
253Asian Pacific Journal of Tropical Medicine (2015)253-262

Document heading          doi: 10.1016/S1995-7645(14)60327-8 

A brief review on biomarkers and proteomic approach for malaria 
research
Vivek Bhakta Mathema, Kesara Na-Bangchang*

Chulabhorn International College of Medicine, Thammasat University, Klonglung, PathumThani, Thailand

 Contents lists available at ScienceDirect

Asian Pacific Journal of Tropical Medicine

journal homepage:www.elsevier.com/locate/apjtm

ARTICLE INFO                           ABSTRACT

Article history:
Received 15 January 2015
Received in revised form 20 February 2015
Accepted 15 March 2015
Available online 20 April 2015

Keywords:
Biomarkers
Malaria
Plasmodium
Proteomics

  *Corresponding author: Chulabhorn International College of Medicine, Thammasat 
University, Phahonyothin Rd Klongluang, Pathumthani,Thailand 12120.
     Tel: 662 564-4400 Ext. 1800
     Fax:662 564-4398
     E-mail: kesaratmu@yahoo.com

1. Introduction

  Malaria is an ancient vector-borne disease of humans and other 

primates caused by a highly complex protozoan belonging to 

the genus Plasmodium[1,2]. Female Anopheles mosquitoes are 

insect vector for transmitting the disease in humans. The disease 

is endemic to more than 100 countries throughout tropical and 

subtropical zones. Recently, the world malaria report  released by  

world  health organization has estimated that around 3.4 billion 

people are at risk of  malaria  and  about 207  million  cases  of  

malaria  occurred  globally during 2013[3]. In Africa significant 

numbers of child death has been directly attributed to malaria. A 

research suggests that majority of malaria-associated deaths globally 

were children less than 5 years of age from sub-Saharan Africa[4]. 

Nonetheless, even after several decades of the disease control 

campaigns, malaria persists as one of the most serious public health 

problem not only in endemic countries but also in non-endemic 

regions where the increasing number of imported malaria cases via 

tourists and immigrants are on the rise[5].

  Four species of the pathogen namely: Plasmodium vivax (P. vivax), 

Plasmodium falciparum (P. falciparum), Plasmodium malariae, and 

Plasmodium ovale (P. ovale) are highly distributed among malaria-

affected regions in the world. In addition, recently discovered 

Plasmodium knowlesi-associated zoonotic form of human malaria in 

Southeast Asia is also creating serious concerns among pathologist 

and epidemiologists[6]. Among the species, P. falciparum accounts 

almost all of the malaria-associated mortality [7,8]. Malarial 

pathogen has exceptional ability to adopt and maintain a complex 

parasite life cycle in both humans and Anopheles spp. with several 

morphologically and functionally distinct extra- and intra-cellular 

stages. In addition, mutational selection resulting into drug resistant 

strains of the parasite, the spread of insecticide resistant mosquitoes 

and lack of effective vaccines against the Plasmodium spp. are some 

of the critical barriers preventing eradication of this disease[9].

  Morbidity and mortality caused by the disease is exclusively 
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associated with the erythrocytic stage of infection where the 

pathogen continuously undergoes intracellular development and re-

invasion into red blood cells (RBCs) resulting in exponential parasite 

proliferation. If untreated, the disease progressively causes severe 

haemopenia, kidney failure, mental confusion,seizures, coma, and 

death[10,11]. Multiple neurological complications and cognitive 

deficits can arise specially during cerebral malaria as the parasite 

can also infect brain. In addition, the parasite is known to constantly 

develop resistance against antimalarial drugs making it more 

difficult to cure the disease[12].  Hence, it is clear that early diagnosis 

and prophylaxis has a major role in preventing malaria-associated 

mortality. Even though several rapid detection tests (RDTs) and 

kits are available for screening malaria infection, their efficiency 

and accuracy are still questionable. Thus, there is a growing need 

for exploring new detection techniques that are highly sensitive and 

portable for early identification of malaria. In this context, an in-

depth study of potential biomarkers associated with malaria pathogen 

can be crucial for identification of a suitable biorecognition element 

and its implementation for devising a robust and reliable diagnosis 

technique for early detection of the disease. Here, we briefly discuss 

on the current prospect and future potential of biomarkers and 

different proteomic approaches that can be used for malaria research.

2. Drugs used for treatment of malaria 

  Parasite causing malaria exhibits astonishing adoption abilities 

and due to prevalence of several species, strains, and variants the 

treatment of malaria is not always easy. Even today, the choice of 

drugs for effective medication is quite limited and drug resistant 

strains of this pathogen are on the rise[12,13]. The drug of choice 

Aralen (Chloroquine phosphate) is effective for all malarial parasites 

except for chloroquine-resistant Plasmodium strains[9]. Traditional 

medication for P. falciparum-mediated malaria involved the use 

of sulphadoxine-pyrimethamine (SP) or chloroquine. However, 

the over-dependence and excess use of both quinoline compounds 

(amodiaquine, chloroquine, mefloquine, and quinine) and 

antifolatedrugs (chlorproguanil, sulphonamides, and pyrimethamine) 

have led to cross-resistance among these compounds[14,15].  

Emergence of such resistant strains of P. falciparum has motivated 

to switch towards new class of artemisinin-derived antimalarial 

compounds. Currently, the artemisinin-derived combination therapies 

(ACTs) which involves use of artemisinin derivatives in combination 

with other traditional antimalarial drugs, is regarded as the best 

treatment option[16]. For P. vivax and P. ovale which are known to 

possess dormant stages and can cause relapses, primaquine is often 

administered in addition to ACTs. Unfortunately, any therapy is not 

always guaranteed to work against the disease since several strains 

of the parasite resistant even to ACTs have been reported in different 

parts of the world[16,17]. Although several strategies and multiple 

drug treatment protocols do exist to prevent drug resistant malaria, 

detecting the disease at its early stage remains vital for the successful 

treatment. Hence, in this scenario the importance of biomarker-

based technique for timely diagnosis of the disease becomes more 

essential.

 

3. Role of biomarkers in malaria diagnosis

  Biomarkers can be defined as any measurable changes for 

molecular, biochemical or cellular alternations in biological samples 

that can indicate biological, pathological or therapeutic responses[18]. 

Possibility to detect certain biomarkers for Plasmodium-mediated 

infection at early stages of malaria can be crucial for formulating 

disease management strategies and choosing correct prophylaxis 

for the disease[19]. Typically for the endemic zones of Africa 

where asymptomatic malaria is rampant, such biomarker-based 

detection techniques combined with proper treatment strategies 

may significantly help deplete human reservoirs of the parasite 

that frequently contributing to persistence of malaria transmission 

in such areas[19-21]. Current advancement in proteomics and 

immunotechnology has provided vital tools for in-depth study and 

analysis of different human body fluids including saliva, urine, and 

serum. In general, analysis of proteome from such fluids provides a 

valuable resource for the identification of potential disease-related 

markers. The host immune response against the disease condition 

can exhibit rapid alteration in expression pattern unique for a 

pathogen which may be directly correlated with disease progression 

at its early state[22]. The use of biomarkers provides us with sensitive 

and effective means for investigation of disease pathogenesis. 

Currently, several malaria-associated biomarkers have been utilized 

for the disease identification and few of them are briefly described 

below.

3.1. P. falciparum lactate dehydrogenase (PfLDH)

  Plasmodium is a voracious scavenger of blood glucose that can 

force the RBC to increase glucose consumption up to 100-fold 

during intraerythrocytic cycle. Microarray experiments using P. 
falciperum transcriptome has shown that all enzymes in glycolytic 

pathway are significantly upregulated during early trophozoite stage 

correlating with the high metabolic state of the pathogen at this 

particular stage of its asexual life-cycle[23]. In particular, the enzymes 

involved in energy metabolism during the intraerythrocytic stages 

of the parasite lack a functional citric acid cycle, and production 

of ATP depends fully on the glycolytic pathway[24]. Among other 

enzymes, the pathogen seems to principally rely on PfLDH as its 

essential enzyme in glycolytic pathway to convert pyruvate into 

lactate[25]. The PfLDH RNA expression level gradually increases and 

reaches its peak within 24 to 30 hours of infection during the intra-

erythrocytic cycle. This expression subsequently declines tozero 

in the schizont stage[20,26]. Since the Plasmodium LDH (pLHD) 
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contains some major structural differences compared to human form 

of enzyme, this biomarker holds therapeutic potential to formulate 

promising antimalarial drug targets or diagnostic tools[27,28]. The 

malarial LDHs of parasite has been discovered to contain five-

residue aminoacid insert known as D-aspartic acid, E-glutamic acid, 

K-lysin, W-tryptophan, and N-asparagine (DKEWN) on one of 

its active site and the insert has also been employed as a common 

diagnostic epitope for PfLHD[29,30]. Contrary to the human LHDs, 

investigation of enzyme kinetics has revealed that the pLDH enzyme 

is not significantly affected by the excess substrate pyruvate[31]. 

This feature of reduced substrate inhibition is attributed to a single 

amino acid substitution in the Plasmodium enzyme (Ser163Leu).  

The pLDH is particularly distinguished from mammalian LHD due 

to presence of long substrate specificity loop[31,32]. It is clear that 

pLHD with its unique structural features, metabolic differences, and 

enzyme kinetics presents as an attractive biomarker for antimalarial 

drug design.

3.2. Histidine-rich proteins (HRPs)

  The HRPs relating to Plasmodium were first discovered during the 

analysis of cytoplasmic granules from the avian malaria parasite 

Plasmodium lophurae. The polypeptides in granules contained 

abnormally high levels of histidine reaching upto 73% in total[33]. 

There are three major types of HRPs associated with Plasmodium 

parasite and named according to the order of their discovery[24,34]. 

The HRP1 is basically aKnob-associated protein present in Knob-

positive strains of the parasite and is known to assist coadhereance of 

infected erythrocyte to venular endothelial cells[20,35]. The HRP2 is 

regarded as a vital biomarker unique to P. falciparium and is present 

in both Knob-positive and -negative strains of the parasite that 

causes the most severe form of malaria[36]. The P. falciparum HRP2 

(PfHRP2) is known to exhibit many functions including tightly 

binding with glycosaminoglycans (heparan sulfate,dermatan sulfate, 

and heparin) causing inhibition of antithrombin and detoxification 

of heme by forming haemozoin[2]. HRP2 has remained one of 

the prime targets for development of antimalarial drugs and rapid 

diagnostictests (RDTs) as evidence shows that PfHRP2-based assays 

are more sensitive towards detection of P. falciparum than aldolase- 

and LHD-based diagnostic tests[37]. However, the P. falciparum
from Asia-Pacific region is known to express high variability 

in PfHRP2, which has posed significant difficulty for the 

development of efficient malaria RDTs development[38]. 

Lastly, the HRP3 is not as common as HRP1 and HRP2.

P. falciparum HRP3 (PfHRP3) is a small histidine-rich protein 

(SHARP) that shares several structural homology with PfHRP2. It 

has been suggested that both PfHRP2 and PfHRP3 were derived 

from duplication and interchromosomal divergence from a common 

ancestral gene[38-40]. Due to structural homology, several antibodies 

against PfHRP2 are known to cross-react with PfHRP3, and thus 

contributing to the detection of P. falciparum[41,42]. Overall, the 

Plasmodium-associated HRPs constitute a prominent biomarker for 

malaria diagnosis.

3.3. Haemozoin

  Haemozoin is often known as malaria pigment as it is a visible 

marker in detection of malarial parasite. It is a non-toxic insoluble 

microcrystalline by-product formed by polymerizing free-toxic 

heme after digestion of haemoglobulin by Plasmodium and some 

other RBC-feeding parasites[10,43,44]. Several currently available 

antimalarial drugs including mefloquine and chloroquine act 

by blocking the haemozoin biocrystallization that kills malaria 

parasite[45]. Even though the exact process for formation of 

haemozoin is barely understood, the HRP2 is suggested to assist 

initiation of haemozoin formation by firmly binding to heme 

molecules and initiating their polymerization. However other 

haemozoin synthesis mechanism based on neutral lipid bodies 

and polar membrane lipids have also been reported[46-48]. As 

the haemozoin formation is crucial for the parasite survival, it 

has therefore become a prominent target for antimalarial drug 

development.

3.4. Plasmodium aldolase

  Proteins and enzymes associated with the glycolytic pathways of the 
Plasmodium has remained a prime focus for parasite detection and 

antimalarial drug development. Aldolase has a vital role in cleavage 

of fructose-1,6-bisphosphate into glyceraldehyde-3-phosphate 

and dihydroxyacetone phosphate in the glycolytic pathway of the 

parasite. The Plasmodium aldolase is a homotetrameric in nature 

with each subunit of approximately 40 kDa[49]. Unlike vertebrates 

which comprise three tissue-specific aldolase enzymes, the P. vivax 

and P. falciparum contain only one type of aldolase isozyme. The 

enzyme is 369 amino acids in length and their nucleotide and amino 

acid sequences are relatively conserved[50,51]. The enzyme can be 

found either as an insoluble membrane-bound aldolase or localized 

in cytoplasm of the parasite as an active and soluble form[49]. The 

plasticity of active-site region and multimeric nature of the enzyme is 

also suggested for its intriguing non-enzymatic activity for assisting 

the invasion machinery of the malaria parasite[52]. The Plasmodium 

aldolase exhibits drastic difference from the host enzyme and thus 

has been utilized in several commercially available RDTs. Even 

though several reports have suggested that aldolase-based diagnostic 

tests provide relatively lower sensitivity as compared to HRPs-

based tests, the enzyme remains a vital target for disease diagnosis 

and drug development[53]. Thus, the Plasmodium aldolase has been 

regarded as prominent biomarker in malaria research.

3.5. Glutamate dehydrogenase (GDHs)

  The GDHs are ubiquitous enzymes responsible for the reversible 
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oxidative deamination of L-glutamate for production of 毩
-ketoglutarate and ammonia utilizing NAD (H) or NADP (H) 

as co-factors[54]. The enzyme serves as a branching point of 

nitrogen-carbon metabolism as it can either assimilate ammonia 

and provides glutamate for storage of nitrogen or dissimilates 

ammonia and generates 毩-ketoglutarate as a feed for tricarboxylic 

acid metabolism. Since malaria parasite exhibits different 

isoforms of GDHs, these enzymes are considered as an important 

biomarker for malaria diagnosis.Both NADP- and NAD-

dependent GHDs are present in Plasmodium. In particular, the

P. falciparum exhibits three types of isozymes encoding GDHs. 

Two genes gdha and gdhb encoding potential GDHs are located in 

chromosome 14 and the third gene gdhc is present in chromosome 

8[7,54]. The Plasmodium GDHs contains N-terminal residue unique to 

the parasite that is present throughout intra-erythrocytic cycle of the 

pathogen. As RBCs do not contain GDHs, it can potentially serve 

as a biomarker for disease diagnosis[55,56]. Techniques involving 

western blotting, immunochromatographic assays have been utilized 

to detect the parasite utilizing GDHs[8,57]. Hence, the GDHs may be 

considered as a significantly important disease-associated biomarker 

for malaria diagnosis and treatment.

4. Role of proteomics in malaria research 

  Proteome generally refers to the entire set of proteins belonging 

to a cell or an organism which can vary with time depending on 

distinct requirements or stresses that it endures[58]. Proteomics 

provides necessary tools for large-scale experimental analysis of the 

proteome for generating data on relevant protein sets from pathogen 

and the host[59]. This information can help understand the host-

parasite relation in context to the structures, specific expressions, and 

functions of the proteins. The past decade has witnessed astonishing 

increase in study and global shearing of knowledge on Plasmodium 

proteome leading to establishment of global protein database of 

malaria parasite[60]. This has significantly helped researchers by 

assisting identification of potential targets for antimalarial drugs that 

specifically interrupt the host-parasite interaction and thus prevent 

disease development[61]. Reports have suggested that the survival of 

malaria parasite requires tight regulation of several proteins during 

different stages of its life-cycle in both vertebrate and invertebrate 

host[1,61]. However, most of today’s modern technologies in 

proteomics for detection and prevention of malaria are focused on 

intra-erythrocytic stage of the parasite life-cycle which is the major 

cause of malaria-associated mortalities[59]. Thus, the techniques 

that can be applicable both for research and clinical diagnosis of 

malaria are of immense importance for combating this disease.Some 

of the major modern proteomics-based approaches for research on 

pathogenesis and diagnosis of Plasmodium infection are summarized 

below.

4.1. One dimension sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (1D SDS-PAGE) approach in malaria 
research

  Proteomic approach requires identification and ascertaining 

the protein population that are differentially expressed and also 

detection of any post-translational modifications that occur during 

each stage of parasites life-cycle[11,62]. The1D SDS-PAGE is a 

widely used technique in molecular biology to separate biological 

macromolecules, usually proteins or nucleic acids (Figure 1). 

The technique has been frequently employed for separating and 

analyzing various protein fractions from trophozoite stage of P. 
flaciparum[11]. In addition, it has also been used for identification of 

phosphorylated protein pattern by separation of phosphoproteome 

of P. falciparum parasitized RBCs[63]. The method has application 

in protein separation for detection of distinct patterns of blood-

stage Plasmodium antigens using plasma immunoglobulin-G (IgG) 

subclasses from individuals with different level of exposure to P. 
falciparum infections[64]. The 1D-SDS PAGE has remained a well-

adopted method for separating the protein fractions derived from 

Plasmodium-infected samples to enhance sensitivity and resolution 

of protein identification prior to mass spectrometry[63,65]. Taken 

together, the 1D SDS-PAGE presents itself as a simple yet highly 

applicable technique for study of malaria proteomics.  

Figure 1. Schematics of one dimensional SDS-PAGE.

The sample containing protein mixtureis treated with ionic detergent sodium 
dodecyl sulfate (SDS) which denatures and binds to proteins in a fixed charge 
to mass ratio making them evenly negatively charged. The samples are then 
added to wells at the top of the polyacrylamide gel. The electric field is then 
applied which causes different proteins to separate into bands as they move 
down through the gel matrix. These bands of separated proteins can then be 

stained and compared or even used for other detection steps.
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4.2. Two dimensional SDS-PAGE (2D SDS-PAGE) 
approach in malaria research

  The 2D SDS PAGE is a widely used two-dimensional gel 

electrophoresis (2-DE) technique for investigating P. vivax and P. 
falciparum infected blood samples[66,67]. It is also one of the most 

commonly used methods for obtaining a snapshot of proteome at the 

specific time of infection. A basic schematic of the assay is given in 

Figure 2. Customized forms of 2D SDS-PAGE has been utilized as a 

semiquantative gel electrophoresis technique for assisting proteomic 

profiling of P. falciparum[68]. In addition, the mass spectrometry-

based techniques such as matrix-assisted laser desorption/ionization 

time of flight (MALDI-TOF) preferentially require the samples to be 

pre-processed using 2D SDS-PAGE for analyzing the bimolecular 

content in high resolution[63,69]. Moreover, the first pioneering 

study on protein maps from proteomes of merozoites and schizonts 

of P. falciparum were obtained utilizing 2D-PAGE and mass 

spectrometry[70,71]. Recently, the 2D SDS-PAGE approach along 

with immunoflurosence assay has been utilized to identify and 

investigate the expression and localization of a relatively conserved 

heat shock protein in malaria parasite[72]. Likely, in a separate report, 

the 2-DE has been implemented as a method of choice for proteomic 

approach to study malaria by investigating protein expression pattern 

in P. falciparium under treatment of antiplasmodial drug such as 

quinine and mefloquine[73]. Thus, is it clear that 2-DE serves as an 

essential tool for malaria research with proteomic approach. 

4.3. Liquid chromatography-tandem mass spectrometry (LC-
MS/MS)

  The LC-MS/MS is basically a hybrid analytical technique that 

contains physical separation capabilities of high performance liquid 

chromatography (HPLC) to fractionate the samples into individual 

analytes while retaining mass analysis capabilities of tandem 

mass spectrometry to quantitate these analytes[74]. A generalized 

schematic of the technique is given in Figure 3. The quest for rapid 

screening of multi-biomarker profiles for various diseases diagnosis 

has led to increasing use of LC-MS/MS for both clinical and 

research purpose[75]. The technology enables researcher to undertake 

advance proteomic approaches by investigating large-scale protein 

expression profiles with high accuracy for complex organism like 

Plasmodium. The LC-MS/MS in combination with 1D-SDS PAGE 

has previously been used for proteomic analysis of salivary gland 

proteins extracted from urban malaria vector Anopheles stephensi[76]. 

Similarly, the technique has also been employed for investigation 

of the P. vivax schizont stage proteome in humans for identification 

of immunogenic proteins that may hold therapeutic potentials[62]. 

Their computational research data provided first direct insight into 

identification and functional characterization of salivary proteins[76]. 

LC-MS/MS analysis of P. falciparum extracellular secretory proteins 

produced during asexual blood stages of parasite has assisted in 

revealing numerous proteins potentially involved in host immune 

modulation and signaling[77]. In addition, the technique has also 

been utilized for study of plasma and cerebrospinal proteomes from 

children acquiring cerebral malaria for better understanding of 

pathogenesis and helps develop more-specific diagnostic methods[78]. 

Hence, the technique can be regarded as a rapid yet highly efficient 

tool for large-scale proteomic analysis for malaria.

Figure 2. Schematics of  two dimensional SDS-PAGE. 

The process contains two major steps. At first the sample is loaded on a thin 
gel having pH gradient and electric current is applied which separates the 
proteins according to their isoelectric point (pI). At this point, the pI of a 
given protein is in equilibrium with pH of the gel. In the next step, the gel 
strip is then loaded onto another polyacrylamide gel and second electric 
current is applied in a direction perpendicular to the first. In this case, the 
proteins previously separated according to their pI migrates from initial gel 
into the second gel and resolve depending on their masses. The separated 
proteins appear as a spot which can either be stained and visualized or used 
for further detection steps.
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Figure 3. Schematics of LC-MS/MS.

The samples are initially separated using SDS-PAGE to obtain bands of 

protein followed by enzymatic digestion. After digestion, the resultant 

product of individual band or whole lane is subjected to multi-dimensional 

liquid chromatography (LC/LC) for further separation of the mixture. The 

elute obtained from LC/LC unit is further ionized using EI-Unit. Each 

elute peak can be then analyzed for its mass using MSU-1. Likely, for 

determination of peptide unit, the elute peak is subjected to MSU-2 where 

it is first separated in MS-1 and passes through collision chamber where it 

is further fragmented and subsequently analyzed by MS-2. Finally, the data 

from MS-2 is computed to obtain peptide sequence.

4.4. MALDI-TOF

  The technique is based on ionization of biomolecules, generally 

proteins, in samples, followed by analysis of its constituent 

using specially designed mass spectrometric equipment that 

utilizes high energy collision-induced dissociation to investigate 

amino acid sequence of peptides [79]. Figure 4 represents 

generalized schematics of MALDI-TOF mass spectrometry 

(MS). Due to its accuracy, speed and cost effectiveness, the 

technique has been successfully employed as an identification 

procedure in clinical microbiology and also widely implemented 

in routine laboratory practices [79,80]. The technique along 

with SDS-PAGE has been applied for characterization of the

P. vivax erythrocytic stage proteome and identification of a relatively 

stable protein PV180L as a potent immunogenic antigen during the 

erythrocytic cycle of malaria parasite[81]. Previously, it was reported 

that the method had been employed to assist analysis of recombinant 

P. vivax merozoite surface antigen protein that was allowed to 

be expressed in Escherichia coli for malaria vaccine development 

research[82]. Recently, MALDI-TOF has been employed for rapid 

identification of Anopheles mosquitoes from its leg protein samples 

and has been able to generate several sets of biomarkers for its 

precise identification[83]. The P. falicaprum and P. vivax proteomes 

subjected to MALDI-TOF analysis have revealed several proteins 

that are differentially expressed and are potentially important for 

studying disease pathogenesis[66]. In a separate report, the technology 

has been applied to assist identification and extend the knowledge 

on redox proteins such as pthioredoxin, glutaredoxin and plasm 

oredoxin for better understanding of redox interactome in malarial 

parasites[84]. Thus, reports presented here clearly demonstrate that 

MALDI-TOF is a relevant tool for studying malaria proteomics and 

opens new avenues for both clinical diagnosis and experimental anti-

malarial drug development.

Figure 4. Schematics of MALDI-TOF.

Samples are initially processed using SDS-PAGE to obtain bands of protein 

which is then enzymatically digested. The resultant product of individual 

band or whole lane is subjected to MALDI-TOF MS where the proteins 

placed on matrix molecule in solution are allowed to undergo soft ionization 

using laser. The ions from protein accelerate under the influence of electric 

field as they pass on through the time-of-flight tube where the charge-to-

mass ratio of each ion is determined using time measurement by the detector. 

Finally, the data is computed to determine the mass and polypeptide sequence 

of the protein.

4.5. Surface-enhanced laser desorption/ionization time of 
flight (SELDI-TOF)

  The SELDI-TOF MS is a modified form of MALDI-TOF that 
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utilizes target surface modified to achieve biochemical affinity 

and selectively analyze samples based on their affinity towards the 

surface matrix[85,86]. Generalized schematic of the technique is 

given in Figure 5. One of the obvious advantages of this surface-

enhanced process is that components, such as salts or detergents 

that commonly cause problems with other analytical tools, are 

removed prior to analysis[87]. The technology is characterized 

by its rapid diagnostic capabilities that can be applied to study 

proteomes to discover biomarkers associated with parasitic diseases 

which may include host proteins or protein fragments derived from 

parasite or host, in body fluids or tissues following infection[88]. 

In comparison with other proteomic techniques, SELDI-TOF 

has several key advantages including ability to analyze complex 

biological samples with minimal pre-processing, ease of handling, 

and high throughput[86]. The method had been used for protein 

expression profiling to identify chloroquine resistance markers in P. 
falciparium strains resistant to chloroquine[9]. Recently, the SELDI-

TOF has been used to identify hepcidin, a hepatocyte-associated 

protein having a function of sequestration of iron, from blood plasma 

for its possible role in anti-inflammatory response in childhood 

malaria[89]. The technique has been employed for determining 

urinary hepcidin in malaria patient suffering from uncomplicated P. 
falciparum infection to study the relationship between parasitemia 

and anemia[90]. Moreover, the level of sophistication behind this 

technology has assisted researchers in proteomics to explore 

previously uncharted conditions in patients chronically infected with 

blood-borne protozoan parasites including malaria[88,91]. Thus, it is 

clearly evident that the protein expression profiling approach using 

SELDI-TOF provides a useful tool for understanding the proteome 

of malarial parasites.

5. Conclusion

  The advancement in techniques for investigating proteome 

of Plasmodium and identification of potential biomarkers has 

undoubtedly widened our knowledge on malaria research. Protein 

profiling and characterization of stage-specific proteome of the 

parasite has helped researchers to reveal numerous novel molecules 

that may hold significant potential for targeted therapeutic drug 

development.The level of sophistication and sensitivity offered 

by current technologies for proteomic studies can help researcher 

to deeply explore the malaria pathogenesis and possibly assist 

identification of new targets and strategies for devising reliable 

diagnostic tests.  Overall, the review provides a brief overview on 

the current scenario and future prospects of malaria biomarkers and 

various proteomic approaches used for malaria research. 

Figure 5. Schematics of SELDI-TOF.

Samples are initially allowed to attach and crystallize on specifically designed 

surface matrix of a protein chip for enhancing biochemical affinity of 

specific proteins or analytes from a complex mixture. Array of such protein 

chips are lined into the SELDI-TOF mass spectrometer where the protein 

on matrix is allowed to undergo soft ionization using laser. Once ionized, 

the protein particles accelerate under the influence of electric field as they 

pass on through the tube and charge-to-mass ratio of each ion is determined 

using time-of-flight mass spectrometry by the detector. The resulting data is 

computed to determine the mass and polypeptide sequence of the protein.
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