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ABSTRACT

Objective: To identify whether Canova medication changes TNF-a and IL-10 serum
levels in mice infected with Trypanosoma cruzi Y strain.
Methods: Animals were divided into five groups: non-treated infected animals (I);
benznidazole-treated infected animals (Bz; 100 mg/kg body weight, single daily dose by
gavage); Canova medication (CM) treated infected animals (CM; 0.2 mL/animal, single
daily dose by gavage); benznidazole- and Canova medication-treated infected animals
with the above-mentioned dose (Bz+CM); and non-infected animals (C). TNF-a and IL-
10 levels were determined in serum aliquots after 4, 7, 10, 13, and 29 days of infection.
An ELISA technique was employed with R&D System Inc. antibody pairs.
Results: A high increase in TNF-a and IL-10 levels occurred in the infected and CM-
treated groups within the treatment employed on the 10th day after infection, coupled
with a IL-10 decrease on the 13th day after infection when compared with the other
experimental groups.
Conclusions: CM may change the balance between plasma cytokine levels (TNF-a and
IL-10) in mice infected with Y strain T. cruzi, with important consequences leading to-
wards a more severe infection.
1. Introduction

The digenetic protozoon Trypanosoma cruzi (T. cruzi) and
the etiological agent of Chagas disease cause systemic infection
in humans and mammals. Its main defense mechanism is cell-
mediated immunity, especially macrophages activated by T
helper cells (Th1) derived cytokines [1].

Similar to other infections by intracellular pathogenic micro-
organisms, the host's infection by T. cruzi triggers multiple hu-
moral and cellular mechanisms of the innate and acquired
immunological response. Although the parasite is continually
attacked and its multiplication is highly reduced, it remains
indefinitely in the host's tissues, as does the immunological
response. Tissue lesions caused by prolonged immunological
activity may eventually lead towards muscular and nervous
functional alterations that are proper to Chagas disease [2,3].

Cytokines have an important role in controlling the immu-
nological response. They are involved in the resistance and in
the immuno-pathological mechanisms of Chagas disease.
Interferon gamma (IFN-g), mainly produced by lymphocytes
Th1 and natural killer cells (NK), has been extensively studied.
It is a protector cytokine because it activates macrophages to
produce other protector cytokines, such as tumor necrosis
factor-alpha (TNF-a), and toxic metabolites for the parasite,
such as nitric oxide and oxygen reactive species [4]. On the other
hand, interleukin-10 (IL-10) may suppress the activation of
macrophages induced by IFN-g while inhibiting the release of
toxic metabolites and the differentiation of Th1. Whereas TNF-
a is involved in the resistance and in the genesis of tissue le-
sions, IL-1 and IL-6, which are associated with great alterations
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in the endothelial cell functions, may be involved in the
microvascular changes reported in the myocardiopathy of
Chagas disease [3,5]. Furthermore, cytokines such as TNF-a, IL-
6, and IL-1 modulate adhesion molecules that participate in
the recruitment of lymphocytes for the inflammation sites [6].
Thus, quantitative or equilibrium changes between different
cytokines may be related to resistance and to the development
of different lesions reported in Chagas disease, mainly in its
chronic phase [7,8].

Several studies show that the control of the acute phase of
T. cruzi-induced infection depends on the activation of macro-
phages mediated by cytokines that trigger a number of events
causing the parasite's death within the cell [9,10]. However, some
studies report the occurrence of immunosuppression in Chagas
disease especially during this phase. Deficiencies in the cell's
immune response have been reported in animal experiments
[11–13] and in patients suffering from Chagas disease [14].
Other researchers also suggest immuno-suppression against an-
tigens not related to T. cruzi [15], which would have implications
on the development of self-immunity of Chagas disease [16,17].

The medication Canova (CM) is a homeopathic, non-
mutagenic, non-toxic drug that is highly diluted and dynamic
[18]. Its active components are Aconitum napellus, Arsenicum
álbum, Bryonia alba, Lachesis trigonocephalus, and Thuya
occidentalis. CM is an immunomodulator that is clinically
employed, associated with other medical agents, in the
treatment of diseases in which the patient's immunological
system is impaired, as in the case of Acquired
Immunodeficiency Syndrome and in cancers [19,20]. Although
there is experimental evidence showing that CM controls the
progression of infection by intracellular parasites, such as
Leishmania amazonensis and Paracoccidioides brasiliensis [21–

23], we have recently demonstrated a negative effect of CM on
Y strain T. cruzi infection. CM modified the evolution of acute
infection induced by the Y strain of this parasite, causing
increased parasitism and the early death of all animals [24]. The
mechanisms involved in this negative effect were not yet
investigated. However, there is substantial evidence to suppose
that CM may affect cytokine production by defense cells like
macrophages, which are the main cells infected by this
protozoan and which play a central role in infection control [25].
As observed by Piemonte and Buchi [26], the macrophages
treated with this drug become larger, with more cellular
projections and a substantial increase of cytoplasmic volume.
NADPH oxidase and inducible nitric oxide synthase activities
are also increased as a result of CM treatment [27]. Regarding
cytokine production, some authors have reported in vitro
inhibition of TNF-a release by macrophages infected with
T. cruzi and treated with CM [28]. The influence of these
phenomena observed in vitro on the progression of the in vivo
infection is not well established.

Therefore, the aim of the present work was to investigate the
influence of CM medication alone or in association with benz-
nidazole treatment on plasma cytokine levels (TNF-a and IL-10)
in mice infected with Y strain T. cruzi.

2. Materials and methods

2.1. Canova medication

Canova is a homeopathic pharmaceutical product, developed
by Homeopathic Pharmacies of Brazil. The method for the
preparation of Canova followed Hahnemannian homeopathy
described in the Brazilian Homeopathic Pharmacopeia [29,30].
Decimal dilutions, represented by DH units, were used. The
number in front of DH indicates the number of decimal
dilutions, i.e., 10 DH represents a dilution of 1 × 10−10.
Canova's formula is composed of Thuya occidentalis
(Cupressaceae) 19 DH, obtained from the bark of the tree;
Bryonia alba (Curcurbitaceae) 18 DH, obtained from fresh
roots; Aconitum napellus (Ranunculaceae) 11 DH, obtained
from fresh preparations of the entire plant, including roots, at
blooming; Arsenicum album (arsenic trioxide) 19 DH, and
Lachesis muta (Viperidae) poison 18 DH. Active compounds
were extracted and diluted with equal parts in 70% ethanol.
2.2. Parasites

Strain Y of T. cruzi was employed [31]. Parasites were
obtained from the mice's blood on the seventh day of
infection. Blood was collected, and an inoculum consisting of
10 000 trypomastigotes per animal was produced. Inoculation
of parasites was carried out intraperitoneally.
2.3. Animals

Four-week-old male Swiss mice, weighing approximately
between (28–30) g, were used. The experiment protocol was
approved by the Ethics Committee in Animal Experimentation
(CEAE/UEM 008-2005).

2.4. Treatment

The animals were divided into five groups with twelve
animals each: (1) non-treated infected animals (I); (2)
benznidazole-treated infected animals (Bz; Roche; 100 mg/kg
body weight, single daily dose by gavage); (3) Canova
medication-treated infected animals (CM; Canova of Brazil;
0.2 mL/animal, single daily dose, by gavage); (4) benznida-
zole- and Canova medication-treated infected animals with the
above-mentioned dose (Bz+MC); and (5) non-infected animals
that received the same volume of alcohol (C). Treatment
started on the fifth day after infection and lasted for 20 d. The
treatment started on the 5th day from the initiation of the
infection, considering that this procedure is used by most re-
searchers to evaluate medicines in experimental infection with
T. cruzi [32–35].

2.5. Determination of cytokines serum level

Concentrations of cytokines (TNF-a and IL-10) were
determined in serum aliquots from animals of the different
groups after 4, 7, 10, 13, and 29 days of infection. An enzyme-
linked immunosorbent assay (ELISA) technique was employed
with antibody pairs from R&D System Inc. (Minneapolis,
USA). The technique was developed according to protocols by
the manufacturer, with slight modifications. Microplates of 96
wells (Nunc-MaxiSorp) were sensitized with anti-cytokine
monoclonal antibody and incubated overnight at 4 �C. Non-
specific sites were blocked with non-fatty milk powder
(Molico) dissolved in PBS-Tween (0.5 mL Tween-20/L) for
2 h at 37 �C. Samples were then added and incubated for 2 h at
37 �C. Polyclonal anti-cytokine biotinylated antibodies were



Figure 1. Weight gain of infected untreated 4-week-old male Swiss mice.
Each data point represents the mean SEM of 6–12 animals. aP < 0.01,
compared with control animals; bP < 0.05, compared with untreated
infected animals and infected animals treated with CM.
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employed as detecting antibodies. The wells were then incu-
bated with a solution containing Streptavidin-HRP (horseradish
peroxidase) in a dilution of 1:10 000 in PBS-Tween for 1 h at
37 �C. Final reaction was determined by adding 50 mL TMB-
tetrametylbenzidin (TMB single solution chromogen for
ELISA). Enzyme reaction was blocked with 50 mL H2SO4$2N.
Reading was undertaken in 492 nm. Cytokine concentrations
were determined according to a standard curve from recombi-
nant mice cytokine (R&D System), and results were given
in pg/mL.

2.6. Evaluation of animal weight

Animals from the different groups were weighed before
infection onset and on the 10th day after onset to calculate
weight gain.

2.7. Statistical analysis

Results were given as mean ± SEM and analyzed by Stu-
dent's t test to compare two means or by ANOVA, followed by
Tukey's test for multiple comparisons.

3. Results

3.1. Effect of Canova medication on the serum level of
cytokines

Table 1 show the serum levels of TNF-a and IL-10,
respectively.

Animals infected with the Y strain of T. cruzi showed an
increase in serum levels of cytokines, beginning on the 10th
day after the protozoan inoculation. TNF-a levels in the
infected group (I) were high on the 10th day (139.3 ± 35.0) and
on the 13th day (217.3 ± 38.0) after infection. Similarly, the IL-
10 levels in this group of animals (I) increased on the 10th day
(252.5 ± 53.5) and on the 13th day (368.9 ± 50.4) after
infection.

CM treatment caused an augmentation of TNF-a and IL-10
levels on the 10th day after infection. The amount of TNF-a
was approximately three-fold higher and IL-10 levels were
almost two-fold higher in the CM-treated group (CM) when
compared with the infected group (I) at this period. The levels
of both cytokines diminished on the 13th day of infection.
However, TNF-a levels were still high, as they were not sta-
tistically different from the infected group (I) on the same day.
Table 1

Serum TNF-a and IL-10 levels in 4-week-old male infected untreated Swiss

Group TNF-a

7 10 13 29

I 0.0 ± 0.0 139.3 ± 35.0 217.3 ± 38.0 –

CM 0.0 ± 0.0 326.7 ± 81.2 135.1 ± 44.7 –

Bz 0.0 ± 0.0 40.0 ± 31.7a 19.3 ± 12.4 2.0 ± 1.
Bz+CM 0.0 ± 0.0 30.6 ± 3.5a 13.4 ± 3.3 3.4 ± 3.

Each data point represents the mean ± SEM of 5 animals. aP < 0.05, compar
10th day; bP < 0.05, compared with infected animals (I) on the 13th day of
Bz+CM on the 10th day of infection; dP < 0.05, compared with infected anim
Otherwise, IL-10 levels were greatly decreased on day 13,
reaching almost basal levels (day 0). On the other hand, TNF-a
and IL-10 serum levels were almost totally suppressed in the
group of infected animals treated with benznidazole (Bz) or
benznidazole associated with CM (Bz+CM) during the entire
experimental period.

It is also worth noting that the animals treated with benzni-
dazole alone (Bz) or in association with CM (Bz+CM) survived
till the 29th day of infection. Importantly, infected animals
treated with CM (CM) and non-treated infected animals (I) died
more quickly (from the 12th day after infection – data not
shown).

3.2. Animals' weight gain

The animals' weight gain was calculated by the difference
between the weight on the 10th day of infection and the weight
on the day prior to infection. Figure 1 shows the animals' weight
gain in the different experimental groups. When compared with
control group animals without any infection (C), the animals of
all other experimental groups had a significant difference, or
rather, a lower weight gain. There was a significant difference in
groups treated with Bz+CM when compared with the non-
treated and CM-treated groups. Group CM had the lowest
weight gain.
mice (pg/mL).

IL-10

7 10 13 29

6.7 ± 2.6 252.5 ± 53.5 368.9 ± 50.4 –

4.2 ± 4.2 437.5 ± 82.0c 80.2 ± 29.6d –

9 0.0 ± 0.0 58.1 ± 14.2a 21.5 ± 5.6b 41.0 ± 6.0
3 0.0 ± 0.0 13.4 ± 2.1a 41.0 ± 6.0 9.7 ± 6.8

ed with infected animals (I) and infected animals treated with CM on the
infection; cP < 0.05, compared with infected animals treated with Bz or
als (I) on the 13th day of infection (ANOVA followed by Tukey's test).
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4. Discussion

The findings of the present work give evidence to support the
hypothesis that cytokines serum levels are associated with the
negative influence of CM on Y strain T. cruzi infection in mice,
as we had previously reported [24]. In our previous study it was
observed that the peak of parasitemia in the group of CM-treated
infected mice was on the 8th day post-infection. In the present
study the results clearly show a massive release of TNF-a and
IL-10 on the 10th day when infected mice were treated with CM.
This result suggests that probably the release of cytokines by
inflammatory cells is stimulated as a consequence of the higher
amount of parasites in these animals. It is currently well estab-
lished that cells and mechanisms of the immune system are
responsible for the control of the parasite's multiplication in
tissues. These data, however, are not sufficient to explain why
CM-treated mice present a higher parasitemia. However, it can
clarify the weight loss in CM-treated mice as well as the high
mortality rate.

TNF-a is a pro-inflammatory cytokine whose main source
are activated macrophages and monocytes, which operates in
inflammatory and immune processes, in addition to regulating
the growth and differentiation of some cell types [36]. The
production of TNF-a can be induced directly by the parasite
or by their surface antigens, being dependent on the activation
of the transcription factor NF-kB, as shown by Ropert et al.
[37]. Although it is crucial to the regulation of the cytokine
cascade that provides a rapid form of host defense against
infection, including intracellular parasites such as T. cruzi, it is
fatal in excess and is intimately associated with cachexia [38–40].

IL-10, on the other hand, is one of the most important anti-
inflammatory immune-regulating cytokines, which is produced
by macrophages and T lymphocyte regulators. This cytokine
inhibits the production of IFN-g by T lymphocytes and the
production of various cytokines and chemokines by macro-
phages through blockade of the accessory functions of these
cells that activate T cells [41]. High levels of IL-10 have been
detected in cultures of cells from whole blood infected with the
trypomastigote form of the Y strain of T. cruzi, and some authors
consider that the induction of IL-10 synthesis by the parasite is
an escape mechanism of the immune response [42].

Different results were obtained when the serum levels of
cytokines were analyzed in groups of animals infected with the
Y strain of T. cruzi and treated with CM, Bz, or Bz+CM.
Interestingly, in serum from animals infected with the Y strain of
T. cruzi and treated with CM, the levels of TNF-a and IL-10
were markedly increased (approximately three times) on day
10 compared with infected animals that received no treatment.
Furthermore, all of the infected animals that were treated with
CM died prematurely, i.e., day (12–16) post-infection. The
weight loss observed in infected mice untreated and treated with
CM is likely related to high levels of TNF-a, which appears to
be involved in cachexia and mortality in animals infected with
T. cruzi [38–40]. This hypothesis is supported by the fact that
cytokine levels in infected animals treated with Bz or with
Bz+CM were significantly reduced when compared with the
levels in non-treated infected animals (I) or infected animals
treated with CM (CM). Additionally, these animals (Bz or
Bz+CM) survived until the end of the experimental period.
Benznidazole is a nitro-heterocyclic drug clinically used for the
treatment of Chagas disease [43,44]. Several studies show that the
benefit of benznidazole in infections by T. cruzi does not merely
depend on its tripanocide effects but also on its immuno-
modulating ones [45–48].

Cells and effector mechanisms of the immune system are
well established to be responsible for controlling both the
growth of the parasite in tissues and local lesions that result from
antiparasitic activity. The importance of this regulatory mecha-
nism can be clearly seen in a study in which the strain Tulahuen
of T. cruzi was used to infect IL-10-deficient mice. These ani-
mals were able to control with great efficiency the parasitemia
and the parasite load in the cardiac tissue. However, IL-10-
deficient animals in this model die early due to the toxic ef-
fects caused by an excess in TNF-a production. The production
of an excess of TNF-a in infections by T. cruzi is linked to
immune hyper-reactivity, metabolic changes, and early death of
animals [49]. Therefore, the production of IL-10 and other cy-
tokines is required to neutralize the deleterious effects of the
type 1 cytokines produced [50]. Additionally, the balance
between these cytokines is crucial for the success of infection
control and survival.

In the present study, CM administration in mice infected with
the Y strain of T. cruzi increased the synthesis of both TNF-a
and IL-10. These findings led us to speculate that CM can alter
the balance between these cytokines, with important conse-
quences related to worsening of the infection.

Some studies have shown that drugs and the immune system
can interact during the etiological treatment of parasitic in-
fections [51–54]. This interaction may occur through a synergistic
action between the drug and immunological components in the
host, leading to the induction of healing and protection.
Immunotherapy may also enhance the effectiveness of
treatment in some cases. However, the drug may induce
immunosuppression by changing the response produced by the
host and exacerbate the disease.

Given these observations, our results indicate a possible
differential immunomodulatory effect of CM that depends on the
treatment regimen. The results also indicate the need to further
investigate the mechanism by which CM interferes with the
production of different cytokines or mediators and the immuno-
pathogenic role of cytokines or mediators in murine infection
induced by the Y strain of T. cruzi.

Overall, the current study shows that CM treatment in mice
infected with the Y strain of T. cruzi induced a concomitant
increase in the synthesis of the two cytokines (TNF-a and IL-10)
on the 10th day after infection and a significant IL-10 decrease
on the 13th day after infection. These alterations are probably
intimately related to the deleterious effect of CM on T. cruzi
infection in mice. Further investigations should be carried out to
better elucidate the mechanism by which CM interferes in the
production of different cytokines or mediators and the immuno-
pathogenic role of these cytokines or mediators in mouse
infection induced by Y strain of T. cruzi.
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Áurea Regina Telles Pupulin et al./Asian Pacific Journal of Tropical Medicine 2016; 9(9): 860–865 865
not by anti-IL-6 or anti-IFN-gamma antibodies. Parasit Immunol
1995; 17: 561-568.

[40] Truyens C, Torrico F, Lucas R, Heremans H, de Baetselier P,
Buurman WA, et al. The endogenous balance of soluble tumor
necrosis factor receptors and tumor necrosis factor modulates
cachexia and mortality in mice acutely infected with Trypanosoma
cruzi. Infect Immun 1999; 67: 5579-5586.

[41] Trianchieri G. Interleukin-10 production by effector T cells: Th1
cells show self control. J Exp Med 2007; 204: 239-243.

[42] Wille U, Villegas EN, Styriepen B, Roos DS, Hunter CA. Inter-
leukin-10 does not contribute to the pathogenesis of a virulent
strain of Toxoplasma gondii. Parasit Immunol 2001; 23: 291-296.

[43] Croft SL, Gamage SA, Figgitt DP, Wojcik SJ, Ralph RK,
Ransijn A, et al. Structure-activity relationships for the anti-
leishmanial and antitrypanosomal activities of 10-substituted 9-
anilinoacridines. J Med Chem 1997; 40: 2634-2642.

[44] Paulino M, Iribarne F, Dubin M, Aquilera-Morales S, Tapia O,
Stoppani AO. The chemotherapy of Chaga's disease: an overview.
Mini Rev Med Chem 2005; 5: 499-519.

[45] Olivieri BP, de Souza AP, Cotta de Almeida V, de Castro SL,
Araujo-Jorge T. Trypanosoma cruzi: alteration in the lymphoid
compartments following interruption of infection by early acute
benznidazole therapy in mice. Exp Parasitol 2006; 114: 228-234.

[46] Piaggio E, Roggero E, Pitashny M, Wietzerbin J, Bottasso DA,
Revelli SS. Treatment benznidazole and its immunomodulating
effects on Trypanosoma cruzi-infected rats. Parasitol Res 2001;
87: 539-547.

[47] Revelli S, Gomez L, Wietzerbin J, Bottasso O, Basombrio MA.
Levels of tumor necrosis factor alpha, gamma interferon, and
interleukins 4, 6 and 10 as determined in mice infected with
virulent or attenuated strains of Trypanosoma cruzi. Parasitol Res
1999; 85: 147-150.

[48] Romanha AJ, Alves RO, Murta SMF, Silva JS, Ropert C,
Gazzinelli RTS. Experimental chemotherapy against Trypanosoma
cruzi infection: role of endogenous interferon-g in mediating
parasitologic cure. J Infect Dis 2002; 186: 823-828.

[49] Hunter CA, Ellis-Neyes LA, Slifer T, Kanaly S, Grunig G,
Fort M, et al. IL-10 is required to prevent immune hyperactivity
during infection with Trypanosoma cruzi. J Immunol 1997; 158:
3311-3316.

[50] O'Garra A, Vieira P. TH1 cells control themselves by producing
interleukin-10. Nat Rev Immunol 2007; 7: 425-428.

[51] Lages-Silva E, Filardi LS, Brener Z. Effect of the host specific
treatment in the phagocytosis of Trypanosoma cruzi forms by
mouse peritoneal macrophages. Mem Inst Osvaldo Cruz 1990; 85:
401-405.

[52] Rhalem A, Sahibi H, Lasri S, Jaffe CL. Analysis of immune re-
sponses in dogs with canine visceral leishmaniasis before, and
after, drug treatment. Vet Immunol Immunopathol 1999; 71: 69-76.

[53] Rassi A, Amado Neto V, Siqueira AF, Filho FF, Amato VC,
Rassi GG, et al. Tratamento da fase crônica da doença de Chagas
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