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ABSTRACT

Objective: To explore the expression of transferrin (Tf) and transferrin receptor (TfR) in
hematoma brain tissue at different stage after intracerebral hemorrhage (ICH) in rats.
Methods: ICH rats model were established by collagenase method, and rats were
sacrificed at 24 h, 72 h, 7 d and 14 d after operation. The levels of Tf and TfR in different
periods of rats were detected by immunohistochemical method, and correlation between
two groups was analyzed.
Results: Tf, TfR-positive cells at each time after operation in observation group were
significantly higher than that in control group (P < 0.05). Tf, TfR-positive cells began to
increase from 24 h after the operation and reached the peak 72 h–7 d after surgery, but
then gradually decreased. Tf was mainly expressed in nucleus and cytoplasm of neurons
and glial cells around the hematoma, but TfR was mainly expressed in nucleus and
cytoplasm of neurons and choroid plexus endothelial cells. Correlation analysis showed
that the Tf-positive cell was significantly positively correlated with TfR-positive cell
expression (r = 0.447, P = 0.022).
Conclusions: Tf and TfR were important transporters in brain tissue excessive load iron
transport after ICH, and detecting the expression levels of the two indicators can provide
a reference for prognosis treatment in ICH.
1. Introduction

Intracerebral hemorrhage (ICH) refers to primary paren-
chymal hemorrhage, which contributes to 10%–30% of overall
brain death. Approximately 80% ICH occurs in cerebral hemi-
sphere, mainly in basal ganglia region, and the rest occurs in
brain-stem and cerebellum [1−3]. Later-onset cerebral edema may
appear in ICH, meanwhile, accompanies with bleeding, hemo-
lysis and mass iron accumulation. Thereafter, many pathways of
iron transfer and metabolism are activated. A previous study [4]

shows that post ICH edema is associated with neurotoxin which
produced by hemoglobin. However, currently, few studies have
reported on iron transfer mechanism of ICH edema. We inferred
that transferrin (Tf) levels in different stages detection would be
helpful for prognosis of ICH because Tf is the main transport
iron structure [5]. In order to verify the assumption, we
established ICH rat models, then observed Tf and transferring
receptor (TfR) dynamic changes and correlations in hematoma
tissue at different stages post ICH with the aim to reveal the
Tf molecular mechanism in ICH edema and provide theory
basis for ICH prognosis and effective treatment.

2. Materials and methods

2.1. Animals and grouping

A total of 80 male SD rats were chosen for this experiment
(provided by Suzhou University Experiment Center), weighing
230 g–320 g [mean eight, (287.5 ± 35.3) g]. Based on random
pen access article under the CC BY-NC-ND

http://dx.doi.org/10.1016/j.apjtm.2015.06.002
mailto:chenlong1127a@163.com
www.sciencedirect.com/science/journal/19957645
http://ees.elsevier.com/apjtm
http://dx.doi.org/10.1016/j.apjtm.2015.06.002
http://creativecommons.org/licenses/by-nc-nd/4.�0/


Long Chen et al./Asian Pacific Journal of Tropical Medicine 2015; 8(7): 574–577 575
number table, all 80 rats were divided into observation group
(n = 40), also as ICH group and control group (n = 40). Rats in
both groups were killed at 24 h, 72 h, 7 d and 14 d after surgery
(10 rats every period) respectively.

2.2. Model establishment

In the observation group, collagen IV type enzyme was used
to establish ICH rat model [6]. At first, the rats was weighed and
fixed them at prone position on stereotaxic apparatus under
chloral hydrate anesthesia (300 mg/kg). Then a 0.8-sized
incision was made under scalp and exposed the bregma. The
oriental device was readjusted to ensure the front and back
bregma at a plane. Drilled hole was at the dorsal part of the
skull post bregma 0.2 mm median line side 2.9 mm site. Micro-
syringe fixed on the stereotaxic apparatus was used to inject
normal saline contained IV type collagen into the hole, and
then the injection syringe (syringe needle diameter is about
0.7 mm) was inserted along the hole with 6 mm depth (caudate
nucleus position).Injection was finished within 5 min and the
needle retained for 5 min then withdrew it slowly. Finally, the
skin incision sutured and sterilized. Postoperative physical sign
and neurological sign of rats were observed, and Menzies
methods were employed to assess whether the model was
successful or not. Cases of death and hemiplegia were
removed. The same as the observation group, equivalent
normal saline was injected in the control group.

At four different postoperative periods as 24 h, 72 h, 7 d and
14 d, 10 rats were killed in each group. In brief, supine fixed the
rats were supinely fixed after anesthesia, incised the chest wall
and lavaged the heart with normal saline. Then, 10% triformol
(PB) stationary liquid was used to perfusion controlling the
perfusion speed (fast first then slow), then rats were decollated
and took out brain until the rats died. 5-mm specimen were cut
centered on the injection point and fixed in PB stationary liquid.
One hour later, specimen were put into 75% ethyl alcohol and
then stored in 0 �C. Conventional dehydration and waxing were
carried out, and then 5 mm thickness slices were made after
paraffin embedding.
2.3. Immunohistochemical staining

Tf and TfR polyclonal antibodies were all bought from Xi'an
Yunhong Biotechnology Ltd and the immunohistochemical kits
were provided by Shanghai Baili Biotechnology Ltd. In brief,
sections were deparafinated and incubated in 3% H2O2 for 5–
10 min, washing three times with distilled water. Slices were
immersed in citrate salt buffer and heated with electric stove till
boiling every 5 min for two times. Cooling slices were immersed
in PBS for three times (5 min each). As they cooled, samples
were put into PBS soaking for three times (5 min each time).
Every slice was incubated with one drop antigen retrieval
Table 1

Tf PCC of different periods in two group (mean ± sd).

Groups Cases 24 h after surgery 72 h

Observation 10 23.49 ± 5.82 29.5
Controls 10 48.53 ± 10.54 105
t-value 6.577 10.7
P value 0.000 0.00
solution (50 g/L) for 30 min and with primary antibody over-
night. After three washes with PBS (5 min each), slices were
incubated with secondary antibodies for 30 min and washed
three times with PBS (5 min each). Then the slices were covered
with a fresh drop of DAB solution for 10 min under the mi-
croscope. Finally, sections were stained with hematoxylin when
fully washed by running water, followed by dehydration,
clearing and mounting. Stained brain sections were examined
with a microscope. The number of positive cells was averaged
over a 400X microscopic field from 5 randomly selected loca-
tions per section in the brain regions. Cells were defined as
positive cells when yellow granules were found in nucleus or
cytoplasm. The results were repeated for three times.

2.4. Statistical analysis

All data were analyzed using statistical software SPSS 16.0
and expressed as mean ± sd refers to measurement data. Dif-
ferences between two groups were analyzed using t-test. Pear-
son test was conducted for correlation analysis. P < 0.05 was
considered as statistically significant difference.

3. Results

3.1. Tf-positive cell counts (PCC) at different stages

Tf PCC in the observation group was significantly higher
than that of the control group and the difference was statistical
significant (P < 0.05); The Tf PCC started to increase 24 h after
surgery and peaked at 72 h to 7 d then began to decrease. Mi-
croscope showed that Tf was mainly expressed around hema-
toma neuron, colloid cell nucleus and cytoplasm. All Tf was
presented as yellow dyeing particles (Table 1 and Figure 1).

3.2. TfR PCC at different stages

TfR PCC in observation group was significantly increased
compared with that of controls (P < 0.05). In observation group,
TfR PCC started to increase 24 h after surgery and peaked at
72 h to 7 d after surgery then began to decrease, but still
remained notably higher than that of control at the same period
(P < 0.05). Microscope results showed that TfR was mainly
expressed around hematoma neuron, choroid plexus endothelial
cells and membrane. All presented as yellow dyeing particles
(Table 2 and Figure 2).

3.3. Correlation analysis

It showed that Tf and TfR conformed to normal distribution.
Moreover, Pearson correlation analysis showed that Tf-positive
cell and TfR-positive cell expression had obviously positive
relations (r = 0.447, P = 0.022).
after surgery 7 d after surgery 14 d after surgery

4 ± 7.81 32.49 ± 8.94 21.08 ± 5.73
.63 ± 21.05 91.24 ± 13.42 49.78 ± 9.95
07 11.521 7.904
0 0.000 0.000



Table 2

TfR PCC of different periods in two groups (mean ± sd).

Group Cases 24 h after surgery 72 h after surgery 7 d after surgery 14 d after surgery

Observation 10 14.93 ± 4.86 21.38 ± 9.56 19.78 ± 5.49 19.96 ± 5.61
Controls 10 33.13 ± 6.74 56.48 ± 11.29 48.79 ± 9.95 15.97 ± 4.38
t-value 6.926 7.503 8.073 1.773
P value 0.000 0.000 0.000 0.047

Figure 2. Immunohistochemical result of TfR.
A: Control group 7 d after surgery, B: Observation group 24 h after surgery, C: Observation group72 h after surgery, D: Observation group7 d after surgery,
E: Observation group 14 d after surgery.

Figure 1. Immunohistochemical result of Tf.
A: Control group 7 d after surgery, B: Observation group 24 h after surgery, C: Observation group 72 h after surgery, D: Observation group 7 d after surgery,
E: Observation group 14 d after surgery.
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4. Discussion

Dynamic balance of iron plays an important role in main-
taining normal function of brain. Under normal circumstance, the
central nervous system controls brain iron distribution and
metabolism through iron transporter. Caliaperumal [7] has
reported that plenty of iron would deposit in brain tissue as for
ICH hematoma formation, by this time, a series of channels
for transfer and iron metabolic would be activated to protect
brain tissue from oxidative stress and secondary cerebral
injury, but iron transporter and metabolic protein were needed
in this process. Whereas, how brain tissue eliminated massive
iron and relevant iron transfer mechanism were still unclear.
One study showed that iron dynamic balance in brain tissue
was mainly adjusted by Tf/TfR, hence, more and more studies
began to focus on the effect of Tf on ICH iron transfer [8].

Encephaledema is an acute complication of ICH, and is also a
major risk factor [9] for ICH aggravation. Generally, hematoma
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will occur 2 h post ICH and aggravated gradually, peaks at 24 h
then gradually fades. Current study [10] considers that hematoma
may be caused by blood clot coagulation. Within 2 h post ICH,
thrombin and plasma protein in the brain tissue begin to
aggregate [11], then erythrocyte dissolves and related
decomposer hemoglobin produces toxic effect. There are
plenty of iron contained in erythrocytes, and vast iron will
deposit in the brain tissue particularly in the hematoma as the
erythrocyte dissolves. Meng [12] showed brain edema and
subsequent brain atrophy are positively correlated with around
iron concentrations. Starke [13] has indicated that obvious
hematoma forms in rat brain 24 h after injection of
hemoglobin degradation product and metabolite, but iron
chelator can reduce brain edema, indicating that iron chelator
might reduce the sodium pump injury induced by hemoglobin
and neurotoxicity. Oddo et al. [14] also revealed that
hematoma pathogenetic mechanism associates with
neurotoxicity released by hemoglobin. As catalyst of lipid
peroxidation, iron can produce oxygen radical which leads to
Fe3+ in hemoglobin restored to Fe2+, in turn, arouses damage
to brain tissue lipid peroxidation, increases blood–brain barrier
permeability to form hematoma.

Tf is a kind of glycoprotein which mainly synthesized by
neurogliocyte. Many studies verified that Tf is the chief carrier
in vivo iron transfer. TfR is distributed in brain tissue unequally,
most of which can be seen in cerebral capillaries endothelial
cells. Tf incorporates with TfR and participates in intra-tissue
iron transfer. Steere [15] has affirmed that Tf/TfR is the major
route for iron transmembrane transport through capillary
endothelial cell, and peripheral hematoma Tf, TfR expression
upregulation may be associated with brain tissue iron
eliminating. Tf PCC in observation group of current study
started to increase 24 h after surgery and peaked at 72 h to
7 d after surgery, then began to decrease. Microscope
manifested that Tf was mainly expressed in hematoma
peripheral neuron, gliocyte nucleus and cytoplasm. Liu [16]

also confirmed that a great deal of apoptosis cells (principally
neuron and gliocyte) can be witnessed around hematoma and
center portion 24 h after ICH. Since iron can lead to neuron
cell apoptosis and overloaded iron is chiefly transferred by Tf,
so we speculate that Tf may contribute to neuron cells
protection. Additionally, expression patterns of Tf and TfR
was basically consistency and correlation analysis revealed
that Tf-positive cells were positively correlated with TfR-
positive cells. We guess that it maybe the excessive iron after
ICH that stimulates neuron and astrocyte secretes Tf and further
induces upregulation of TfR expression. Finally, Tf/TfR jointly
participates in the transfer of cerebral overburden iron.

To sum up, Tf and TfR mainly participate in post ICH brain
tissue overloaded iron transfer. Detecting expression levels of
the two indicators can provide reference for cerebral hemorrhage
prognosis and effective treatment.
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