non-structured random  intercept 254.126  201.025  53.101 307.227

Spatial random effects
   Model 3 Altitude with non-structured & spatial  random intercept    234.162  200.808      33.353      267.515
   Model 4 Spatial random intercept 53654.200  206.538 53447.600 107102.000
   Model 5 Non-structured & spatial random intercept     261.268  200.906       60.362       321.631
   Model 6 Altitude with spatial  Random intercept 71671.000 4662.080  67008.900 138680.000
   Model 7 Altitude with non-structured & spatial (random intercept &  slopes) 224.612 201.463       23.149       247.761

independence of the risk between provinces was formulated.
Several models (Models 1-7, Table 1) with different 
complexities were explored that included a random 
component with non-spatially structured heterogeneity 
and spatial structured heterogeneity. The models follow 
that of Mariella and Tarantino[15]; the unstructured 
variability parameter (ui) was assumed to follow a normal 
distribution, and the structured variability (vi) term followed 
the multivariate normal conditional autoregressive (CAR) 

distribution. The non-spatial smoothing adjusted the relative 
risk estimates for province with low numbers towards the 
overall mean, while including the spatially structured 
heterogeneity term was to condition the smoothing on 
neighboring provinces. The model is presented below.

(5)          log(毺i) = log(ei) + 毩0 + (毬1+b0) 暳 Altitude + ui + vi

  All the models were run in WINBUGS via Gibbs sampling 
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and the posterior distributions were estimated. Three 
chains of 15000 iterations were run and the convergence was 
checked by trace plot and visualized by Gelman and Rubin 
plot. Model selection was done by looking at the Deviance 
Information Criterion (DIC) to assess the goodness-of-fit and 
model complexity[17]. Table 1 summarizes the models with 
their level of complexity and value of DIC (the smaller the 
better). The results for the three models with the smallest 
DIC were selected for presentation in Table 2. The models 
with smaller DIC values are those with altitude as covariate 
and with random components (Table 1). The final model 
(Model 7, Table 1) selected as the best include altitude as 
covariate and two random components that is, random 
intercept (unstructured and structured) and random slope. 
The chosen model has a DIC value of 247.761 and allow for 
over-dispersion and spatial correlation through the use 
of the conditional autoregressive prior. The unstructured 
heterogeneity term (ui) followed a normal distribution 
with a mean of 0 and variance氁2, while the structured 
heterogeneity term (vi) , estimated using a normal distribution 
with a provincial dependent mean and variance weighted by 

adjacent provinces. In this model the SIR is smoothed locally 
towards the mean risk in the set of neighboring areas[18] . 
  Table 2 shows the summary statistics for the precision 
terms and posterior summaries of the final model. The 
relative risk (RR) in Table 4 from the final model is displayed 
in Figure 6 where higher RR was observed in North-Eastern, 
central and South-Eastern (Table 3).

4. Discussion 

  The spatial scan statistic of Kulldorf for cluster detection 
and test of local clusters were used. The results confirm 
earlier findings using the Bayesian hierarchical analysis. 
The summary results from the spatial scan statistics 
identified eight provinces as primary cluster and another two 
as a temporary cluster. These provinces are mostly located 
in the North-Eastern and South-Eastern part of the country 
and are termed regions with high risk of the disease with a 
statistically significant P-value of <0.0 001. 
  The environment appears to play an important part in the 

Table 4
Relative risks (with credibility interval) for the spatial Bayesian hierarchical CAR model per province.

Province Relative risk Credibility interval
Randomintercept Random slope

Lower Upper
Badakhshan 1.0620 1.0350 1.0890   0.0542 0.0137

Takhar 0.0160 0.0128 0.0195 -0.0033 0.0177
Jawzjan 1.0880 1.0510 1.1260 -0.0306 0.0071
Balkh 2.0820 2.0500 2.1160 -0.1017 0.0239

Kunduz 0.4788 0.4612 0.4965   0.0172 0.0187
Faryab 0.2715 0.2584 0.2851 -0.0003 -0.0221

Samangan 1.2170 1.1720 1.2630 -0.0275 0.0073
Baghlan 0.1783 0.1668 0.1899 -0.0213 0.0195
Sari Pul 0.0001 0.0000 0.0006 -0.0151 -0.0021
Nuristan 0.0001 0.0000 0.0010 -0.0032 0.0236
Badghis 0.0001 0.0000 0.0004 -0.0056 -0.0283
Parwan 0.9322 0.9033 0.9620   0.0516 0.0183
Hirat 0.4919 0.4788 0.5055   0.0528 -0.0355
Kunar 0.5935 0.5638 0.6239   0.0239 0.0402

Bamyan 0.0000 0.0000 0.0002  -0.0046 0.0006
Ghor 0.0000 0.0000 0.0002  -0.0033 -0.0230

Laghman 0.9375 0.9007 0.9751    0.0449 0.0224
Kapisa 4.1080 4.0280 4.1860    0.0348 0.0236
Kabul 2.0600 2.0410 2.0790    0.0833 0.0195

Wardak 1.2050 1.1690 1.2430    0.0140 0.0049
Nangarhar 0.6010 0.5846 0.6176    0.0278 0.0339
Uruzgan 0.0001 0.0000 0.0006  -0.0087 -0.0204

Logar 5.1800 5.0860 5.2730    0.0857 0.0125
Paktya 0.0000 0.0000 0.0002  -0.0022 0.0105
Ghazni 0.0000 0.0000 0.0001  -0.0030 -0.0031
Khost 1.8360 1.7900 1.8840    0.0056 0.0009
Farah 0.0001 0.0000 0.0005  -0.0095 -0.0386

Paktika 0.0000 0.0000 0.0003  -0.0023 -0.0043
Hilmand 0.1117 0.1030 0.1208  -0.0264 -0.0392

Zabul 0.0001 0.0000 0.0005  -0.0054 -0.0176
Kandahar 2.8790 2.8390 2.9200  -0.0306 -0.0378

Nimroz 0.0007 0.0000 0.0031  -0.0331 -0.0471
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transmission and occurrence of vector borne diseases, with 
areas in close proximity to each other having similar risk. 
The use of spatial statistics and geographical information 
systems in the study of geographical heterogeneity in 
hypothesized risk of Lieshmaniasis in Afghanistan is crucial.
The model in this paper suggests the presence of excess risk 
of Leishmaniasis in the North-Eastern and South-Eastern 
regions of Afghanistan. The model includes a non-spatially 
structured component, an unstructured heterogeneity term 
with a normal prior distribution and gamma hyper-priors 
for the precision terms. The model also includes a spatially 
structured term with CAR (allowing for spatial dependencies 
in the estimation of relative risks) priors plus a random 
slope. Further epidemiological analysis that includes 
additional demographic and environmental variables could 
be explored to obtain a more consistent explanation.
  The results confirm geographical heterogeneity of 
Leishmaniasis. This will enable governmental and 
non-governmental organization to better target health 
interventions and choose areas to implement control 
measures against Leishmaniasis in a more efficient way. This 
research is limited by the availability of data. Afghanistan 
is emerging from decades of war so the quality of data 
is questionable, under-reporting of the disease is likely 
and the sample sizes are limited. Further epidemiological 
research that incorporates additional demographic and 
environmental variables (temperature and wind) is called 
for to shed more light on the dynamics of this disease. An 
investigation using Poisson Kriging techniques will be 
conducted to explore other risk structures.
   We found that altitude and areas in close proximity to 
each other were associated with incidence of Leishmaniasis 
in Afghanistan. The discovery of cluster in the North-
Eastern and South-Eastern suggests the existence of 
geographical variability in the incidence and transmission 
of Leishmaniasis. The implication of our findings is that 
public health programmes that can prevent or manage the 
transmission of Leishmaniasis disease should be designed in 
the regions with high risk of the disease.
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