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1. Introduction

  Studies in past decades have shown the significant role of micro 

RNAs (miRNA) in hepatocellular cancinoma (HCC)[1,2]. The 

miRNA family plays an important role in the cell proliferation, 

differentiation, apoptosis and necrosis, etc and its dysfunction 

contributes to the tumor onset and progression[3-5]. It is reported 

that more than 50% of miRNA genes are located in fragile sites or 

cancer-associated genomic regions[6]. Thus, the alteration in the 

miRNA expression will activate the abnormal expression of cancer 

genes, influencing the progression and metastasis etc. of cancers[7]. 

Many miRNAs are involved in the hepatocarcinogenesis, including 

miR-214. The general down-regulation of miR-214 gene in 

HCC[8,9] can stimulate the development of this cancer by targeting 

on its downstream proteins[9]. To date, a number of studies on the 

relationship between miR-214 expression and HCC have been 

reported at home and abroad, while there is scarce information on its 

Objective: To explore the role of miR-214 in the progression of hepatocellular carcinoma 
(HCC) and its inhibitory mechanisms in depressing the signaling pathway of 毬-catenin, this 
study was conducted. Methods: We ectopically expressed miR-214 in HepG2 cells to obtain 
cell lines Lv-miR-214-HepG2 and their control Lv-control-HepG2. Differences between the 
two cell lines were compared in cell growth, proliferation, colony forming ability and cell 
cycles. RT-PCR method was applied for the quantification of 毬-catenin mRNA expression. 
Western-blot method was applied for the determination of the protein level of 毬-catenin and 
their downstream targets (ie. Cyclin D1, c-Myc and TCF-1). The effect of miR-214 on cells 
was further explored through RNA interference and restoring miR-214 expression. Results: 
In comparison with negative (Lv-control-HepG2) and blank (HepG2) control, a significant 
inhibition of cell growth and proliferation caused by miR-214 was observed after 48~72h 
of cell culture experiments (P<0.05). The miR-214 treatment resulted in a colony forming 
efficiency of (23.28±3.26)%, which was significantly lower than that of negative control 
[(51.31±3.97)%] (P<0.05). According to FCM results, the experimental group, compared 
with control, showed a higher proportion of cells in G0/G1 phase [(70.32±3.12)%] but a lower 
proportion in S phase [(18.42±2.90)%] (P<0.05). The MTT assay demonstrated a significant 
inhibition of the proliferation and 毬-catenin expression of HCC cells compared with control 
(P<0.05), while no significant difference was observed after HCC cells being transfected with 

毬-catenin overexpression plasmid (P>0.05). By comparing to the RT-PCR and Western-blot 
results of control, the miR-214 treatment led to a slightly decrease in the 毬-catenin mRNA 
expression (P>0.05), but an extremely inhibition in the protein level of 毬-catenin and its 
downstream targets Cyclin D1, c-Myc, and TCF-1 (P<0.05). Conclusions: miR-214 functions 
as a suppressor during the progression of HCC, and its inhibitory role was achieved by down-
regulating 毬-catenin signaling pathway.

IF: 0.926



Li-Li Zhang et al./Asian Pacific Journal of Tropical Medicine (2015)392-398 393

mechanism in HCC development. In this study, the human hepatoma 

cells were used as the research object and their responses to miR-214 

treatment were evaluated in the cell growth, proliferation, colony 

forming ability and cell cycles, as well as 毬-catenin pathway. The 

present study provided further information on the mechanism of 

miR-214 in HCC and may be a scientific reference for HCC therapy 

through modulating miRNA expression.

2. Materials and methods

2.1. Materials

  Cell lines: Human hepatoma (HepG2), normal hepatic cells and 

293T cells were obtained from the Institute of Biochemistry and Cell 

Biology of Chinese Academy of Sciences. The Escherichia coli (E. 
coli) strains (DH5毩) were produced in our laboratory.

  Reagents: hsa-miR-214 plasmid (Beijing OriGene Techologies 

Co., Ltd, China); RPMI-1640 and DMEM medium (Gibco, USA); 

fetal bovine serum and propidium iodide (PI) (Beijing solarbio 

science & technology co., ltd., China); methyl thiazolyl tetrazolium 

(MTT) (System Biosciences, USA); pLenR-GPH and Lv-control 

vectors and Lentivirus plasmid (Shanghai Innovation Biotechnology 

Co.,Ltd., China); Lipofectamine2000 and TRIzol commercial kits 

(Invitrogen, USA); Opti-MEM (Hyclone, USA); endonucleases 

including BamH I, EcoR I, Kpn I and Xba I (NEB, USA); Taqman 

microRNA RT kit, Taqman miRNA Assays, Taqman Universal PCR 

Master Mix (Appliedbiosysrems, USA); T4DNA ligase (Thermo, 

USA); Agarose, PCR kit, BAC kit (Sangon Biotech (Shanghai) 

Co.,Ltd., China); Antibody and second antibody of 毬-catenin, 

Cyclin D1, c-Myc, TCF-1 and 毬-actin (Beijing Chinese fir golden 

bridge biotechnology co., Ltd., China).

  Instruments: Synergy 2 multimode reader (Biotek, USA); 

SHELLAB CO2 incubator (SHELLAB, USA); Stratedigmflow 

cytometry (Stratedigm, USA); Biometra gradient PCR amplifier 

(Biometra, Germany); DYY-2C electrophoresis apparatus (Beijing 

Liuyi Instrument Plant, China); BioSpectrum- UVP Gel Imaging 

System (UVP, USA).

2.2. Preparation of miR-214 cell lines

  The pre-miR-214 primer was designed using the software Primer 

5.0. After PCR amplification, the AGE and following recovery and 

purification of PCR products were conducted using SanPrep gel 

extraction kit (Sangon Biotech (Shanghai) Co.,Ltd., China). The 

obtained target gene and pCDH-CMV-MCS-EF1-copGFP lentiviral 

vector were treated with double enzymes restriction in presence 

of EcoR I and BamH I according to protocols of commercial kits 

(Axygen) respectively. Target genes were cloned into the vector 

according to the manufacture’s protocol. 

  The miR-214 lentiviral vector was prepared with the connection 

product and E. coli strain DH5 毩. The final bacterial suspensions 

transfected with miR-214 was used for PCR amplification and 

followed by enzyme digestion and sequencing if bacterial colonies 

were determined to be positive. The plasmids were extracted from 

the bacterial suspensions. The packaged lentiviral vector was named 

Lv-miR-214, using the empty lentiviral vector as a control (Lv-

control).

  Exponential 293T cells were cultured in serum-free medium in 

a CO2 incubator (37 曟, 5% CO2). After a fusion of 90%-95%, 

cells were transfected with Lv-miR-214 or Lv-control using 

Lipofectamine 2000 Transfection Kit (Invitrogen) and further 

cultured in medium with 10% FBS. HepG2 cells were infected with 

the packaged lentiviruses to obtain the HepG2 transfectant stably 

expressing miR-214 (Lv-miR-214-HepG2) and its control Lv-

control-HepG2.

  All reaction systems and conditions were listed as following:

  PCR system (50 毺L): 10暳buffer 5 毺L, sense (10 毺M) and anti-

sense primers (10 毺M) 1 毺L respectively, has-miR-214 plasmid 

(100 ng/毺L) 1 毺L, dNTPs (10 mM) 0.5 毺L, Pfu enzymes1 毺L, 

ddH2O 40.5 毺L.

  PCR amplifying conditions: 95 曟 2 min; 95 曟 20 s, 60 曟 20 s, 

72 曟 15 s (30 cycles); 72 曟 3 min.

  Enzyme digestion system (20 毺L): 10暳buffer 2 毺L, 10暳
BSA   2 毺L, EcoR I (10 U/毺L) and BamH I (10 U/毺L) 1 毺L 

respectively, vectors or purified PCR product (500 ng/毺L) 10 毺L, 

ddH2O 4 毺L, 37 曟 2 h.

  Connection system (10 毺L): vectors 2 毺L, target genes 6 毺L, 10

暳T4 buffer 1 毺L, T4DNA ligase 1 毺L, 22 曟 1 h.

2.3. Cell growth

  Exponential Lv-miR-214-HepG2 (experiment group), Lv-control-

HepG2 (negative control group) and HepG2 (blank control group) 

cells at the concentration of 4暳104 cells/mL were inoculated into 

96-well plate and culture at  37 曟, 5% CO2 and humidity of 60% for 

5 d. Each group was triplicated.  Over culture period, cells in each 

group were counted every 24 h.

2.4. Cell proliferation

  Exponential Lv-miR-214-HepG2 and Lv-control-HepG2 cells were 

cultured at 37 曟 and 5% CO2 for 24 h. Then cells were cultured 

at 2暳104 cells/ml in a fresh culture medium. Each group was 

quintuplicated. During the culture period of 4 d, inhibition of cell 

proliferation was determined at 0, 24, 48, 72 and 96 h by the MTT 

method. Briefly, 20 毺L MTT (5 g/L) was added into each well and 

the medium was replaced with 150 毺L DMSO. The absorbance was 

read at 570 nm after a continuous shake of 10 min. The inhibitory 

rate (%) = (ODcontrol - ODexperiment)/ ODcontrol暳100
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2.5. Cell colony forming ability 

  Lv-miR-214-HepG2 and Lv-control-HepG2 of 2暳102 cells were 

respectively inoculated into soft agar whose diameter was 60 mm 

and concentration was 4 g/L at the top and 5 g/L at the bottom. 

After two weeks of culture at 37 曟 and 5% CO2, the colonies were 

observed using an inverted phase contrast microscope. The colony 

diameter >50 毺m was used as standard to calculate the colony 

forming ability according to the formula: colony forming ability (%) 

= colony number /seeded cells暳100 with.

2.6. Cell cycles

  Exponential Lv-miR-214-HepG2 and Lv-control-HepG2 cells were 

digested with trypsin and rinsed by PBS. Cells were fixed for 24 h at 

4 曟 after an addition of ice-cold ethanol (75%) and then rinsed by 

PBS again. RNA enzyme A was added to stop the catalytic reaction 

and removed by PBS. Following the addition of PI, samples were 

placed in the darkness for 30 min to form color. Cell cycles were 

analyzed with a flow cytometry.

2.7. 毬-catenin and downstream proteins

  The mRNA level of 毬-catenin was determined with the RT-

PCR method. A proper quantity of cell samples was mixed with 

Trizol reagent. Total RNA was extracted using a commercial kit 

(Invitrogen, USA) and its content (A260) and purity (A260/ A280) was 

detected. Total RNA of 1 毺g was reverse transcribed into the first 

strand of cDNA and the product was PCR amplified after addition 

of 毬-catenin primers. 毬-catenin was used as the reference gene. 

Primer sequences were listed in Table 1. The amplification results 

were analyzed using the2-吟吟Ct method.

  PCR system (20 毺L): 2暳master 10 毺L, sense (10 毺M) and anti-

sense primers (10 毺M) 1 毺L respectively, cDNA 1 毺L, DEPC 

H2O 7 毺L. 

  PCR amplifying conditions: 95 曟 10 min; 95 曟 20 s, 60 曟 1 min 

(40 cycles); cooling at 4 曟.

  The protein levels of 毬-catenin and its downstream proteins (ie. 

Cyclin D1, c-Myc and TCF-1) were determined with Western-

blot analysis. Collected cells were lysed with RIPA lysis for 20 

min on ice and supernatants were collected after centrifugation for 

10 min at 4 曟 and 12 000 rpm. Protein extracts were separated by 

10% SDS polyacrylamide gel electrophoresis and then transferred 

onto a polyvinylidenefluoride (PVDF) membrane. After blocking 

with 5% non-fat milk, the blots were incubated with primary 

antibodies against 毬-catenin, CyclinD1, c-Myc, TCF-1 and 毬
-actin at 4 曟 overnight, followed by incubation with horseradish 

peroxidase-conjugated secondary antibody (1: 3 000) for 1 h at room 

temperature. The membrane was rinsed by TBST and color was 

developed in presence of chemoluminescent ECL-plus reagent. The 

intensity of protein fragments was quantified using Image-Pro Plus 

software.

2.8. sh毬-catenin effect 

  According to the method described in 2.2, HepG2 cells transfected 

with sh毬-catenin, named Lv-shRNA 毬-catenin-HepG2, were 

established to evaluate their cell proliferation capability (see 2.4) and 

毬-catenin protein levels (see 2.6).

  The primer sequence of target gene (sh毬-catenin) was listed in 

Table 1. All reaction systems and conditions were listed as following:

  PCR system (20 毺L): 10暳buffer 2 毺L, sense (10 毺M) and anti-

sense primers (10 毺M) 1 毺L respectively, ddH2O 16 毺L.

  PCR amplifying conditions: 95 曟 10 min; 75 曟 10 min, 55 曟 10 

min, 35 曟 10 min, 15 曟 10 min.

  Enzyme digestion system (20 毺L): 10暳buffer 2 毺L, Kpn I       

(10 U/毺L) and BamH I (10 U/毺L) 1 毺L respectively, DNA (500 

ng/毺L) 8 毺L, ddH2O 8 毺L, 37 曟 4 h.

  Connection system (10 毺L): vectors 1 毺L, target genes 7 毺L, 10

暳T4 buffer 1 毺L, T4DNA ligase 1 毺L, 16 曟 overnight.

2.9. Over expressing 毬-catenin effect

  According to the method described in 2.2, HepG2 cells over 

expressing 毬-catenin, named Lv-毬-catenin-HepG2, were 

established to evaluate their cell proliferation capability (see 2.4) and 

毬-catenin protein levels (see 2.6).

  The primer sequence of target gene (CTNNB 1) was listed in Table 

1. All reaction systems and conditions were listed as following:

  PCR system (50 毺L): 10暳buffer 5 毺L, sense (10 毺M) and 

anti-sense primers (10 毺M) 1 毺L respectively, CTNNB1 plasmid 

(100 ng/毺L) 1毺L, dNTPs (10 mM) 5 毺L, Pfu polymerase 1 毺L,

ddH2O 36 毺L. PCR amplifying conditions: 94 曟 5 min;  95 曟 30 s,

58 曟 30 s, 68 曟 2 min 30 s (30 cycles); 68 曟 5 min.

  Enzyme digestion system (23 毺L): 10暳buffer 4 毺L, Xba I

(10 U/毺L) and BamH I (10 U/毺L) 1 毺L respectively, DNA (500 

ng/毺L) 8 毺L, ddH2O 9 毺L, 37 曟 4 h.

  Connection system was similar to that in 2.8.

Table 1 
Primers sequence in this experiment.

Primers Sequence
pre-miR-214 F 5’- ATAGAATTCTTTCTCCCTTTCCCCTTACTCT

CC-3’
R 5’- CCAGGATCCTTTCATAGGCACCACTCACTT

TAC-3’

毬-catenin F 5’-AAAATGGCAGTGCGTTTAG-3’
R 5’-TTTGAAGGCAGTCTGTCGTA-3’

毬-actin F 5’-CTCCATCCTGGCCTCGCTGT-3’
R 5’-GCTGTCACCTTCACCGTTCC-3’

shRNA 毬-catenin F 5’-TTGTTATCAGAGGACTAAATA-3’
R 5’-TATTTAGTCCTCTGATAACAA-3’

CTNNB 1 F 5’-CGCTCTAGAATGGCTACTCAAGCTGATTTG

ATGG-3’
R 5’-CCAGGATCCTTACAGGTCAGTATCAAACCA

GGCC-3’
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2.10. Statistical analysis

  Data in the present study were analyzed with SPSS 13.0 software 

and expressed as mean±SD. Differences between groups were 

determined using Student’s t-test. P-values<0.05 were considered 

statistically significant for all variance tests. 

3. Results

3.1. Effects of miR-214 on HCC cell growth

  Figure 1 showed the cell growth of Lv-miR-214-HepG2, Lv-

control-HepG2 and HepG2 over the 5 days of culture. Ectopic 

expression of miR-214 reduced cell growth compared to the negative 

and blank control groups, being significantly different after 72 h 

(P<0.05).
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Figure 1. Effect of miR-214 on the growth of HCC cells.

Note: “*” indicates a significant difference compared to blank control 

(P<0.05), while “**” indicates an extremely significant difference (P<0.01).

3.2.  Effects of miR-214 on HCC cell proliferation

  The cell proliferation of cell lines (ie. Lv-miR-214-HepG2, Lv-

control-HepG2 and HepG2) was recorded in Figure 2. Ectopic 

expression of miR-214 inhibited cell proliferation by 21.7%, 38.8% 

and 49.7% at 48, 72 and 96 h respectively, which was statistically 

different to that of the negative and blank control group (P<0.05).
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Figure 2. Effect of miR-214 on the proliferation of HCC cells.

Note: “*” indicates a significant difference compared to blank control 

(P<0.05), while “**” indicates an extremely significant difference (P<0.01).

3.3. Effects of miR-214 on HCC cell colony forming ability

  The colonies in HCC cells with ectopic expression of miR-214 

were smaller in size and fewer compared to the control group 

(Figure 3). The effects on cell colony forming efficiency were less 

pronounced in cells transduced with miR-214 [(23.28±3.26)]% than 

in control cells [(51.31±3.97)%] (P=0.021).

  

Lv-control                                                   Lv-miR-214

Figure 3. Effect of miR-214 on the colony formation of HCC cells.

Table 2 
Effect of miR-214 on the colony forming efficiency of HCC cells.

Lv-miR-214 Lv-control t P
Colony number 46.00±5.23 125.00±11.80 - -
colony forming efficiency (%) 23.28±3.26   51.31±3.97 12.351 0.021

3.4. Effects of miR-214 on HCC cell cycles

  The rate of cells at G0/G1, S and G2 phase were shown in Figure 

4. Cells transduced with miR-214 were significantly higher in 

the G0/G1 phase fraction [(70.72±3.12)%] than the control group 

[(54.61±2.10)%] (P<0.05), but lower in the S phase fraction 

[(18.63±2.90)%] than the control group [(35.26±3.35)%] (P<0.05). 

No significant difference was observed in G2 phase fraction between 

cells with or without ectopic expression of miR-214 (P>0.05).
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Figure 4. Effect of miR-214 on HCC cell cycles. 

There is a significant difference in G0/G1 phase and S phase between 

experimental and control group (t is 7.92 and 8.56 respectively, and P=0.000). 

“**” indicates an extremely significant difference (P<0.01).
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3.5. Effects of miR-214 on 毬-catenin pathway

  RT-PCR results showed that there was a reduction in the 毬-catenin 
mRNA expression in cells transduced with miR-214 compared to the 

control cells (Figure 5), while no significant difference was recorded 

(P>0.05). According to Western-blot results, ectopic expression of 

miR-214 reduced the protein level of 毬-catenin and its downstream 

proteins Cyclin D1, c-Myc and TCF-1 compared to the control group 

(Figure 6).
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Figure 5. Effect of miR-214 on the 毬-catenin mRNA expression of HCC 

cells.
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Figure 6. Effect of miR-214 on the protein expression level of 毬-catenin and 

its downstream proteins. 

3.6. Effects of RNA interference and restoring 毬-catenin 
expression on cell proliferation and 毬-catenin expression

  Figure 7 showed the effects of RNA interference and restoring 

毬-catenin expression on HCC cell proliferation. No significant 

difference was observed in the cell proliferation between cells treated 

with miR-214 and those treated with shRNA 毬-catenin (P>0.05), 

while both of them were significantly lower than the control cells 

and cells over expressing 毬-catenin (P<0.05).

  Figure 8 showed the effects of RNA interference and restoring 毬
-catenin expression on the protein level of 毬-catenin. Western-blot 

results showed a similar 毬-catenin protein level of cells transduced 

with shRNA 毬-catenin to that transduced with miR-214 and both of 

them were lower compared to the control group. A higher 毬-catenin 

protein level was observed in cells over expressing 毬-catenin than 

in control cells.
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Figure 7. Effect of 毬-catenin RNA interference and overexpression on HCC 

proliferation. 

There is a significant difference between the treatments of Lv-miR-214 

and Lv-shRNA 毬-catenin and control (t is 0.352 and 0.398 respectively, 

P=0.000). “**” indicates an extremely significant difference (P<0.01).

毬-actenin

毬-actin

 a                   b               c                 d

 

Figure 8. Effect of 毬-catenin RNA interference and overexpression on the 

protein level of 毬-catenin of HCC.

 a, b, c and d means Lv-control, Lv-miR-214, Lv-shRNA 毬-catenin and Lv-

毬-catenin, respectively.

4. Discussion

  HCC is one of the fatal cancers in clinical practice and studies on 

its pathogenesis have long been the focus for researchers at home 

and abroad to improve treatment technology for this disease. In past 

decades, the miRNA discovery opened a new door to the cancer 

therapy and many miRNA-related treatment methods developed. 

These small noncoding RNAs bind to the 3’ untranslated region 

(UTR) or the open reading frame (ORF) of the target mRNA, 

resulting in the degradation of target mRNA and therefore a 

translational repression[1,10]. The miRNA has been pathologically 

proved to be a new target of drug action during cancer onset and 

progression[10,11]. Due to this potential value, miRNA has been 

used as a marker of cancer diagnosis and prognosis. In the present 

study, the effect of miR-214 on HCC was explored according to the 

cell growth, proliferation, colony forming ability and cell cycles 

determind in cells transduced with miR-214. At the same time, 

the expression of 毬-catenin and its downstream proteins in cells 

transduced with miR-214 was determined and compared with that 

in cells treated with RNA interference and restoring 毬-catenin 

expression to elucidate the mechanism of miR-214 influencing HCC 

by targeting 毬-catenin pathway.
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4.1. Effects of miR-214 on HCC cell growth, proliferation, 
colony forming ability and cell cycles

  miR-214 is reported to have a significant role in tumor inhibition. 

For example, the expression of miR-214 can promote apoptosis 

and reduce cell growth, proliferation, migration and invasion etc. 

in cancers such as gastric carcinoma, cervical carcinoma and 

nasopharyngeal carcinoma[12-14]. In the present study, we ectopically 

expressed miR-214 in HepG2 cells and a significant reduction in 

cell growth after culture of 48-72 h and colony forming ability was 

obtained. Meanwhile, treatment of miR-214 resulted in an increase 

in the G0/G1 phase fraction, but a decrease in S phase fraction. 

This indicates that miR-214 expression makes cancer cells arrest 

in G0/G1 phase and inhibits their proliferation by interfering with 

their progress through to the S phase where DNA is synthesized. 

Similarly, other miRNAs such as miR-7 and miR-126 are also 

reported to arrest cells in G0/G1 phase[15,16]. Thus, the inhibitory 

effect of miR-214 on HCC cells is confirmed and its abnormal 

variation is expected to significantly affect the development of HCC. 

However, the expression of miR-214 is tumor-specific. As reported, 

miR-214 was up-regulated in pancreatic carcinoma, leading to the 

poor response of pancreatic cancer cells to chemotherapy[17]. For 

gastric carcinoma, the up-regulation of miR-214 expression could 

promote the cancer cell proliferation and migration, which may be 

related with its negative role in regulation of PTEN protein[12]. While 

in HCC[8,18], ovarian carcinoma[19] and cervical carcinoma[13], miR-

214 expression was up-regulated. In addition to miR-214, many 

other miRNAs contribute to the HCC onset and progression and 

they showed different expression patterns: there is a down-regulation 

in the expression of some miRNAs such as miR-30a, miR-125b 

and miR-185[20-22], but an up-regulation in the expression of other 

miRNAs such as miR-224, miR-517a and miR-520c[22-24].

4.2. Mechanism of miR-214 inhibiting HCC development by 
targeting 毬-catenin pathway

  毬-catenin is reported to be significant for the development of 

cancers such as adrenal carcinoma[25], colorectal carcinoma[26] 

and gastroenteric carcinomas[27] because this gene silence can 

activate apoptosis and consequently inhibit cancer cell proliferation. 

According to results in the present study, the protein level of

毬-catenin was significantly inhibited by miR-214, while its mRNA 

level showed no significant difference compared to the negative 

control group. This suggested that miR-214 mainly affect the 

expression of 毬-catenin on the level of translation. For HCC, the 

Wnt/毬-catenin signaling pathway is an important biomarker due 

to its comprehensive function in cell differentiation, proliferation, 

and maintenance of homeostasis[28,29]. As deregulation of the 

Wnt pathway can affect the expression of target genes including 

Cyclin D1 and c-Myc[28], it is considered as an early event in 

hepatocarcinogenesis[30]. We determined the protein level of

毬-catenin and its downstream proteins (ie. Cyclin D1, c-Myc and 

TCF-1) with Western-blot method and confirmed the inhibitory 

effect of miR-214 on the expression of downstream proteins in the 

毬-catenin pathway. Nevertheless, our experiment results showed 

that the inhibited HCC cell proliferation and 毬-catenin expression 

could recover due to the restoring 毬-catenin expression. Therefore, 

miR-214 is suggested to play an inhibit role in the 毬-catenin 

pathway, consequently reducing HCC cell proliferation.

  This study demonstrates that miR-214 is a suppressor for the 

development of HCC. This can provide a better understanding 

of the mechanism of HCC onset and progression, and may also 

used as a reference for HCC therapy. Previous reports have shown 

that the function of miR-214 in tumor suppression is correlated 

with its inhibition on 毬-catenin. However, it must be taken into 

consideration that the type and number of target gene or pathway 

of miR-214 is tumor-specific. In cervical carcinoma, miR-214 

can negatively regulate the expression of Bcl212, though this 

situation can partially be reversed by over-expression of Bcl2l2[13]. 

In myeloma, miR-214 is associated with the up-regulation of p53 

expression and the down-regulation of PSMD10 expression with 

the latter encoding the oncoprotein gankyrin[31]. While the restoring 

expression of Leucine zipper putative tumor suppressor 1 can 

reverse the promotion effect of up-regulated miR-214 expression on 

osteosarcoma cell proliferation[32]. Thus, a further study is needed to 

elucidate the effect of miR-214 on other target genes and pathways, 

and the synergistic effect of target genes and pathways on HCC 

onset and progression.
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