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1. Introduction

  Intractable epilepsy[1-4] (IE) is a disease that does not involve 

organic diseases in the central nervous system; healing is delayed 

after more than two years of formal antiepileptic treatment that a 

variety of anti-epileptic drugs are combined. The disease still cannot 

be controlled, even by achieving an effective blood concentration. 

Patients cannot live a normal life[5-9]. There may still be possible 

varieties of pathogenesis, such as the multi-drug resistance 

mechanism and the neural network restructuring mechanism[10-

14]. According to the research of Du et al, mossy fiber sprouting is 

a common pathological basis for the pathogenesis of epilepsy with 

the basis of synaptic plasticity[15]. Mossy fiber sprouting is the basis 

of seizures, which may also be the result of repeated long-term 

epileptic seizures. Therefore, epilepsy can be treated fundamentally 

by clearly investigating the basic molecular biology of the mossy 

fiber sprouting only. Studies by Cohen[16] and Bassell[17] show that 

certain types of mammalian MicroRNA are associated with synaptic 

plasticity. MicroRNA-134 in rat hippocampus inhibits the formation 

Objective: To To investigate the changes of MicroRNA-134, CREB and p-CREB expression in 
epileptic rat brains in order to elucidate the molecular mechanisms of epilepsy, providing new 
ideas for clinical treatment. Methods: Sixty-four Spraque-Dawley (SD) rats were divided into 
groups randomly, including control group, six hours after seizure group, 24-hour group, three-
day group, one-week group, two-week group, four-week group, and eight-week group. All 
groups were placed under a pilocarpine-induced epilepsy model except the control group, and 
all rats were decapitated in different points of time. Brain specimens were taken for quantitative 
PCR experiments, immunohistochemistry and Western blot experiments. The results of 
the epilepsy model groups and the control group were compared. Results: There were no 
significant differences between the six hours after seizure group, the 24-hour group and the 
control group about the MicroRNA-134 levels. MicroRNA-134 in the hippocampus tissue of 
the three-day group significantly reduced compared with the control group; same result was 
observed with the one-week, two-week, four-week and eight-week groups. The CREB and 
p-CREB levels in the three-day group’s rat hippocampus significantly increased compared 
with the control group; and the high levels of CREB and p-CREB were constantly maintained 
in the one-week, two-week, four-week and eight-week groups. Conclusions: The MicroRNA-
134 level of the epileptic rat hippocampus is significantly lower than normal after three days, 
and continues to maintain a low level; while CREB and p-CREB levels are rsignificantly 
increased after three days, and continue to remain at a high level. MicroRNA-134 plays a role 
in inhibiting synaptic plasticity by inhibiting CREB and p-CREB expressions.
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of synapses that exists only in brain tissue[18]. Studies by Gao[19] 

found that MicroRNA-134 regulates synaptic plasticity by regulating 

the phosphorylated cAMP-response element binding protein (CREB) 

and CREB. Various findings relevant to MicroRNA-134, CREB 

and phosphorylated CREB variations in rat hippocampus need to 

undergo further studies. MicroRNA-134, CREB and phosphorylated 

CREB variations in rat hippocampus may provide new insights 

for treating epilepsy by molecular targeted therapy, which could 

also be used as a foundation for further studying the mechanisms 

of epilepsy. Therefore, in this study, changes of MicroRNA-134, 

CREB, and phosphorylated CREB in the hippocampus of epileptic 

rats needs further analysis, as reported below.

2. Materials and methods

2.1. Experimental animals

  Sixty-four clean Spraque-Dawley (SD) male rats were selected 

for the study; body weight was approximately 200g; and the rats 

were reared on free diet in the laboratory by animal laboratory 

professionals. 

2.2. Method

2.2.1. Animal groups  
  Eight rats were randomly selected as the control group and the 

remaining rats were introduced to an epilepsy model. The epilepsy 

model rats were randomly divided into 7 groups; six hours after 

seizure group, 24-hour group, three-day group, one-week group, 

two-week group, four-week group and eight-week group; each group 

have at least five animals.

2.2.2. Establish an epileptic rat model 
  Lithium chloride was intraperitoneally-administered to the rats, 

based on the 127 mg/kg dosage. After eighteen hours, the rats 

were treated with a 40 mg/kg dose of pilocarpine, administered 

intraperitoneally. Twenty minutes before administering pilocarpine, 

the rats were intraperitoneally-administered with 1 mg/kg of 

atropine in order to prevent serious cholinergic reactions. Saline 

was administered to the control group with the same dosage. 

When seizures reached stage 4 or 5, the rats were given 10mg/kg 

of diazepam to terminate the seizures after one hour. According to 

Racine Stages, “0” no abnormal reactions; “1” blinking, rhythmic 

chewing-clonic movements and other facial expression appear; 

“2” paroxysmal nods appear; “3” bilateral forelimb clonus occurs; 

“4” hind limb standing; and “5” all symptoms above with falling 

movements occurs.

2.2.3. Preparation and production of tissue specimen for 
biopsy 
  Each group was anesthetized by 3.5% chloral hydrate; 

intraperitoneally administering a 0.1 mL/kg dosage after 6 hours, 24 

hours, three days, one week, two weeks, four weeks and eight weeks, 

respectively. The hippocampus was peeled and placed into EP tubes 

without RNA enzymes; and stored in a refrigerator at -80 曟 to be 

used as materials for quantitative PCR and western blot experiments.

After anesthetization, the rats were perfusion-fixed with 4% 

paraformaldehyde (250 mL); the hippocampus was removed, 

separated from brain, and fixed with a 4% paraformaldehyde 

for approximately 2 hours. The specimens were embedded in 

paraffin and cut into slices (5 毺m) to be used as materials of 

immunohistochemistry.

2.2.4. Quantitative PCR experiments
  Approximately 50-100 mg of hippocampus tissue was placed in 

the tube and 1 mL of RNAiso Plus was added with a dropper. The 

specimen was homogenized on ice until the polishing fluid became 

clear, and moved to a tube without RNase. 1.2 mL of chloroform 

was added, and the centrifuge tube was stamped for 30 seconds 

after the turbulence. The specimen was placed on ice for 5 minutes, 

and placed under a centrifuge speed of 12 000 r/minute for fifteen 

minutes. The centrifugal supernatant was transferred to a fresh tube 

without RNase, added 0.5 mL of chloroform, and placed on ice 

for ten minutes after turbulence; the specimen was centrifuged for 

fifteen minutes with the same speed. Afterwards, the supernatant was 

discarded, added with 75% ethanol, and was centrifuged for seven 

minutes with a speed of 7 500 r/minute. The alcohol was discarded; 

and after drying the tube, RNase-free water was added to dissolve 

the RNA pellet. 

  After determining the RNA concentration, the RNA was retained 

at 1.8-2.0 during 260 nm/280 nm, as a material for cDNA reverse 

Table 1	
RNA reverse transcription system and PCR fluorescence quantitative reaction system.  

RNA reverse transcription system PCR fluorescence quantitative reaction system 

5×PrimeScript buffer (for Real time) 2 毺L SYBR Premix Ex TaqTM
栻(2暳) 5 毺L

Specific primer (2 毺M) 0.5 毺L PCR Forward primer (10 毺M) 0.5 毺L
Total RNA 2 毺g PCR Reverse primer (10 毺M) 0.5 毺L
RNase free dH2O up to the total volume 10 毺L cDNA template 1 毺L
Total 10 毺L RNase free dH2O 3 毺L

Total 10 毺L
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transcription; reverse transcription procedures were all done on ice. 

During the experiment, the centrifuge tube and Pipette tips were all 

RNase free. After reverse transcription, the specimen was cooled on 

ice. Spare cDNA results were stored at -20 曟.

  Fluorescence quantitative PCR; ① each cDNA tissue sample was 

pipetted three times; ② Fluorescence quantitative PCR reaction 

steps (95 曟 for 30 s, 95 曟 for 5 s, 60 曟 for 20 s, 72 曟 for 10 s, 35 

cycles ); ③ After PCR amplification reactions were completed, the 

temperature was gradually increased from 55 曟 to 95 曟 at a speed 

0.5 曟 every 5 seconds to draw a melting curve. The RNA reverse 

transcription and PCR fluorescence quantitative reaction systems are 

shown in Table 1.

2.2.5. Western blot experiments
  One 毺L of phosphatase inhibitors (sodium pyrophosphate), 1 

mL Lysis buffer and 5 毺L PMSF were added in a uniform shock-

resistant centrifuge tube. The contents were made into protein 

extracts and placed on ice. As for the 100 mg rat hippocampus, 

600 毺L protein extracts were added; tissue homogenates were 

homogenized with a glass homogenizer until it become clear; and 

was transferred into a new centrifuge tube and centrifuged at 10 000 

r/min for five minutes. The supernatant was dispensed into two 

centrifuge tubes. After determining the protein concentration in the 

supernatant, 50 毺g of protein and a volume of 5伊SDS solution were 

added in a uniform shock-resistant centrifuge tube. The tube was 

sealed, submersed in boiling water for ten minutes, and stored in the 

refrigerator at 4 曟.

  Protein concentration assay solution and standard protein solution 

were prepared according to the manual of BCA protein kit. Three 

毺L of brain homogenate and 57 毺L of buffer were thoroughly 

mixed, which were added to 3 wells of the 96-well plates. Each 

well was filled up to 20 毺L; the protein concentration assay 

solution was added into each well, placed in the incubator for 

half an hour, and the A562 wavelength was measured and plotted. 

The protein concentration’s standard curve was drawn, and the 

protein concentration was calculated based on the standard protein 

concentration curve. According to the molecular weight of the 

protein, a 10% separating gel was used; which was solidified to 5% 

with a stacking gel comb. After the stacking gel was solidified, the 

comb was pulled out, and a liquid sample was poured to begin the 

electrophoresis.

  A 1伊SDS buffer was initially poured for electrophoresis, the marker 

protein and the hippocampal protein of each group were added; 毬
-mercaptoethanol was added afterwards, and boiled with an initial 

voltage of 60 volts. After the gel sample started to separate, the 

voltage level was raised to 120 volts, and the current voltage was 

maintained until the bromine finland indicator gel electrophoresis 

reached the next downstream. A stack was placed together into an 

electrophoresis tank in the following order: PVDF membrane, gel 

electrophoresis, a three-sheet filter; and was fixed on ice with an 

electrical current of 250 mA for 60 minutes. The PVDF membrane 

was transferred to a 5% skimmed powder box for an hour with 

a temperature of 37 曟 combined with tissues from non-specific 

antibody binding sites. The CREB, p-CREB and 毬-actin antibody 

were refrigerated at 4 曟 for spare, after diluting 100, 500, and 1 000 

folds. According to the displayed electrophoretic bands, the PVDF  

CREB, p-CREB and 毬-actin proteins reside were cut and immersed 

overnight into its corresponding primary diluted antibody liquid, 

at a temperature of 4 曟. The PVDF strips were washed four times 

with Tris-Buffered Saline Tween-20 (TBST). The Goat anti-rabbit 

secondary antibody was diluted 4 000 times with TBST. The PDVF 

membranes were incubated for an hour in the secondary diluted 

antibodies at 37 曟; and were immersed in TBST to be shake-

washed for four times, at about ten minutes each time. Luminescent-

liquid-one and luminescent-liquid-two were mixed at a 1:1 ratio, and 

was added to the membrane. Gel strip images were obtained when 

light was emitted from the UV gel imager. Quantity one was the 

image analysis software used to calculate the optical density of each 

band in order to obtain the expression of the tissue’s protein.

2.2.6. Immunohistochemistry
  Tissue slices were immersed in a xylene solution 栺 and 栻, and 

incubated for 20 minutes at 60 曟. These were then immersed in a 

100%, 95%, 80%, and 70% alcohol solution for five minutes, one at 

a time; and tissue slices were soaked in a PBS solution for 5 minutes.

  The slices were immersed in a citric acid solution and placed in a 

microwave for antigen retrieval; the temperature was raised to the 

maximum level for 3 or 4 minutes until the solution boiled; then, 

the temperature was adjusted and maintained at a low level for 20 

minutes. The slices were added in the PBS solution for three minutes 

after cool down to room temperature for cleaning, which was washed 

for a total of three times. 3% hydrogen peroxide solution was added 

in the slice, and was kept at room temperature for 15 minutes; then 

the slice was washed three times with a PBS solution, three minutes 

per time. 

  Dropwise Goat serum was added and incubated for half an hour at 

37 曟. Diluted CREB and p-CREB antibody solutions were added. 

The slices were incubated at 37 曟 for two hours. After incubation, 

the slices were washed three times with a PBS solution, five minutes 

each time. Secondary antibody was added to the slice, incubated for 

20 minutes at 37 曟, and was washed three times again with a PBS 

solution, five minutes each time. SABC solution was added in the 

slices, incubated for 20 minutes, and washed three times with a PBS 

solution at 37 曟, five minutes each time. 

  A drop of color-liquid from the DAB chromogenic kit and 1ml 

double distilled water were mixed without light; the color-liquid was 
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added on the slices. When the color darkened from the background, 

the reaction was stopped by adding water. The slices were washed 

three times with tap water, placed in a hematoxylin stain for four 

minutes, washed with tap water three times again, and dipped in 

a 1% hydrochloric acid for one second for differentiation. After 

washing three times with tap water, the slices were soaked in a 

lithium saturated solution for twenty seconds; then, the slices were 

observed under the microscope after staining the nuclei of neurons 

examining under the microscope, after the slices were dried.

2.3. Experimental equipment 

  Ultra-pure water system (MILLI-Q)(Millipore USA); Optical 

microscope (BX 51) (Olympus, Japan); CFX96 Real time PCR 

instrument, electrophoresis and electroporation instrument(Bio-

Rad America); gel/luminescent image analysis system (ChemiDoc 

XRS); Visible / UV gel scanning analysis system UVP (Britain); 

slicers (RM2135)(Leica German); thermostatic water bath(Jiangsu 

instrument).

2.4. Reagents

  Total protein extraction kit (Nanjing KGI); BCA Protein Assay 

Kit (Enhanced)(Haibi sky); 毬-actin, P-CREB polyclonal antibody 

(Santa America);paraformaldehyde PVDF membrane (Millipore 

USA);pilocarpine, lithium chloride, glycine, Tris base (Sigma 

USA);Tween-20, Triton-X100, SDS, Protein Marker (Fermentas); 

SABC kit, DAB chromogenic kit (Beijing Zhongshan Golden 

Bridge); IgG, CREB polyclonal antibody (Cell signaling technology 

USA); 0.01 M PBS buffer, polylysine on SDS-PAGE sample buffer 

(5暳) (Wuhan Boster China); kim milk, citrate buffer, and miR-134-

specific reverse transcription and PCR primers (Guangzhou RiboBio 

Ltd.); DEPC (Invitrogen America); SYBR Premix Ex Taq™ 栻,

RNAiso Plus (Takara China); PrimeScript RT reagent Kit (Takara 

China).

2.5. Statistical analysis

  IBM SPSS19.0 software was applied for statistical analysis. 

Normally distributed data were expressed in, and the measured data 

was compared using ANOVA analysis. Independent t-test sample 

was used for comparing the groups. P<0.05 represents statistical 

significance.

3. Result 

3.1. MicroRNA-134 expression in each group of rats

  After 10-15 cycles of PCR amplification, the MicroRNA-134 CT 

values of the six hours after seizure group and the 24-hour group 

had no significant difference compared with the control group, the 

result was not statistically significant (P>0.05). The MicroRNA-

134 expression levels of the three-day-group began to decrease, 

and MicroRNA-134 levels in the hippocampus of the three-day, 

one-week, two-week, four-week and eight-week groups decreased 

significantly, compared with the control group. The difference had 

statistical significance (P<0.05), as shown in Table 2. 

3.2. Immunohistochemistry

3.2.1. CREB expression of a rat model’s brain tissue
  CREB was expressed in all cells of brain CA3, CA1 neurons of the 

three-day group’s hippocampal nucleus; the CREB expression was 

significantly more than the control group, shown in Figure 1. 

 

Figure 1. CREB expression in rat hippocampal.

  
  Figure1-a, CREB expression figure in CA3, neurons of the 

control group’s nucleus, as shown by the arrow; Figure1-b, CREB 

expression in CA3, neurons in the three-day group’s nucleus, as 

shown by the arrow. Color bands in Figure1-b darkened, indicating 

that CREB neurons are significantly more than the control group. 

Figure1-c, CREB expression in CA1, neurons in the control group’s 

nucleus, as shown by the arrow; Figure1-d, CREB expression in 

CA1, neurons in the three-day group’s nucleus, as shown by the 

Table 2 
Comparison of MicroRNA-134 values in the rat hippocampus of each group.

Groups Control  6-hour 24-hour 3-day 1-week 2-week 4-week 8-week
MicroRNA-134 0.028依0.013 0.029依0.014 0.028依0.014 0.014依0.009 0.011依0.007 0.009依0.006 0.010依0.005 0.012依0.004
t value 2.463 4.382 6.349 10.342 9.054 11.342 9.563
P value 0.213 0.117 0.031 0.000 0.000 0.000 0.000
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arrow; color bands in figure-d darkened, indicating that CREB 

neurons are significantly more than the control group.

3.2.2. p-CREB expression of the rat model’s brain tissue 
  In the CA3, CA1 region of the hippocampal, the p-CREB 

expression levels of the three-day group were significantly more than 

the control group (Figure 2). 

Figure 2. p-CREB expression of the rats hippocampal.

  Figure-1a, p-CREB expression in CA3, neurons in the control 

group’s nucleus, as shown by the arrow; and Figure1-b, p-CREB 

expression in CA3, neurons in the three-day group’s nucleus, as 

shown by the arrow; color bands in Figure1-b are darker, indicating 

that p-CREB neurons are significantly more than the control group. 

Figure1-c, p-CREB expression in CA1, neurons in the control 

group’s nucleus, as shown by the arrow; and Figure1-d, p-CREB 

expression in CA1, neurons in the three-day group’s nucleus, as 

shown by the arrow; color bands of figure-d are darker, indicating 

that p-CREB neurons are significantly more than the control group.

3.3. Western blot experiment

  The CREB expression of the six hours after seizure group and the 

24-hour group showed no significant difference compared with the 

control group, the result was not statistically significant (P>0.05). 

Three days after seizures, the expression of CREB began to increase; 

and the expression of the three-day, one-week, two-week, four-week 

and eight-week groups significantly increased compared with the 

control group, the results had statistical significance (P<0.05), shown 

in Table 3. The expression of p-CREB of the six hours after seizure 

group increased significantly compared with the control group. The 

expression levels continued to remain high for eight weeks -- the 

results were statistically significant (P<0.05), shown in Table 4. The 

PVDF membrane strips and the CREB levels of the three-day group 

were both more than the control group compared with 毬-actin; and 

p-CREB began to increase in the six hours after seizure group for 

eight weeks, shown in Figure 3.

CREB

P-CREB

毬-actin

43 kDa

43 kDa

42 kDa

Control    6 h     24 h     3 d       1 w      2 w       4 w      8 w

Figure 3. CREB and p-CREB levels of the rat’s hippocampus in Western blot 
experiments. 

  With 毬-actin as a reference and CREB in the normal control 

group, the six hour after seizure group and the 24-hour group had 

no obvious PVDF membrane strips. The PVDF membrane strips 

of three-day group was obvious for eight weeks. The p-CREB of 

the six hours after seizure group had significant number of PVDF 

membrane strips until the end of the experiment; indicating that the 

CREB and p-CREB expressions increased significantly.

4. Discussion

  This study aims to investigate the expression level changes of 

MicroRNA-134, CREB and phosphorylated CREB; in different time 

periods after seizures of the rat’s hippocampus; exploring variations 

of the hippocampus substances mentioned above; which may give 

us a better understanding of the pathogenesis of epilepsy. This 

Table 3 
Comparison of CREB expression levels in the hippocampus between the epilepsy groups and the control group. 

Groups control  6-hour 24-hour 3-day 1-week 2-week 4-week 8-week
CREB 0.207依0.039 0.224依0.042 0.217依0.041 0.438依0.115 0.429依0.203 0.387依0.094 0.417依0.173 0.397依0.078
t value 4.877 7.235 10.214 12.369 8.572 12.672 9.754
P value 0.452 0.257   0.000   0.000 0.014   0.000 0.026

Table 4 
Comparison of p-CREB expression levels in the hippocampus between the epilepsy groups and the control group 

Groups control  6-hour 24-hour 3-day 1-week 2-week 4-week 8-week
P-CREB 0.183依0.047 0.245依0.039 0.201依0.064 0.388依0.057 0.412依0.061 0.397依0.052 0.387依0.071 0.411依0.049
t value 4.877 11.903 9.563 13.426 7.547 9.421 12.432
P value 0.023   0.014 0.011   0.000 0.012 0.000   0.000
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study can also help us to learn more about the signaling pathway of 

MicroRNA-134, and its interaction with CREB and phosphorylated 

CREB. Grasping the significance of the pathogenesis of epilepsy 

may contribute to its further in-depth study, at a genetic-level. All of 

these may provide new ideas for the gene therapy of epilepsy. 

4.1. Pathogenesis of epilepsy

  There are a variety of concepts in the pathogenesis of epilepsy; 

but the most common pathological mechanism is the mossy fiber 

sprouting. Mossy fiber sprouting is based on synaptic plasticity. 

A rat’s newborn synaptic epileptic brain tissue is considered as a 

pathological basis, due to the abnormal discharge activities of the 

rat hippocampus. In normal circumstances, normal MicroRNA-

134 concentrations can effectively inhibit abnormal formations 

of synapses. Studies have shown that MicroRNA-134 affects the 

development of synapses, and that large amounts of MicroRNA-

134 can induce the dendritic spine volume to reduce significantly. 

Currently, the common causes of the pathogenesis of epilepsy[21-

23] include: MicroRNA-134, CREB and phosphorylated CREB 

variations; these are still in the experimental stage and are being 

researched in epileptic rats findings still needs to be further 

confirmed. Studies of Nakagawa[24], Lubin[25] and Eacker[26] have 

shown: the signal transduction pathway mediated by MicroRNA-

134 can express by inhibiting specific genes, and that the amount 

of CREB and phosphorylated CREB inhibits the development of 

synapses preventing mossy fiber sprouting.

4.2. Expression of CREB and p-CREB inhibited by 
MicroRNA-134 (mi-R134)

  The study showed that after the PCR amplification of the rat 

hippocampus, the MicroRNA-134 CT values of the six hours after 

seizure group and the 24-hour group had no significant difference 

compared with the control group. However, MicroRNA-134 

expression of the rat hippocampus of the three-day group was 

significantly lower than the control group; and in one, two, four, and 

eight weeks, MicroRNA-134 expression levels were still significantly 

lower than the control group. All these findings showed that, after 

the seizures, the epileptic content pertaining to the MicroRNA-134 

of rat hippocampus-reduced in 3 days, and continuously maintained 

a low level. These results are similar to Yang Xiaolan’s findings; 

which may also be related to the effects of pilocarpine-inhibiting the 

MicroRNA-134 expression and reducing the inhibition of synaptic 

plasticity related issues.

  Immunohistochemistry and Western blot experiments have shown 

that the CREB expression of rat hippocampus levels of the six 

hours after seizure group and the 24-hour group had no obvious 

differences compared with the control group; on the other hand, the 

levels of the three-day, one-week, two-week, four- week, and eight-

week groups significantly increased. The three-day group’s p-CREB 

was also significantly higher, and this level was maintained for 

eight weeks. Therefore, the CREB and p-CREB expressions both 

increased; which may be related to the stimulation of the mossy fiber 

sprouting. In addition, both levels had the same trend; suggesting 

that CREB stimulates mossy fiber sprouting through p-CREB. 

Due to this observation, CREB and p-CREB had opposite trends 

verifying that CREB can be regulated by p-CREB. When the amount 

of MicroRNA-134 decreased, the CREB and p-CREB expressions 

would increase. This promotes a new abnormal synaptic formation, 

which leads to high levels of mossy fiber sprouting - forming an 

abnormal nerve grid loop in the brain tissue. Seizures occur through 

constant abnormal high-frequency discharge; but regulating the 

correlation of these three substances needs to be further confirmed. 

This study also provides us with new ideas for epileptic gene therapy 

applications, and developing new drugs at the genetic level - making 

it eventually possible to treat or prevent seizures. 

4.3. Prospects

  Although this study found that the MicroRNA-134 expression of 

the three-day group decreased and maintained a low level for eight 

weeks, this case still does not provide a clear answer after eight 

weeks. In addition, 24 hours after the seizure, the 24-hour group 

did not show any significant difference in the MicroRNA-134 

levels, compared with the control group; but there were significant 

differences with the three-day group. Thus, these findings should 

still be refined, as well as a more precise timing including the 

findings on CREB and p-CREB. The detailed steps in regulating 

the MicroRNA-134, CREB and p-CREB levels are still not clear; 

which requires further experiments and new concepts exploring the 

signaling pathways. This also requires multi-disciplinary researchers 

to explore further and search for strong evidence that could be used 

as a basis for treating epilepsy.

  In a word, the cause of epilepsy is still complex and vivid; and until 

now, the study of its pathogenesis is still in the animal experimental 

stage. The diversity of its pathogenesis further increased, which 

made it more difficult for clinicians and researchers. The mechanism 

of epilepsy still needs to be confirmed through more extensive 

research.
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