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1. Introduction

  Diabetic retinopathy (DR) is one of the main causes of 
blindness worldwide, especially in adults (20-70 year 
old). Although the precise pathogenesis of DR remains 
unclear, evidence indicates that enhanced hyperglycemia-
induced oxidative stress plays a key role in its progression. 
Hyperglycemia-induced oxidative stress leads to excessive 
production of reactive oxygen species. Activation of a series 
of the intracellular signaling pathways regulating gene 
expression and production of various related cytokines 
result in chronic diabetic vessel complications[1,2]. Activity 

of the free radical scavenger, superoxide dismutase (SOD), 
is decreased in the diabetic retina, where its expression 
is downregulated[3,4]. Concentrations of malondialdehyde 
(MDA), well-known as a universal biomarker of lipid 
peroxidation (LPO), has been shown to be elevated in the 
diabetic retina, where it is attenuated by anti-oxidant 
treatments[5,6]. 
  Many studies indicate that vascular endothelial growth 
factor (VEGF) plays a critical role in the occurrence and 
development of DR[7-9]. Experimental evidence further 
demonstrates that oxidative stress may induce down-
regulation of retinal connexin and increase expression 
of VEGF, thus increasing vascular permeability[10,11]. A 
number of studies have been undertaken to identify the 
effects of antioxidants in the initiation and development 
of DR[12,13]. Advanced glycation end-products (AGEs) 
have been implicated in the etiology of DR. There is much 
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evidence demonstrating that the coupling of AGE and 
its signal transduction receptor (RAGE) activates vessel 
inflammation and expression of related genes, thus leading 
to the development of DR[14-16]. RAGE is a multi-ligand 
receptor that not only mediates many or all of the sequelae 
of AGE-cell surface interactions, but also binds other 
ligands, eg., 100/calgranulins, amphoterin/high-mobility 
group box-1, and amyloid fibrils[17]. Since RAGE appears to 
act as a central modulator in DR, it is reasonable to consider 
suppression of its expression to be a promising therapeutic 
target for DR[18-20].  
  Puerarin (8-beta-D-glucopyranosyl-4',7-dihydroxy-
isoflavone; C21H20O9) is extracted from the root of the 
kudzu vines, Pueraria lobata (Willd.) Ohwi or Pluteus  
thomsonii Benth, both species of which belong to the family 
Leguminosae (Fabaceae) (pulse, pea, or bean) and both of 
which are used in traditional Chinese medicine. In China, 
puerarin has been clinically applied to the treatment of 
diabetes and its complications, eg., diabetic peripheral 
neuropathy, nephropathy, and DR[21-23]. Recently, several 
studies have shown that puerarin, as an effective, natural 
free-radical scavenger, is capable of preventing the damage 
caused by free radicals and LPO[24,25]. Puerarin increases 
the activities of SOD and catalase during oxidative stress, 
and strengthens the response capability of islet cells against 
oxidative stress, which leads to cell apoptosis[21]. Puerarin 
had a significant inhibitory effect on the non-enzyme 
glycosylation reaction. Shen et al reported that puerarin had 
notable inhibition effects on RAGE levels in the kidney and 
aorta of diabetic rats[26,27]. However, whether puerarin is 
able to increase SOD activity and decrease RAGE and VEGF 
expressions in retinas of diabetic rats is not known. Thus, 
the aim of the present study was to investigate the effects of 
puerarin on SOD activity and on expressions of RAGE and 
VEGF in the retinas of streptozotocin (STZ)-induced diabetic 
rats. 
 

2. Materials and methods

2.1. Animals 

  Healthy male Sprague-Dawley rats (n=30) (8-10 weeks 
old, 200-230 g) were purchased from the Experimental 
Animal Center of Zhejiang Province. Animals were treated 
in accordance with the Association for Research in Vision 
and Ophthalmology statement for the Use of Animals in 
Ophthalmic and Vision Research. This study was approved 
by the Animal Ethics Committee of Yangzhou University. 
All rats were maintained on a 12-h alternating light (08:00-
20:00)/dark (20:00-08:00) cycle, at a temperature of 22-25 曟 
and humidity of 55%-60%. Rats were divided randomly 
into diabetic and control groups. Diabetes was induced by 
intra-peritoneal injection of a freshly prepared solution 
of STZ (Sigma, St Louis, MO, USA) in citrate buffer (pH 4.5), 
at a dosage of 60 mg/kg body weight (BW), as previously 
descibed[28]. Non-diabetic control rats (n=10) received a 

volume of 0.5 mL citric buffer only. Animals with blood 
glucose levels >250 mg/dL 72 h after administration of 
STZ were considered to be diabetic. Diabetic rats were 
randomly divided into two groups: the DM+ puerarin group 
(n=10) received intra-gastric puerarin (Zhengda Tianqing 
Pharmaceutical Company, Nanking, China; purity = 99.8%) 
at a dosage of 500 mg/kg/day[26] starting on the day of 
successful diabetes induction; the DM group (n=10) was 
treated similarly but with normal saline only. Treatment 
was performed once each day every ~24 h. All animals were 
allowed to eat and drink freely. BW and blood glucose levels 
were measured weekly. After 4 weeks of treatment, animals 
were sacrificed by systemic anesthesia 3 h after final drug 
administration. After sacrifice, serum, eyeballs, and retinas 
were harvested for further testing.  
 
2.2. Determination of MDA level and SOD activity 

  Following 4 weeks of puerarin treatment, six rats from each 
group were anesthetized with an intra-peritoneal injection 
of 2% pentobarbital sodium. Blood samples were obtained 
by cardiac puncture. Blood was centrifuged at 2 500 g for 
10 min, and the serum retained for later analysis. Rats 
were sacrificed with an overdose of pentobarbital sodium. 
Eyeballs were then removed, and the retinas stripped under 
an anatomical microscope and stored at 4 曟.
  According to the weight of the retina, as determined 
with an electronic balance, pre-cooled normal saline was 
prepared (1:99 ratio). After the retina was shattered using an 
ultrasonication meter (60 s for homogenate) and centrifuged 
at 2 500 r/min for 10 min, the supernatant obtained was 
analyzed for MDA and SOD. MDA was measured using 
thiobarbituric acid colorimetric methods; SOD activity was 
tested for using the xanthine oxidase method (Jiancheng 
Agent Company, Nanking, China), according to the 
manufacturer's instructions.

2.3.  Real-time polymerase chain reaction (RT-PCR)

  Neurosensory retinas, which had been stripped and 
stored in liquid nitrogen, from four rats from each group 
were used for RT-PCR and Western blot analyses. The 
retina of one eye of each rat was used for RT-PCR and that 
of the other eye for Western blot analysis. For RT-PCR, 
RNA was isolated from retinas for cDNA synthesis. The 
PCR method (ABI Prism 7500; PE Biosystems) was utilized 
to determine elevated gene expression levels of RAGE 
and VEGF. The primers (Bioneer, Inc, Korea) for RAGE 
were 5’-AGGCTCTGTGGATGGGTCTGG-3’ (sense) and 5’-
CATGGATCATGTGGGCTCTGG-3’ (antisense), and those for 
VEGF were 5’-GTGGACATCTTCCAGGAGGAGTA-3’ (sense) 
and 5’-CTCTGAACAAGGCTCACAGT-3’ (antisense).
  All reactions were performed according to standard 
procedures. Amplification conditions were as follows: 
50 曟 for 2 min, with an initial denaturation at 95 曟 for 
10 min, followed by 40 cycles of denaturation at 95 曟 
for 15 s, and annealing at 60 曟 for 1 min. Each reaction 
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was run in duplicate, three times each, and the results 
expressed as the mean暲SD. 毬-actin was used as a 
loading control and internal standard. The primers for 毬
-actin were 5’-GCACCGCAAATGCTTCTA-3’ (sense) and 5’-
GGTCTTTACGGATGTCAACG-3’ (antisense). The final results 
were normalized by comparing them with those obtained 
from controls; the control group was set as 1.0.

2.4. Western blot analysis

  Samples were treated using pre-cooled cell lysate at a 1:6 
ratio (weight/volume) after weighing, and were homogenized 
at 4 曟. After incubation on ice for 1 h, extracts were 
clarified by centrifugation at 20 000 g for 30 min. Equal 
amounts of supernatant were mixed with 2.5 mL of 2伊 
sampling buffer and heated at 100 曟 for 3-5 min. Protein 
concentrations were determined using the Bradford method. 
Proteins were electrophoretically separated on 10% sodium 
dodecyl sulfate-page gels, with each lane receiving 20 毺g 
of sample. After electrophoresis, proteins were transferred 
onto a polyvinylidene difluoride membrane, using the whole 
wet-mount method. Membranes were blocked with 5% 
nonfat milk (1 h) and rabbit anti-rat RAGE (1:1 000 dilution) 
(Cell Signaling Technology, Beverly, MA. USA). VEGF 
antibodies (1:1 000 dilution) (Cell Signaling Technology) were 
added and incubated overnight at 4 曟, after which they 
were incubated with goat anti-rabbit IgG/HRP (1:6 000) for 
2 hrat room temperature. An enhanced chemiluminescence 
reaction agent was reacted with the membrane for 3 min, 
and sheeting used to expose the membrane for 2 min. The 
gray scale of the specific band was analyzed quantitatively 
using image analysis software.

2.5. Statistical analysis

  All data are expressed as mean暲SD. Analysis of variance 
and Dunnett’s t-test were performed using the SPSS 
13.0 statistical software package. A level of P< 0.05 was 
considered statistically significant.

3. Results

3.1. Characteristics of experimental animals

  Levels of blood glucose and BW were used to indicate the 
severity of diabetes. During experiments, control group rats 
were active, and had a normal diet, smooth fur, and obvious 
BW gain. Compared with control group rats, rats in the DM 
group moved slowly, and had a dull color pattern, increased 
blood glucose, and BW loss. Four weeks after the onset of 
diabetes, differences between the DM and control group 
rats, vis-a-vis fasting blood glucose levels and BW, were 
statistically distinct (P<0.05). Rats in the DM+ puerarin group 
fared better than those in the DM group, ie., fasting blood 
glucose levels were lower than that those of DM group rats 

(P<0.05), albeit still higher than those of control group rats 
(P<0.05) (Figures 1, 2). 
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Figure 1. Fasting blood glucose levels of rats in the various groups 
(n=10 in each).  
□P<0.05, DM+Puerarin versus Ctrl; #P>0.05, DM+Puerarin versus 
DM; 吤P<0.05, DM+Puerarin versus DM.
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Figure 2.  Body weights of rats in the various groups (n=10 in each). 
□P<0.05, DM+Puerarin versus Ctrl; #P>0.05, DM+Puerarin versus 
DM; 吤P<0.05, DM+Puerarin versus DM.

3.2. MDA level and SOD activity in serum and retina

  Four weeks after onset of diabetes, MDA concentrations in 
serum and retinas of DM group rats were significantly higher 
than those of control group rats (P<0.05), while those of DM+ 
puerarin group rats were lower than those of DM group rats 
(P<0.05), with no significant differences compared with 
those of control group rats (P>0.05). SOD activity in serum 
and retinas of DM group rats were notably lower than those 
in the control group (P<0.05). Compared with DM group rats, 
SOD activity in serum and retina of DM+ puerarin group rats 
was significantly increased (P<0.05), with no significant 
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differences when compared with control group rats (P>0.05) 
(Figure 3). 
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Figure 3.  MDA concentration and SOD activity in serum and retina 
in the various groups (n=6 in each). 
A: MDA concentration in serum; B: MDA concentration in retina; C: 
SOD activity in serum. D: SOD activity in retina. *P<0.05; #P>0.05.

3.3. Expression of RAGE and VEGF mRNA in retina

  RT-PCR data revealed expression levels of RAGE and VEGF 
mRNA in DM group rats to be higher than those in normal 
control group rats (P< 0.05). Expression of mRNA levels of 
RAGE and VEGF in the DM+ puerarin group were greatly 
decreased and showed significant differences compared with 
the DM group (P<0.05); no significant difference was found 
compared to the normal control group (P>0.05) (Figure 4).
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Figure 4. mRNA expression levels of RAGE and VEGF in the various 
groups (n=4 in each). 
A: mRNA expression levels for RAGE; B: mRNA expression levels for 
VEGF. *P<0.05; #P>0.05.

3.4. Protein levels of RAGE and VEGF in retina 

  Results of Western blot analysis indicated low expressions 
of RAGE and VEGF in retinas of normal control group 

rats. Expressions of these proteins in DM group rats were 
significantly higher than those in normal control group rats 
(P<0.05). In contrast, expressions of RAGE and VEGF in DM+ 
puerarin group rats were decreased in comparison with those 
in DM group rats (P<0.05) and similar to those in normal 
control group rats (P>0.05) (Figure 5).
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Figure 5. RAGE and VEGF protein levels in the various groups (n=4 
in each). 
A: Protein levels for RAGE; B: Protein levels for VEGF. *P<0.05; 
#P>0.05.

4. Discussion

  MDA, the end-product of oxidative stress-induced LPO, 
is also an index of LPO activity. Thus, MDA content can be 
employed as a measure of the severity of oxidative stress-
induced damage. MDA concentrations were shown to be 
increased in the eyes of diabetic animals, and treatment 
with two different antioxidants, ebselen and lutein, restored 
MDA concentrations to control values[29]. SOD is one of the 
enzymes that are essential for combating oxidative damage; 
its activation allows scavenging of the superoxide radical. 
Its activity, therefore, is reflective of the anti-oxidative 
ability of a tissue. Accumulating evidence points to the 
excessive oxidative stress that results from increased free 
radical production as being a major underlying cause 
of diabetes-related ocular pathologies[30-34]. Therapies 
that inhibit development of retinopathy in diabetic rats, 
ie., amino guanidine and antioxidants, not only prevent 
diabetes-induced accumulation in retinal superoxide, but 
also thwart inhibition of SOD activity[4,35]. In the present 
study, we found that the levels of MDA in the DM group 
increased significantly and that SOD activity was notably 
lower, compared with the normal control group. Following 
treatment with puerarin, concentrations of both retinal and 
serum MDA decreased to normal levels, while SOD activities 
in both retina and serum increased to normal levels. These 
results indicate that puerarin improves SOD activity and 
attenuates LPO in early diabetic rat retina.
  Studies have shown that antioxidants can prevent 
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VEGF up-regulation. Obrosova et al[36] reported that the 
antioxidants, taurine and DL-alpha-lipoic acid, significantly 
reduced early up-regulation of retinal VEGF in diabetic rats. 
Oral administration of the antioxidant calcium dobesilate 
also reduced retinal permeability in diabetic rats, as well as 
decreased both formation of AGEs and excessive expression 
of VEGF[11]. In our study, we also found that VEGF increased 
significantly at the protein and mRNA levels in diabetic rat 
retinas, consistent with the findings of Hammes et al[7,11] but 
decreased after puerarin intervention, which delayed the 
appearance of DR; this latter finding is consistent with those 
of Teng et al[37]. However, it was difficult for us to determine 
the mechanism(s) responsible for the reversal effect of 
puerarin on up-regulated VEGF levels. Our data indicate 
that although puerarin had some effects in decreasing blood 
glucose levels, these effects were not very strong. The fasting 
blood glucose levels of the puerarin treatment group at 4 
weeks [(423.18暲41.58) mg/dL] were still significantly higher 
than those of the normal control group [(113.76暲9.00) mg/
dL] (P<0.05). However, expression levels of VEGF and the 
marker for oxidative damage in the puerarin treatment group 
were reversed, approaching normal levels. Bebrevska et 
al[24] observed no lowering of blood glucose after treatment 
with puerarin at a daily dose of 50 mg/kg for 3 weeks, while 
plasma levels of MDA had decreased to normal. It appears 
that the antioxidant effects of puerarin are independent of its 
effect on blood glucose control. Therefore, we presume that 
the reversal of VEGF by puerarin in diabetic rat retina is not 
directly related to its effects on decreasing blood glucose, 
but is likely related to its antioxidant properties. Verification 
of this premise needs further investigation. 
  RAGE is a signal-transducing receptor for AGEs. 
Engagement of RAGE by AGEs elicits oxidative stress, 
induces vascular inflammation, and alters gene expression 
in retinal vascular wall cells, all of which point to its 
involvement in DR[14,15]. AGEs can increase VEGF expression 
of retinal cells[38]. The action of AGEs on RAGE was shown 
to be the source of oxidative stress in endothelial cells in 
retina; thus inhibition of RAGE expression might represent 
a potential target for DR treatment[16-18,39]. Puerarin has 
notable inhibitory effects on AGEs and RAGE levels in the 
kidney, and could be utilized for diabetic nephropathy 
therapy[27,40]. Another important finding of our study was 
the puerarin-mediated amelioration of up-regulated RAGE 
levels in diabetic retinas, which might suggest that puerarin 
ameliorates oxidative stress in early diabetic rat retinas via 
inhibition of retinal RAGE expression.
  In summary, our study shows that puerarin enhances SOD 
activity, down-regulates expression levels of RAGE and 
VEGF in diabetic rat retina, and provides a foundation for 
further investigations into application of puerarin for the 
management of DR.
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