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ABSTRACT

Objective: To explore application of targeted contrast enhanced ultrasonography in
diagnosis of early stage vascular endothelial injury and diabetic nephropathy.
Methods: Targeted SonoVue-TM microbubble was prepared by attaching anti-TM
monoclonal antibody to the surface of ordinary microbubble SonoVue by biotin –

avidin bridge method and ultrasonic instrument was used to evaluate the developing
situation of targeted microbubble in vitro. Twenty 12-week-old male GK rats and 20
Wistar rats were enrolled in this study, and were randomly divided into targeted angi-
ography group and ordinary angiography group. Targeted microbubbles SonoVue-TM or
general microbubble SonoVue were rapidly injected to the rats via tail vein; the devel-
oping situation of the two contrast agents in rats kidneys was dynamically observed.
Time-intensity curve was used to analyze rat kidney perfusion characteristics in different
groups.
Results: Targeted ultrasound microbubble SonoVue-TM was successfully constructed,
and it could be used to develop an external image. Targeted microbubbles SonoVue-TM
enabled clear development of experimental rat kidney. Time-intensity curve shapes of rat
kidney of the two groups showed as single apex with steep ascending and slowly
descending branch. Compared with the control group, the rising slope of the GK rat renal
cortex, medulla in targeted angiography group increased (P < 0.05); the peak intensity of
medulla increased (P < 0.05), and the total area under the curve of medulla increased
(P < 0.05). Compared with control group, the ascending branch of the GK rat in renal
cortex, medulla in ordinary angiography group increased (P < 0.05). The peak intensity
of the curve increased (P < 0.05), and the total area under the curve increased (P < 0.05).
Compared with the ordinary angiography group, the peak of GK rat medulla curve in
targeted angiography group intensity increased (P < 0.05), and the total area under the
curve increased (P < 0.05).
Conclusions: Targeted microbubbles SonoVue-TM can make a clear development of
experimental rat kidney, its stable performance meet the requirement of ultrasonic
observation time limit, and it can reflect early changes of blood perfusion in GK rat kindey.
1. Introduction

Microvascular damage is the main pathological basis of
diabetes mellitus [1]. It is reversible at the first stage, and become
irreversible at the later stage, therefore, early intervention is of
great importance to delay the progression of the disease [2–4].
At present, there has no intuitive and reliable diagnostic
method to estimate the damage of microvascular [5]. Target
imaging enables the target region imaged at the level of tissue
and cell, so as to reflect the change of diseased tissue in a
molecular aspect. Research shows that the injury of the
structure and function of endothelial cell is the main cause of
microangiopathy, and so we can estimate the early lesion of
microvascular by evaluate the structure and function of
endothelial cell. Thrombomodulin (TM), a kind of
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Figure 1. Targeted microbubble SonoVue-TM showing red fluorescence
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glycoprotein with anticoagulant activity that can regulate the
inflammatory response, plays an important role in the
proliferation of the cell and the progress of fibrinolysis [6,7].
The plasma soluble TM can be served as a molecular marker
which can reflect the injury of vascular endothelial cells in
patients with diabetes mellitus. Nowadays, there was no report
of targeted ultrasound contrast agent to detect the injury of
vascular endothelial. In this study, we build targeted
ultrasound contrast agent by attaching TM monoclonal
antibody to ultrasound microbubbles with biotin-streptavidin
connectors, and explore the feasibility of the targeted ultra-
sound contrast agent in imaging the Goto-Kakizaki (GK rats) as
well as observe the characteristics of renal blood perfusion. The
finding can deepen our understanding to the pathogenesis of the
endothelium dysfunction in diabetes mellitus, and provide new
target point for the early intervention of diabetic complication.

2. Materials and methods

2.1. Materials

Sulfur hexafluoride microbubble was purchased from Sono-
Vue, DSPE-PEG2000-Biotin was from Avanti Polar Lipids Inc,
streptavidin was provided by Seebio Inc, Mouse anti-Human
thrombomodulin Biotin-conjugated Antibody and Donkey
Anti-Mouse IgG were purchased from United States Biological.

ESAOTE Technos MPX DU8 color Doppler ultrasonic
cardiogram was from esaote.

2.2. Construction of targeted ultrasound microbubble

A tube of Sulfur Hexafluoride Microbubble ultrasonographic
contrast agent and 3 mL PBS were blended together, shocked
sufficiently to form a homogeneous microbubble suspension;
750 mL DSPE-PEG2000-Biotin (100 mg/mL) was added into the
suspension, and then the liquid was reaction in a shaking table
(55 rpm) at 37 �C for 1 h; the suspension was centrifuged at 4 �C
for 10 min to separate the microbubble; the biotinylated ultra-
sound microbubble was obtained after washed for two times.

2.3. Identification and evaluation of targeted ultrasound
microbubble

The culture dish (35 mm) was coated with streptavidin at the
concentration of 2.5 mg/mL, washed with PBS for 3 times. The
dish was blocked with 0.3% BSA at room temperature for
30 min, after washed with PBS for another 3 times, 9 mL PBS
was added into the dishes, and 20 mL biotinylated ultrasound
microbubble and 20 mL ordinary ultrasound microbubble was
added into two dishes respectively, upside down the dishes, and
reacted for 20 min at room temperature. Afterwards, 1 mL liquid
was reserved in the dish, the number of the microbubble was
counted under a microscope; 3 mg streptavidin per 1 × 107

mircrobubble was added into the dish, and then incubated on the
ice for 30 min. After incubation, the sample was centrifuged, and
washed with PBS, the purified biotinylated ultrasound micro-
bubble coated with streptavidin was obtained. The microbubble
was counted again, and 1.5 mg anti-TM antibody labeled by
biotin per 1 × 107 microbubble was added, and then incubated
on the ice for 30 min. After incubation, the sample was centri-
fuged, and washed with PBS, the targeted ultrasound
microbubble (SonoVue-TM) was obtained. 5 mL Donkey Anti-
Mouse IgG was blended with 500 mL SonoVue-TM suspen-
sion, and after reaction at cool dark place for 30 min, the
microbubble was centrifuged, washed and collected for smear
examination. SonoVue-TM microbubble and ordinary micro-
bubble was added into eppendorf tube respectively, and checked
with contrast ultrasound underwater.

2.4. Animal experiment

Rats were anesthetized with pentobarbital sodium (30 mg/
kg), immobilized in the supine position, and the hair in the
abdomen was shaved carefully. Puncture the caudal vein with a
needle, and the needle was carefully fixed to prevent it from
slipping. Imaging was conducted by using an Esaote Technos
MPX DU8 color ultrasonographic device (Esaote, Italy). The
probe was placed on the plank of the rat, and the position of the
probe was adjusted after the clarity of the two-dimensional im-
age, so that can obtain the largest long axis section of the kidney
and make the renal cortex, medulla, and sinus display clearly. A
total of 0.1 mL ordinary ultrasound microbubble and SonoVue-
TM microbubble was injected into the caudal vein of rat
respectively, and then washed with saline. The time intensity
curve (TIC) analysis software was used to analyze the image.

2.5. Statistical analysis

In the study, SPSS 17.0 software was used for statistical
analysis in this study. All data are expressed as mean ± SEM,
and statistical significance was evaluated using Students's t-test.
P values of 0.05 or less were considered significant.

3. Results

3.1. Characteristics of the material

The SonoVue-TM microbubble showed clear red fluores-
cence when viewed under a fluorescence microscope (Figure 1),
which suggest that anti-TM antibody was attached to the
SonoVue-TM microbubble successfully. The targeted micro-
bubble can imagined in vitro, the intensity of the signal was
similar with the regular microbubble (Figure 2).

3.2. Perfusion image of the rat kidney

SonoVue-TM microbubble enabled the kidney of the rat in
every group showed clearly. Renal arterial and interlobar arterial
were enhanced quickly in arborescent type, and then renal cortex
showed homogenous enhancement, while medulla nephrica and
under a fluorescent microscope.



Figure 2. Imaging effort of the microbubble in vitro.
A: normal microbubble Sono Vue; B: the targeted microbubble SonoVue-
TM.
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sinus renalis showed a relatively lower enhancement. The in-
tensity of the contrast agent faded away after it reached the peak
value. As the ordinary microbubble administrated in the kidney
of Wistar rats, the echo intensity of the medulla nephrica was
slight lower than the renal cortex. The clarification order of the
contrast agent was sinus renalis, medulla nephrica and renal
cortex namely. While the SonoVue-TM microbubble was
Figure 3. TIC of kidney image after perfusion of microbubble SonoVue.
A: Fitting curve of renal cortex when normal microbubble SonoVue was used in
SonoVue was used in the Wistar rats; C: Fitting curve of renal cortex when norm
medulla when normal microbubble SonoVue was used in the GK rats.
administrated, the imaging condition showed no significant
differences with the ordinary contrast agent, and the echo in-
tensity of the medulla nephrica was lower than the renal cortex.
The clarification order of the contrast agent was sinus renalis,
medulla nephrica and renal cortex namely. After ordinary
microbubble was injected into the GK rat, the echo intensity of
the medulla nephrica was slight above the intensity of the renal
cortex. The condition of the clarification order was the same as
the Wistar rat. When the SonoVue-TM microbubble was used,
the echo intensity of the medulla nephrica was significantly
higher than the renal cortex. The clarification order of the
contrast agent is renal cortex, medulla nephrica and sinus renalis
respectively.

3.3. TIC curve of the kidney image

TIC curves of the rat kidney images were all an asymmetric
monopeak curves with ascending branch, summit and descend-
ing branch. The ascending branch was steep, and the descending
branch was flat. The peek value of the ordinary microbubble in
renal cortex of Wistar rat was slightly above the medulla
nephrica (Figure 3A, B), and the peek value of the ordinary
microbubble in renal cortex of GK rat was slightly lower than
medulla nephrica (Figure 3C, D). The peek value of the
SonoVue-TM microbubble in renal cortex of Wistar rat was
slightly above the medulla nephrica (Figure 4A, B), and the peek
the Wistar rats; B: Fitting curve of renal medulla when normal microbubble
al microbubble SonoVue was used in the GK rats; D: Fitting curve of renal



Figure 4. TIC of kidney image after perfusion of targeted microbubble SonoVue-TM.
A: The fitting curve of renal cortex when the targeted microbubble SonoVue-TM was used in the Wistar rats; B: The fitting curve of renal medulla when the
targeted microbubble SonoVue-TM was used in the Wistar rats; C: The fitting curve of renal cortex when the targeted microbubble SonoVue-TM was used
in the GK rats; D: The fitting curve of renal medulla when the targeted microbubble SonoVue-TM was used in the GK rats.

Table 1

Imaging parameter of rat kidney.

Indexes Wistar rat GK rat

Renal cortex Medulla nephrica Renal cortex Medulla nephrica

Normal group S1 0.004 ± 0.002 0.005 ± 0.001 0.007 ± 0.003 0.009 ± 0.003
S2 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000
PI 0.306 ± 0.076 0.312 ± 0.036 0.343 ± 0.059 0.387 ± 0.053
AUC 59.037 ± 18.821 52.749 ± 8.210 62.283 ± 13.183 64.926 ± 12.700
TTP 47.306 ± 13.433 38.127 ± 10.537 35.153 ± 11.780 36.106 ± 13.324

Targeted group S1 0.006 ± 0.001* 0.006 ± 0.003* 0.011 ± 0.003* 0.011 ± 0.004*

S2 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000
PI 0.359 ± 0.022 0.349 ± 0.045* 0.372 ± 0.028 0.445 ± 0.034*

AUC 70.694 ± 10.810 63.301 ± 9.728* 68.628 ± 10.312 78.334 ± 12.600*

TTP 33.967 ± 15.735 44.402 ± 13.848 33.217 ± 16.370 33.213 ± 12.426

S1: the slope of the ascending branch; S2: the slope of the descending branch; PI: the intensity of the peak value; AUC: area under the curve; TTP:
time to peak. *P< 0.05 compared with normal group.

Table 2

Imaging parameter of GK rat kidney.

Indexes Normal microbubble SonoVue Targeted microbubble SonoVue-TM

Renal cortex Medulla nephrica Renal cortex Medulla nephrica

Normal group S1 0.007 ± 0.003 0.009 ± 0.003 0.011 ± 0.003 0.011 ± 0.004
S2 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000
PI 0.343 ± 0.059 0.387 ± 0.053 0.372 ± 0.028 0.445 ± 0.034
AUC 62.283 ± 13.183 64.926 ± 12.700 68.628 ± 10.312 78.334 ± 12.600
TTP 35.153 ± 11.780 36.106 ± 13.324 33.217 ± 16.370 33.213 ± 12.426

Targeted group S1 0.004 ± 0.002 0.005 ± 0.001 0.006 ± 0.001 0.006 ± 0.003
S2 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000 −0.001 ± 0.000
PI 0.306 ± 0.076 0.312 ± 0.036* 0.359 ± 0.022 0.349 ± 0.045*

AUC 59.037 ± 18.821 52.749 ± 8.210* 70.694 ± 10.810 63.301 ± 9.728*

TTP 47.306 ± 13.433 38.127 ± 10.537 33.967 ± 15.735 44.402 ± 13.848

S1: the slope of the ascending branch; S2: the slope of the descending branch; PI: the intensity of the peak value; AUC: area under the curve; TTP:
time to peak. *P< 0.05 compared with normal group.
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value of the ordinary microbubble in renal cortex of GK rat was
slightly lower than medulla nephrica (Figure 4C, D).
3.4. Analysis of the kidney image parameter

Compared with the control group, the slope, peek value and
the area under the curve of the ascending branch in the renal
cortex and the medulla nephrica of GK rat in the ordinary contrast
agent group and the SonoVue-TM microbubble group were all
improved significantly (P < 0.05, Table 1). The slope, peek value
and the area under the curve of the ascending branch in the renal
cortex and the medulla nephrica of Wistar rat in the ordinary
contrast agent group and the SonoVue-TM microbubble group
showed no significant difference (P > 0.05, Table 2).
4. Discussion

The major cause in pathological and physiological basis of
diabetic complications is microcirculation disturbance [8]. The
previous study showed that, the change of the microvascular
disease was always fundamentally, and the change was
reversible. As the disease progressed, the abnormal glucose
metabolism made the pathologic changes of the blood vessel
irreversible, and this may lead to more serious consequences
[9,10]. If evidence of early microvascular disease can be
detected, and effective intervention was taken at the reversible
period, the progressive vasculopathy will be prevented, and
complications will greatly be reduced. In this study, targeted
microbubble SonoVue-TM was prepared. By injecting the
microbubble into Wistar rat and GK rat, the kidney blood
perfusion was observed and compared. The results showed that
the targeted microbubble can enhance the imaging ability both
in vitro and in vivo, and reflect the characteristics of the kidney
blood perfusion of the GK rat.

The basic concept of ultrasound targeted contrast imaging is
to attach the specific antibody or ligand to microbubble [11,12].
The ultrasound microbubble used in this study is an ideal
tracer of the microcirculation which belongs to the second
generation ultrasound microbubble contrast agents. The
microbubble had a lecithoid monolayer, and was filled with
sulfur hexafluoride inside. The average diameter is about
2.5 mm, and the stability of the microbubble is favorouble
[13,14]. We used Wu Juefei's avidin-biotin bridge method for
reference, successfully connected the specific antibody with the
microbubble. The results showed that the targeted microbubble
SonoVue-TM can image well in vitro. The technique has been
wildly used in the medicine field with high specificity affinity
and stability [15,16].As the ordinary microbubble and the targeted
microbubble SonoVue-TM administrated in the kidney of GK
rats, the slope of the superior branchlets and the area under the
curve all increased, peak intensity enhanced according to the
parameter analysis [17]. These results all suggested that the blood
flow and velocity increased in the renal microvascular of GK
rats, and the renal hemodynamic was abnormal which showed
up as high perfusion and high filtration in the GK rats. The
result was similar with the previous reports of renal
microcirculation in diabetic nephropathy [18]. Compared with
the normal microbubble, the targeted microbubble SonoVue-
TM showed no significant differences when used in Wistar
rats, and this proved that the targeted microbubble SonoVue-TM
have no specific retention in the renal of Wistar rats. Compared
with the normal microbubble group, the echo intensity of the
targeted microbubble SonoVue-TM group was much higher in
the renal medulla area than in the cortex area. In targeted
microbubble SonoVue-TM group, the peak intensity enhanced
obviously, and the area under the curve increased in the renal
medulla of the GK rats according to the parameter analysis;
while in the normal microbubble group, the echo intensity in the
renal medulla area was slightly higher than in the cortex area.
There were several possible reasons for the above phenomenon:
① the expression level of TM antigen in the renal medulla of
GK rats was higher than Wistar rats; the targeted microbubble
SonoVue-TM specifically retained in the microvascular, which
enhanced the back scattered reflection echo signal and resulted
in the peek value intensity of renal medulla area obviously
higher than the cortex area. ② This might be related to the
change of blood distribution in the kidney of GK rats, which
manifested as the increasement of blood flow in the renal me-
dulla area and decreasement in the cortex area. This phenome-
non was similar with the change of renal hemodynamics in acute
hemorrhagic shock, which showed up as the decreasing of blood
flow in renal cortex, and the non-decreasing (even increasing) of
blood flow in medulla area [19]. The level of plasma endothelin
in diabetic patient was higher than normal person, especially in
those with microvascular complication [20]. Endothelin can
constricts blood vessels in renal cortex by ET-A receptor, and
at the same time dilates blood vessels in renal medulla by ET-B
receptor [21,22]. In addition, the expression level of inducible
nitric oxide synthase in the renal tissue of diabetes improved,
and then excess nitric oxide was catalyzed [23,24]. The nitric
oxide in turn can dilates the blood vessel of glomerular
arterioles in the superficial layer of renal cortex, while have no
effort on efferent arteriole in the superficial layer of renal
medulla [25]. But as it showed an arteriolar vasodilation in
juxtamedullary glomerulus, the blood flow in the renal
medulla increased respectively. Besides, nitric oxide can
mediate the renal medulla vasodilation through endothelin [26];
the level of andrenin-angiotensin will improve in the renal tis-
sue and the blood vessels constricted obviously with diabetes,
while nephrons near the medulla are relatively insensitive to
andrenin-angiotensin. The mechanism above all can explain why
the blood flow in the renal medulla is higher than in the renal
cortex in diabetic patient.

In conclusion, the targeted microbubble SonoVue-TM can
imaged well in vitro and in vivo, the imaging time can meet the
time limit of ultrasonography, the imaging intensity can also
meet the requirement of ultrasonography, and the change of
renal blood perfusion in GK rats also can be reflected when the
targeted microbubble SonoVue-TM was used in the ultraso-
nography. But our work is far from enough, for example,
effective method to detect the microbubble attached on the
endothelial cells has not found yet, which means further study
should be done to distinguish the microbubble in circulation or
adhere to the target tissue.
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improves skin microcirculation in patients with type 2 diabetes: a
report from the Diabetes mellitus And Diastolic Dysfunction
(DADD) study. Diabetes Vasc Dis Res 2012; 9(4): 287-295.

[9] Munch IC, Larsen M, Kessel L, Borch-Johnsen K, Lund-
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