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Abstract In the presented paper we discuss pure versions of pushdown automata that have no
extra non-input symbols. More specifically, we study pure multi-pushdown automata, which
have several pushdown lists. We restrict these automata by the total orders defined over their
pushdowns or alphabets and determine the accepting power of the automata restricted in this
way. Moreover, we explain the significance of the achieved results and relate them to some
other results in the automata theory.
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1 Introduction

Formal language theory introduced pure grammars — grammars that have only terminal symbols
without any extra non-terminal symbols [1, 2, 3] — several decades ago, and it has investigated
them since. However, while most language-generating grammatical models have their accepting
counterparts based upon automata, pure grammars lacked them. Therefore, to fill this gap, the
language theory has recently introduced and discussed pure versions of pushdown automata —
pushdown automata that do not possess any extra pushdown non-input symbols [4, 5] — because
their classical versions, in which non-input symbols may occur, fullfil a crucially important role
in automata theory and its applications, such as parsing.

More specifically, multi-pushdown automata, which may have several pushdown lists, were
investigated intensively [6, 7, 8, 9, 10, 11, 12], incuding their pure versions [4, 5]. The presented
paper continues the study of pure multi-pushdown automata by introducing and investigating
three new versions.
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First, we discuss ordinary pure multi-pushdown automata. It is proved that their one-
pushdown versions characterize the family of context-free languages, while their two-or-more-
pushdown versions are computational complete — they are as powerful as Turing machines.

Second, we restrict the way these automata work by introducing total order � over their
pushdowns. In essence, during any computation, after using pushdown i, only pushdown j sat-
isfying i � j can be used throughout the rest of the computation. The acceptance of an input
is successfully completed by emptying all its pushdowns and entering a final state. The paper
demonstrates that these pushdown automata with any number of pushdown lists characterize the
family of context-free languages.

Finally, we introduce and study the total order E over the alphabets of these automata. We
require that during any computation, the symbols of any pushdown string are ordered according
to E. The study proves that the automata restricted in this way define only a proper subfamily
of the family of context-free languages.

The above-mentioned concepts and results are of some interest in view of other studies on
the same subject, including the publications summarized next. Multi-pushdown automata have
been defined and studied in [13]; additionally, this paper have studied their stateless versions.
In [5], pure multi-pushdown automata that perform complete pushdown pops are introduced
and studied. Papers [14, 15, 16, 17] from the area of formal verification study multi-pushdown
automata with ordered pushdowns, where the pop operation can be performed only on the first
nonempty pushdown.

2 Preliminaries

We assume that the reader is familiar with formal language theory (see [18, 19, 20]). For every
positive integer n, let In denote the set {1, 2, . . . , n}. For a set P , card(P ) denotes the cardinality
of P . A binary relation � over P is a total order if and only if � is antisymmetric, transitive,
and total. For an alphabet (finite nonempty set) V , V ∗ represents the free monoid generated
by V under the operation of concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε};
algebraically, V + is thus the free semigroup generated by V under the operation of concatenation.
If card(V ) = 1, then V is a unary alphabet. For x ∈ V ∗, |x| denotes the length of x, reversal(x)
denotes the reversal (mirror image) of x, and alph(x) denotes the set of symbols occurring in x.
For K ⊆ V ∗, we define alph(K) =

⋃
x∈K alph(x). If card

(
alph(K)

)
= 1, then K is a unary

language.
A pushdown automaton (PDA) is a septuple

M =
(
Q,Σ,Γ, R, s, Z, F

)
,

where Q is a finite set, Σ is an alphabet such that Q ∩ Σ = ∅, Γ is an alphabet such that Σ ⊂ Γ,
R ⊆ Γ∗×Q×(Σ∪{ε})×Γ∗×Q is a finite relation, Z ∈ Γ−Σ, s ∈ Q, and F ⊆ Q. The components
Q, Σ, Γ, R, s, Z, and F are called the set of states, the input alphabet, the pushdown alphabet, the
set of rules, the start state, the initial pushdown symbol, and the set of final states, respectively.
Instead of (z, p, a, w, q) ∈ R, we write zpa → wq ∈ R throughout the paper. Let # /∈ Q ∪ Σ ∪ Γ
be a bottom marker. The direct move relation over {#}Γ∗QΣ∗, symbolically denoted by `M ,
is defined as follows: #yzpax `M #ywqx in M if and only if #yzpax,#ywqx ∈ {#}Γ∗QΣ∗
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and zpa → wq ∈ R. Let `mM and `∗M denote the mth power of `M , for some m ≥ 1, and the
reflexive-transitive closure of `M , respectively. The language accepted by M is denoted by L(M)
and defined as

L(M) =
{
w ∈ Σ∗ | #Zsw `∗M #f, f ∈ F

}
A two-pushdown automaton (2-PDA) [11] is an octuple

M =
(
Q,Σ,Γ, R, s, Z1, Z2, F

)
.

where Q, Σ, Γ, s, and F are defined as in a pushdown automaton, R ⊆ Γ×Γ×Q×(Σ∪{ε})×Γ∗×
Γ∗×Q is a finite relation, and Z1, Z2 ∈ Γ−Σ. The components Q, Σ, Γ, R, s, Z1, Z2, and F are
called the set of states, the input alphabet, the pushdown alphabet, the set of rules, the start state,
the initial symbol of pushdown 1, the initial symbol of pushdown 2, and the set of final states,
respectively. Instead of (A1, A2, p, a, w1, w2, q) ∈ R, we write A1|A2pa→ w1|w2q ∈ R throughout
the paper. Let # /∈ Q∪Σ∪Γ be a bottom marker. The direct move relation over {#}Γ∗{#}Γ∗QΣ∗,
symbolically denoted by `M , is defined as follows: #y1A1#y2A2pax `M #y1w1#y2w2qx in M if
and only if #y1A1#y2A2pax, #y1w1#y1w1qx ∈ {#}Γ∗{#}Γ∗QΣ∗ and A1|A2pa → w1|w2q ∈ R.
Let `mM and `∗M denote the mth power of `M , for some m ≥ 1, and the reflexive-transitive closure
of `M , respectively. The language accepted by M is denoted by L(M) and defined as

L(M) = {w ∈ Σ∗ | #Z1#Z2sw `∗M ##f, f ∈ F
}
.

The families of regular languages, context-free languages, and recursively enumerable lan-
guages are denoted by RG, CF, and RE, respectively. Recall that pushdown automata charac-
terize CF and that two-pushdown automata characterize RE.

For every unary language L, L ∈ RG [21], there exists a finite automaton accepting L —
there is no need for any pushdown storage. Thus, in what follows, we suppose every lagnuage is
non-unary.

3 Pure Multi-Pushdown Automata

In this section, we define pure multi-pushdown automata and prove that with a single pushdown,
they characterize the family of context-free languages. Then, we prove that pure pushdown
automata with two or more pushdowns characterize the family of recursively enumerable languages
— that is, they are Turing complete.

3.1 Definitions and Examples

First, we define pure multi-pushdown automata. Next, we illustrate them by an example.

Definition 1. A pure n-pushdown automaton (n-PPDA), where n ≥ 1, is a (5 + n)-tuple

M =
(
Q,Σ, R, s, Z1, Z2, . . . , Zn, F

)
,

where
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• Q is a finite set of states;

• Σ is the input alphabet (Q ∩ Σ = ∅);

• R is a finite set of rules of the form

izpa→ wq,

where i ∈ In, p, q ∈ Q, and z, w ∈ Σ∗;

• s ∈ Q is the start state;

• Zi ∈ Σ is the initial symbol of pushdown i, for i = 1, 2, . . . , n;

• F ⊆ Q is a set of final states. �

Definition 2. Let M = (Q, Σ, R, s, Z1, Z2, . . . , Zn, F ) be an n-PPDA, for some n ≥ 1. Let
# /∈ Q ∪ Σ be a bottom marker. The direct move relation over

(
{#}Γ∗

)n
QΣ∗ is denoted by `M

and defined as follows:

#y1z1#y2z2 · · ·#ynznpax `M #y1w1#y2w2 · · ·#ynwnqx

if and only if

#y1z1#y2z2 · · ·#ynznpax, #y1w1#y2w2 · · ·#ynwnqx ∈
(
{#}Γ∗

)n
QΣ∗,

izipa→ wiq ∈ R for some i ∈ In, and wj = zj for j ∈ In − {i}. Let `mM and `∗M denote the mth
power of `M , for some m ≥ 1, and the reflexive-transitive closure of `M , respectively. �

Definition 3. Let M = (Q, Σ, R, s, Z1, Z2, . . . , Zn, F ) be an n-PPDA, for some n ≥ 1. The
language accepted by M , denoted by L(M), is defined as

L
(
M
)

=
{
w ∈ Σ∗ | #Z1#Z2 · · ·#Znsw `∗M ## . . .#︸ ︷︷ ︸

n times

f, f ∈ F
}
. �

We illustrate the previous definitions by the following example.

Example 1. Consider the 2-PPDA

M =
(
{s0, s1, q0, q1, q2, q3, f0, f1}, {a, b, c}, R, s0, c, c, {f1}

)
,

where R contains the following rules:

1cs0 → ccs1
2cs1 → ccq0
1cq0a→ acq0
2cq0b→ bcq1
2cq1b→ bcq1

1acq1c → cq2
2bcq2 → cq3
1acq3c → cq2
1ccq3 → f0
2ccf0 → f1
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To give an insight into the way M works, observe that M uses the first pushdown to store
as. Then, it makes use of the second pushdown to store bs. Finally, it compares the number of
input cs with the contents of both pushdowns. Clearly, L(M) = {anbncn |n ≥ 1}. For example,
the string aabbcc is accepted by M in the following way:

#c#cs0aabbcc `M #cc#cs1aabbcc `M #cc#ccq0aabbcc `M
#cac#ccq0abbcc `M #caac#ccq0bbcc `M #caac#cbcq1bcc `M
#caac#cbbcq1cc `M #cac#cbbcq2c `M #cac#cbcq3c `M
#cc#cbcq2 `M #cc#ccq3 `M ##ccf0 `M
##f1

�

For n ≥ 1, let nPPDA denote the family of languages accepted by n-PPDAs. Set

PMPDA =

∞⋃
i=1

iPPDA.

3.2 Accepting Power

In this section, we prove that 1-PPDAs characterize the family of context-free languages, and
that 2-PPDAs characterize the family of recursively enumerable languages.

Lemma 1. Let K be a context-free language. Then, there is a 1-PPDA, M = (Q, alph(K), R,
s, Z, F ), such that L(M) = K.

Proof. For any context-free language K, there exists a PDA M such that L
(
M
)

= K. Next, we
show how to simulate M by a 1-PPDA. Let

M =
(
Q,Σ,Γ, R, s, Z, F

)
be the PDA with Σ = alph(K). Without any loss of generality, suppose that a,b ∈ Σ, a 6= b. Let
Σ∪Γ = {c0, c1, c2, . . . , cn}, where n = card((Σ∪Γ)−{Z}) and c0 = Z. Define the homomorphism
τ from (Σ ∪ Γ)∗ to {a,b}∗ as τ(ci) = abi, for i = 0, 1, 2, . . . , n. Construct the 1-PPDA

M ′ =
(
Q,Σ, R′, s, τ(Z), F

)
,

where
R′ =

{
1τ(z)pd→ τ(w)q | zpd→ wq ∈ R

}
.

Notice that τ(Z) = a. To prove that L(M) = L(M ′), we establish two claims. Claim 1 demon-
strates how M ′ simulates M . Claim 2 demonstrates the converse simulation.

Claim 1. If #Zsw `kM #uqv, where q ∈ Q, v, w ∈ Σ∗, u ∈ Γ∗, for some k ≥ 0, then #τ(Z)sw `∗M ′
#τ(u)qv.
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Proof. This claim is established by induction on k ≥ 0.

Basis. Let k = 0. Then, for #Zsw `0M #Zsw with w ∈ Σ∗, there is #τ(Z)sw `0M ′ #τ(Z)sw, so
the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 0 such that the claim holds for all sequences
of moves of length m, where 0 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#Zsw `k+1
M #u′q′v′,

where w, v′ ∈ Σ∗, u′ ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#Zsw `kM #uqv `M #u′q′v′,

where u ∈ Γ∗, q ∈ Q, v ∈ Σ∗. Then, there exists a rule xqa → x′q′ ∈ R, where u = yx, u′ = yx′

and v = av′, which was used to perform the (k + 1)th move. By the construction of M ′, there
exists a corresponding rule 1τ(x)qa→ τ(x′)q′ ∈ R′. By the induction hypothesis,

#τ(Z)sw `∗M ′ #τ(u)qv.

Thus, by using 1τ(x)qa→ τ(x′)q′, M ′ can make the move

#τ(u)qv `M ′ #τ(u′)q′v′.

Notice that τ(u) = τ(y)τ(x). The resulting configuration of M ′ corresponds to the new configu-
ration of M and the claim holds.

Claim 2. If #τ(Z)sw `kM ′ #τ(u)qv, where q ∈ Q, v, w ∈ Σ∗, u ∈ Γ∗, for some k ≥ 0, then
#Zsw `∗M #uqv.

Proof. This claim is established by induction on k ≥ 0.

Basis. Let k = 0. Then, for #τ(Z)sw `0M ′ #τ(Z)sw, where w ∈ Σ∗, there is #Zsw `0M #Zsw,
so the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 0 such that the claim holds for all sequences
of moves of length m, where 0 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#τ(Z)sw `k+1
M ′ #τ(u′)q′v′,

where w, v′ ∈ Σ∗, u′ ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#τ(Z)sw `kM ′ #τ(u)qv `M ′ #τ(u′)q′v′,

where u ∈ Γ∗, q ∈ Q, v ∈ Σ∗. Then, there exists a rule 1τ(x)qa → τ(x′)q′ ∈ R′, where
τ(u) = τ(y)τ(x), τ(u′) = τ(y)τ(x′), and v = av′, which was used to perform the (k + 1)th move.
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By the construction of M ′, this rule was introduced from a rule xqa→ x′q′ ∈ R. By the induction
hypothesis,

#Zsw `∗M #uqv.

Thus, by using xqa→ x′q′, M can make the move

#uqv `M #u′q′v′.

The resulting configuration of M corresponds to the new configuration of M ′ and the claim
holds.

Consider a special case of Claim 1 when u = v = ε and q ∈ F . Then, M accepts w. Since
τ(u) = ε, M ′ also accepts w. So, L(M) ⊆ L(M ′).

Similarly, in the special case of Claim 2 when τ(u) = v = ε and q ∈ F , M ′ accepts w. Since
u = ε, M also accepts w. So, L(M ′) ⊆ L(M).

Hence, L(M) = L(M ′), and the lemma holds.

Theorem 1. 1PPDA = CF

Proof. The inclusion CF ⊆ 1PPDA follows from Lemma 1. The opposite inclusion, 1PPDA ⊆
CF, follows directly from the definitions of 1-PPDAs and PDAs. Hence, 1PPDA = CF, so the
theorem holds.

Next, we turn our attention to 2-PPDAs.

Lemma 2. Let K be a recursively enumerable language. Then, there is a 2-PPDA, M = (Q,
alph(K), R, s, Z1, Z2, F ), such that L(M) = K.

Proof. For any recursively enumerable language K, there exists a 2-PDA M such that L(M) = K.
We introduce a 2-PPDA M ′ that simulates M . Let

M =
(
Q,Σ,Γ, R, s, Z1, Z2, F

)
be the 2-PDA with Σ = alph(K). Without any loss of generality, suppose that a,b ∈ Σ, a 6= b
and ith rule in R is labeled with ri, for i ∈ Icard(R). Let Σ ∪ Γ ∪ {Z} = {c0, c1, c2, . . . , cn},
where n = card(Σ∪Γ), Z /∈ Σ∪Γ, and c0 = Z. Define the homomorphism τ from (Σ∪Γ∪{Z})∗
to {a,b}∗ as τ(ci) = abi, for i = 0, 1, . . . , n. Construct the 2-PPDA

M ′ =
(
Q′,Σ, R′, s′, τ(Z), τ(Z), F

)
as follows. Initially, set Q′ = Q ∪ {s′, s′′} (s′, s′′ /∈ Q) and R′ = ∅. Perform (1) and (2), given
next:

(1) add 1τ(Z)s′ → τ(Z1)s
′′, 2τ(Z)s′′ → τ(Z2)s to R′;

(2) for each ri : a|bpd→ u|wq ∈ R,

(a) add ri to Q′,
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(b) add 1τ(a)pd→ τ(u)ri, 2τ(b)ri → τ(w)q to R′.

Before proving that L(M) = L(M ′), let us give an insight into the construction. Every
computation of M ′ begins by performing two moves by using a special starting rules from (1).
Since the homomorphism τ encodes the start symbols Z1 and Z2 with the strings containing
more than one symbol, M ′ uses this starting rules to push τ(Z1) and τ(Z2) onto its pushdowns.
Therefore, the resulting configuration corresponds to the starting configuration of M . Then, for
every rule from R, in (2), we add two new rules to R′, which act in a similar way but use the
homomorphism τ for encoding the pushdown symbols. M use both pushdowns simultaneously in
every move, while M ′ can use only one. Therefore, every rule ri ∈ R is simulated with two rules.

To prove the identity L(M) = L(M ′), we establish two claims. Claim 3 demonstrates how M ′

simulates M . Claim 4 shows the converse simulation.

Claim 3. If #Z1#Z2sw `kM #u1#u2qv, where q ∈ Q, w, v ∈ Σ∗, u1, u2 ∈ Γ∗, for some k ≥ 0,
then #τ(Z)#τ(Z)s′w `∗M ′ #τ(u1)#τ(u2)qv.

Proof. This claim is established by the induction on k ≥ 0.

Basis. Let k = 0. Then, for #Z1#Z2sw `0M #Z1#Z2sw, where w ∈ Σ∗, there is

#τ(Z)#τ(Z)s′w `M ′ #τ(Z1)#τ(Z)s′′ `M ′ #τ(Z1)#τ(Z2)sw

so the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 0 such that the claim holds for all sequences
of moves of length m, where 0 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#Z1#Z2sw `k+1
M #u′1#u

′
2q
′v′,

where w, v′ ∈ Σ∗, u′1, u
′
2 ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#Z1#Z2sw `kM #u1#u2qv `M #u′1#u
′
2q
′v′,

where v ∈ Σ∗, u1, u2 ∈ Γ∗, q ∈ Q. Then, there exists a rule

ri : x1|x2qa→ x′1|x′2q′ ∈ R,

where u1 = y1x1, u
′
1 = y1x

′
1, u2 = y2x2, u

′
2 = y2x

′
2, v = av′, which was used to perform the

(k + 1)th move. By the construction of M ′, there exist two corresponding rules

1τ(x1)qa→ τ(x′1)ri, 2τ(x2)ri → τ(x′2)q
′ ∈ R′.

By the induction hypothesis,

#τ(Z)#τ(Z)s′w `∗M ′ #τ(u1)#τ(u2)qv.

Consequently, by using previous two rules M ′ can make the moves

#τ(u1)#τ(u2)qv `M ′ #τ(u′1)#τ(u2)riv
′ `M ′ #τ(u′1)#τ(u′2)q

′v′,

and the resulting configuration of M ′ corresponds to the new configuration of M . Therefore, the
claim holds.
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In Claim 4, without any loss of generality, we do not consider any sequence of moves of M ′

of odd length. From the construction of M ′, every odd move leads to an intermediate state,
while simulating one move of M , which is never final. Additionally, there is always exactly one
applicable rule, so the computation never ends after odd number of moves, neither fails nor
accepts.

Claim 4. If #τ(Z)#τ(Z)s′w `2kM ′ #τ(u1)#τ(u2)qv, where q ∈ Q, w, v ∈ Σ∗, u1, u2 ∈ Γ∗, for some
k ≥ 1, then #Z1#Z2sw `∗M #u1#u2qv.

Proof. This claim is established by the induction on k ≥ 1.

Basis. Let k = 1. By the construction of M ′, at the beginning of every computation, there is the
single applicable rule

1τ(Z)s′ → τ(Z1)s
′′ ∈ R′,

and by its application M ′ performs the move

#τ(Z)#τ(Z)s′w `M ′ #τ(Z1)#τ(Z)s′′w

where w ∈ Σ∗. In state s′′, there is also the single applicable rule

2τ(Z)s′′ → τ(Z2)s ∈ R′.

Thus, M ′ performs the move

#τ(Z1)#τ(Z)s′′w `M ′ #τ(Z1)#τ(Z2)sw.

Then, there is
#Z1#Z2sw `0M #Z1#Z2sw.

Therefore, the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 1 such that the claim holds for all sequences
of moves of length m, where 1 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#τ(Z)#τ(Z)s′w `2(k+1)
M ′ #τ(u′1)#τ(u′2)q

′v′,

where w, v′ ∈ Σ∗, u′1, u
′
2 ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#τ(Z)#τ(Z)s′w `2kM ′ #τ(u1)#τ(u2)qv `M ′ ,

#τ(u′1)#τ(u2)riv
′ `M ′ #τ(u′1)#τ(u′2)q

′v′,

where v ∈ Σ∗, u1, u2 ∈ Γ∗, q ∈ Q, i ∈ Icard(R). Then, there exist a rule

1τ(x1)qa→ τ(x′1)ri, 2τ(x2)ri → τ(x′2)q
′ ∈ R′,
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with the identities τ(u1) = τ(y1)τ(x1), τ(u′1) = τ(y1)τ(x′1), τ(u2) = τ(y2)τ(x2), τ(u′2) =
τ(y2)τ(x′2), and v = av′, which was used to perform the (k + 1)th and (k + 2)th move. By
the construction of M ′, these rules were introduced by a rule

x1|x2qa→ x′1|x′2q′ ∈ R.

By the induction hypothesis,
#Z1#Z2sw `kM #u1#u2qv.

Thus, by using x1|x2qa→ x′1|x′2q′, M can make the move

#u1#u2qv `M #u′1#u
′
2q
′v′.

The resulting configuration of M corresponds to the new configuration of M ′ and the claim
holds.

Consider a special case of Claim 3, where u1 = u2 = v = ε and q ∈ F . Then, M accepts w.
Since τ(u1) = τ(u2) = ε, M ′ also accepts w. So, L(M) ⊆ L(M ′).

Similarly, in a special case of Claim 4, where τ(u1), τ(u2), v = ε and q ∈ F , M ′ accepts w.
Since u1, u2 = ε, M accepts w as well. So, L(M ′) ⊆ L(M).

Hence, L(M) = L(M ′), and the lemma holds.

Theorem 2. 2PPDA = RE

Proof. The inclusion RE ⊆ 2PPDA follows from Lemma 2. The opposite inclusion, 2PPDA ⊆
RE, can be obtained by standard simulations. Hence, 2PPDA = RE, so the theorem holds.

From Theorem 2, we obtain the following corollary.

Corollary 1. PMPDA = RE �

4 Pure Multi-Pushdown Automata with Ordered Pushdowns

In the previous section, we studied pure multi-pushdown automata. In the present section, we
restrict the way they use their pushdowns. We introduce a total order � over their pushdowns.
After using the ith pushdown, the automaton can work only with the jth pushdown, where i � j.
We prove that these restricted versions of pure multi-pushdown automata characterize the family
of context-free languages independently of the number of their pushdowns.

4.1 Definitions and Examples

Next, we define pure multi-pushdown automata with ordered pushdowns and illustrate them by
an example.

Definition 4. For n ≥ 1, a pure n-pushdown-ordered multi-pushdown automaton (n-PPOPDA)
is a pair

H =
(
M,�

)
,

where M is an n-PPDA, and � is a total order over In. �
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Definition 5. Let H = (M , �) be an n-PPOPDA, for some n ≥ 1, where M = (Q, Σ, R, s, Z1,
Z2, . . . , Zn, F ). The direct move relation over In({#}Γ∗)nQΣ∗ is denoted by `H and defined as
follows:

k#y1z1#y2z2 · · ·#ynznpax `H i#y1w1#y2w2 · · ·#ynwnqx,

if and only if

k#y1z1#y2z2 · · ·#ynznpax, i#y1w1#y2w2 · · ·#ynwnqx ∈ In
(
{#}Γ∗

)n
QΣ∗,

izipa → wiq ∈ R, k � i, and wj = zj for j ∈ In − {i}. Let `mH and `∗H denote the mth power
of `H, for some m ≥ 1, and the reflexive-transitive closure of `H, respectively. �

Definition 6. Let H = (M , �) be an n-PPOPDA, for some n ≥ 1, where M = (Q, Σ, R, s, Z1,
Z2, . . . , Zn, F ). The language accepted by H, denoted by L(H), is defined as

L
(
H
)

=
{
w ∈ Σ∗ | 1#Z1#Z2 · · ·#Znsw `∗H n## . . .#︸ ︷︷ ︸

n times

f, f ∈ F
}
. �

We illustrate the previous definitions by the next example.

Example 2. Let H = (M , �), where M = ({q}, {a, b, c, d}, R, q, c, a, {q}), be a 2-PPDA with
1 � 2 and R containing the following rules:

1cqa → caq
1cqb → cbq
1aqa→ aaq
1bqb → bbq
1aqb → q
1bqa → q
1cq → q

2aqc → acq
2aqd→ adq
2cqc → ccq
2dqd→ ddq
2cqd → q
2dqc → q
2aq → q

First, H checks the equality of the number of the occurrences of as and bs on the first pushdown
and then cs and ds on the second pushdown. The language of H is

L(H) =
{
w ∈ {a, b, c, d}∗ | w = w1w2, w1 ∈ {a, b}∗,#a(w1) = #b(w1),
w2 ∈ {c, d}∗,#c(w2) = #d(w2)

} ,

where #t(v) denotes the number of occurrences of t in v. Notice that there is no need to change
a state to ensure a separation of w1 and w2. Indeed, the pushdown order given by � prevents a
mixture of as and bs with cs and ds. For example, the string abbacdcd is accepted by M in the
following way:

1#c#aqabbacdcd `H 1#ca#aqbbacdcd `H 1#c#aqbacdcd `H
1#cb#aqacdcd `H 1#c#aqcdcd `H 1##aqcdcd `H
2##acqdcd `H 2##aqcd `H 2##acqd `H
2##aq `H 2##q
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�

For n ≥ 1, let nPPOPDA denote the family of languages accepted by n-PPOPDAs. Set

PPOMPDA =

∞⋃
i=1

iPPOPDA.

4.2 Accepting Power

In this section, we prove that n-PPOPDAs characterize the family of context-free languages.

Lemma 3. nPPOPDA ⊆ CF, for any n ≥ 1.

Proof. We show that we can simulate any n-PPOPDA by a PDA, for any n ≥ 1. Let H = (M ,
�) be an n-PPOPDA, for some n ≥ 1, where

M =
(
Q,Σ, R, s, Z1, Z2, . . . , Zn, F

)
.

Without any loss of generality, we assume that 1 � 2 � · · · � n. We introduce the PDA

M ′ =
(
Q′,Σ,Γ, R′, s′, Z, {f}

)
,

defined in the following way. Initially, set

Q′ = {qi | q ∈ Q, i ∈ In} ∪ {s′, f}
(
{s′, f} ∩Q = ∅

)
Γ = Σ ∪ {Z} (Z /∈ Σ)
R′ = ∅

To finish the construction, perform (1) through (4), given next:

(1) add Zs′ → ZZ1s1 to R′;

(2) for each q ∈ Q and each i ∈ In−1, add Zqi → ZZi+1qi+1 to R′;

(3) for each q ∈ F , add Zqn → f to R′;

(4) for each izpa→ wq ∈ R, add zpia→ wqi to R′.

Before proving that L(H) = L(M ′), let us give an insight into the construction. H uses its
pushdowns in the order given by �. Every configuration of H keeps the information about the
current working pushdown implicitly. M ′ keeps this information in its states. If the current state
is qi, M

′ simulates the work with the ith pushdown in the given order. There are two states with
a special purpose: the initial s′ and final f .

We use the new symbol Z as the bottom of the pushdown of M ′. It is never removed except
in the last terminating rule. It is also used to determine possible moves further in the simulation
to the next pushdown. When Z is on the top of the pushdown, the currently simulated pushdown
is empty. H can make a move to the next pushdown even if the current one is not empty yet;
however, no such computation could be accepting. Indeed, the future emptying of the pushdown is
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not possible. M ′ blocks instead of simulating the unsuccessful computation. The only permitted
move in the pushdown order is when the currently simulated pushdown is empty. Then, the
simulation is possibly accepting.

For every rule from R, we introduce the corresponding rules to R′. Additionally, we define
rules simulating the pushdown order. Every accepting computation of H is divided into n phases,
and in the ith phase, for i ∈ In, H uses only the ith pushdown, with respect to �. Therefore, the
simulation is also divided into n phases. The ith phase, for i ∈ In, is simulated as follows:

(I) Phase 1 starts with the rule from (1), phase i for i > 1 with the rule from (2). The start
symbol Zi of the ith pushdown of H is inserted to the pushdown of M ′. Notice that except
the first phase, the previously simulated (i − 1)th pushdown must be empty before. We
determine this by checking that Z is on the top of the pushdown.

(II) The simulation continues with rules from (4), where for a rule of the form zpja → wqj , it
holds that i = j.

(III) If the symbol Z is on the top of the pushdown, the simulated pushdown is empty and the
simulation continues back to (I) except the phase n, where the simulation can successfully
finish by using a rule from (3).

To prove the identity L(H) = L(M ′), we establish two claims. Claim 5 demonstrates how to
simulate H by M ′. Claim 6 demonstrates the converse simulation.

In Claim 5, without any loss of generality, we do not consider any computation of H, which
manipulates the ith pushdown before emptying the jth one, where i > j. Since future emptying
is not possible, such computation is obviously not accepting. This restriction is without any loss
of generality. In Claim 5, we only show that M ′ covers all accepting computations of H.

Claim 5. If 1#Z1#Z2# . . .#Znsw `kH i#iu#Zi+1# . . .#Znqv, where w, v ∈ Σ∗, u ∈ Γ∗, q ∈ Q,
i ∈ In, and all jth pushdowns, with j > i, contain only the symbol Zj , for some k ≥ 0, then
#Zs′w `∗M ′ #Zuqiv.

Proof. This claim is established by induction on k ≥ 0.

Basis. Let k = 0. Then, for

1#Z1#Z2# . . .#Znsw `0H 1#Z1#Z2# . . .#Znsw,

where w ∈ Σ∗, there is
#Zs′w `M ′ #ZZ1s1w.

Therefore, the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 0 such that the claim holds for all sequences
of moves of length m, where 0 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

1#Z1#Z2# . . .#Znsw `k+1
H j#ju′#Zj+1# . . .#Znq

′v′,
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where w, v′ ∈ Σ∗, u′ ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence of moves can be written in the
form

1#Z1#Z2# . . .#Znsw `kH i#iu#Zi+1# . . .#Znqv
`H j#ju′#Zj+1# . . .#Znq

′v′

where v ∈ Σ∗, u ∈ Γ∗, q ∈ Q.
First, consider i 6= j. Observe that i and j denote the numbers of the current working

pushdown. The order � ensures that i ≤ j, so, i < j ≤ n. If i + 1 < j, the (i + 1)th pushdown
remains nonempty and the computation is not accepting. We do not consider such a computation.
Summarily, i+ 1 = j. The (k+ 1)th move was then performed by using a rule jZjqa→ u′q′ ∈ R,
where v = av′. If the computation may be accepting, u = ε. Then, by the induction hypothesis,

#Zs′w `∗M ′ #Zqiv.

By the construction of M ′, there exist two rules

Zqi → ZZi+1qi+1, Zi+1qi+1a→ u′q′i+1 ∈ R′.

Thus, by using these rules, M ′ can make the moves

#Zqiv `M ′ #ZZi+1qi+1v `M ′ #Zu′q′i+1v
′,

and the resulting configuration corresponds to the new H’s configuration.
Second, consider i = j. Then, we can rewrite the H’s sequence of moves to the form

1#Z1#Z2# . . .#Znsw `kH i#iu#Zi+1# . . .#Znqv
`H i#iu′#Zi+1# . . .#Znq

′v′

The (k + 1)th move was performed by a rule ixqa → x′q′ ∈ R, where u = yx, u′ = yx′. By the
construction of M ′, there exists a rule from (4), xqia→ x′qi ∈ R′. By the induction hypothesis,

#Zs′w `∗M ′ #Zuqiv.

By using xqia→ x′qi, M
′ can perform the move

#Zuqiv `M ′ #Zu′q′iv
′.

The resulting configuration corresponds to the new H’s configuration.
By combining the previous two cases, Claim 5 holds.

Claim 6. If #Zs′w `kM ′ #Zuqiv, where w, v ∈ Σ∗, u ∈ Γ∗, qi ∈ Q′, i ∈ In, for some k ≥ 1. Then,
1#Z1#Z2# . . .#Znsw `∗H j#iu#Zi+1# . . .#Znqv, j ≤ i.

Proof. This claim is established by induction on k ≥ 1.

Basis. Let k = 1. By the construction of M ′, at the beginning of every computation, there is the
single applicable rule

Zs′ → ZZ1s1 ∈ R′,
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and by its application M ′ performs the move

#Zs′w `M ′ #ZZ1sw,

where w ∈ Σ∗. Then, there is

1#Z1#Z2# . . .#Znsw `0H 1#Z1#Z2# . . .#Znsw,

and the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 1 such that the claim holds for all sequences
of moves of length m, where 1 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#Zs′w `k+1
M ′ #Zu′q′jv

′,

where w, v′ ∈ Σ∗, u′ ∈ Γ∗, q′j ∈ Q′. Since k + 1 ≥ 1, this sequence can be written in the form

#Zs′w `kM ′ #Zuqiv `M ′ #Zu′q′jv
′,

where v ∈ Σ∗, u ∈ Γ∗, qi ∈ Q′. Next, we cover these two cases: i = j and i + 1 = j. By the
construction of M ′, there is no other possibility.

First, suppose that i + 1 = j. Then, the (k + 1)th move of M ′ was performed by a rule
from (2), which is of the form

Zqi → ZZi+1qi+1,

so, u = ε, u′ = Zi+1, q
′ = q, v′ = v. Thus, the sequence of moves of M ′ can be written as

#Zs′w `kM ′ #Zqiv `M ′ #ZZi+1qi+1v.

By the induction hypothesis we have

1#Z1#Z2# . . .#Znsw `∗H i#iu#Zi+1# . . .#Znqv.

Since u = ε, we can rewrite this sequence of moves to the form

1#Z1#Z2# . . .#Znsw `∗H i#i+1Zi+1# . . .#Znqv

which corresponds to the new configuration of M ′.
Second, suppose that i = j. Then, the sequence of moves of M ′ is

#Zs′w `kM ′ #Zuqiv `M ′ #Zu′q′iv
′.

The (k + 1)th move of M ′ was performed by a rule from (4), xqia → x′q′i ∈ R′, where u = yx,
u′ = yx′, v = av′. By the construction of M ′, this rule was added to R′ from a rule ixqa→ x′q′ ∈
R. By the induction hypothesis,

1#Z1#Z2# . . .#Znsw `∗H i#iu#Zi+1# . . .#Znqv.

Therefore, by using ixqa→ x′q′, H can perform an additional move

i#iu#Zi+1# . . .#Znqv `H i#iu′#Zi+1# . . .#Znq
′v′,

and enter the configuration corresponding to the new configuration of M ′.
Hence, we covered both possible cases and the claim holds.
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Consider a special case of Claim 5 when

1#Z1#Z2# . . .#Znsw `kH n#nuqv,

where u = v = ε, q ∈ F , for some k ≥ 0. Then, H accepts w. By this claim

#Zs′w `∗M ′ #Zqn.

Since q ∈ F and by the construction of M ′, there exists a rule from (3), Zqn → f ∈ R′, and by
using this rule, M ′ can also accept w. So, L(H) ⊆ L(M ′).

As a special case of Claim 6, M ′ can make the sequence of moves

#Zs′w `kM ′ #Zqn,

for some k ≥ 1. Then, if q ∈ F , by the construction of M ′, there exists a rule from (3),
Zqn → f ∈ R′, and M ′ can accept w by its application. However, by this claim

#Z1#Z2# . . .#Znsw `∗H #nq.

So, H accepts w as well. Hence, L(M ′) ⊆ L(H).
Since L(H) ⊆ L(M ′) and L(M ′) ⊆ L(H), we have that L(H) = L(M ′), and the lemma

holds.

Lemma 4. Let K be a context-free language. Then, there is a 1-PPOPDA, H = (M,�), where
M = (Q, alph(K), R, s, Z F ), such that L(M) = K.

Proof. This Lemma follows directly from Lemma 1. Indeed, observe that every 1-PPDA is a
1-PPOPDA.

Theorem 3. nPPOPDA = CF, for any n ≥ 1.

Proof. Let n ≥ 1. By Lemma 3, nPPOPDA ⊆ CF. By Lemma 4, CF ⊆ nPPOPDA. Hence,

nPPOPDA = CF, so the theorem holds.

From Theorem 3, we obtain the following corollary.

Corollary 2. PPOMPDA = CF �

5 Ordered Pure Pushdown Automata

In the previous section, we studied pure multi-pushdown automata with a total order over their
pushdowns. In the present section, we turn our attention to an order over the input symbols. We
introduce an order E and restrict the way the automaton pushes symbols onto its pushdown. If
a is the topmost pushdown symbol, only b such that a E b can be pushed onto the pushdown.
We prove that such restricted pure pushdown automata characterize only a proper subfamily of
the family of context-free languages.
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5.1 Definitions and Examples

Next, we define ordered pure pushdown automata and illustrate them by an example.

Definition 7. An ordered pure pushdown automaton (OPPDA) is a pair

H =
(
M,E

)
,

where M = (Q, Σ, R, s, Z, F ) is a 1-PPDA, and E is a total order over Σ. Since there is only a
single pushdown, instead of izpa→ wq ∈ R, we write just zpa→ wq ∈ R. �

Definition 8. Let H = (M , E) be an OPPDA, where M = (Q, Σ, R, s, Z, F ). The direct move
relation over {#}Γ∗QΣ∗ is denoted by `H and defined as

#yzpax `H #ywqx,

if and only if #yzpax, #ywqx ∈ {#}Γ∗QΣ∗, zpa→ wq ∈ R, and

c1 E c2 E · · · E c|yw|,

where yw = c1c2 · · · c|yw|. Let `mH and `∗H denote the mth power of `H, for some m ≥ 1, and the
reflexive-transitive closure of `H, respectively. �

Definition 9. Let H = (M , E) be an OPPDA, where M = (Q, Σ, R, s, Z, F ). The language
accepted by H, denoted by L(H), is defined as

L
(
H
)

=
{
w ∈ Σ∗ | #Zsw `∗H #f, f ∈ F

}
. �

We illustrate the previous definitions by an example.

Example 3. Let H = (M , E), where M = ({s, q, f}, {a, b, c}, R, s, a, {f}), be an OPPDA with
a E b E c and R containing the following rules:

sa → as
sb → bs
sc → cs
s → q

aqa → q
bqb → q
cqc → q
aq → f

First, H pushes some symbols from the input onto the pushdown. Then, it nondeterministically
changes its state and checks the equality of the reversal of the pushdown string with the rest of
the input string. The language of H is

L(H) =
{
w1w2 | w1 ∈ {a}∗{b}∗{c}∗, w2 = reversal(w1)

}
.

The given order E ensures a separation of sequences of as, bs, and cs. For example, the string
aabccbaa is accepted by H in the following way:
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#asaabccbaa `H #aasabccbaa `H #aaasbccbaa `H
#aaabsccbaa `H #aaabcscbaa `H #aaabcqcbaa `H
#aaabqbaa `H #aaaqaa `H #aaqa `H
#aq `H #f

�

Let OPPDA denote the family of languages accepted by OPPDAs.

5.2 Accepting Power

In this section, we prove that OPPDAs characterize only a proper subfamily of the family of
context-free languages.

Lemma 5. OPPDA ⊆ CF

Proof. Consider an OPPDA H = (M ,E), where

M =
(
Q,Σ, R, s, Z, F

)
.

We show how to simulate H by a PDA. First, we give a construction of such a PDA. Then,
we describe the idea underlying this construction. However, even before, without any loss of
generality, we remove from R all rules of the form vpa → wq, where w does not satisfy E.
Observe that such rules are never applicable. Let

M ′ =
(
Q′,Σ,Γ, R′, s′, Z ′, F

)
,

be the PDA constructed as follows. Initially, set Q′ = Q ∪ {s′} (s′ /∈ Q), Γ = Σ ∪ {Z ′} (Z ′ /∈ Σ),
and R′ = ∅. Perform (1) through (4), given next:

(1) add Z ′s′ → Z ′Zs to R′;

(2) for each f ∈ F , add Z ′f → f to R′;

(3) for each vpa→ wq ∈ R, add Z ′vpa→ Z ′wq to R′;

(4) for each vpa → wq ∈ R and for each c ∈ Σ, if cw = cd1d2 . . . d|w|, where di ∈ Σ, and
c E d1 E d2 E · · · E d|w|, add cvpa→ cwq to R′.

Before we prove the identity L(H) = L(M ′), let us give an insight into the construction. M ′

has to simulate the order E. We introduce a new pushdown symbol Z ′ to denote the bottom
of the simulated pushdown. It is the start pushdown symbol and it is never removed until the
computation succeeds.

The set of states Q is extended with a new start state s′ to ensure the consistence of the
starting configuration of H and M ′. For this purpose, we introduce the rule Z ′s′ → Z ′Zs in (1).

Then, the simulation continues rule by rule in accordance with H, but unlike H, M ′ does not
ensure the order of the pushdown symbols naturally. However, the rules are designed to satisfy
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the simulated order E. Roughly speaking, M ′ has to look one symbol deeper into the pushdown
whether the following move does not violate E. More precisely, every rule vpa → wq ∈ R is
replaced with rules from (3) and (4). The resulting rules extend all the rules in R. The pushdown
strings on both sides of each new rule contain an additional pushdown symbol. It is either Z ′ or
c ∈ Σ that preserves E. Therefore, the rule to be applied is chosen according to the top pushdown
string with one additional symbol, which remains in the pushdown. Then, the resulting pushdown
configuration corresponds to the simulated one.

Finally, whenever Z ′ occurs on the top of the pushdown and the current state is f ∈ F , by
the construction of M ′, there exists the rule Z ′f → f ∈ R′ from (2) and M ′ can accept.

To prove that L(H) = L(M ′), we establish two claims. Claim 7 shows how M ′ simulates H.
Claim 8 shows the converse simulation.

Claim 7. If #Zsw `kH #uqv, where v, w ∈ Σ∗, u ∈ Γ∗, q ∈ Q, for some k ≥ 0, then #Z ′s′w `∗M ′
#Z ′uqv.

Proof. This claim is established by induction on k ≥ 0.

Basis. Let k = 0. Then, for #Zsw `0H #Zsw, where w ∈ Σ∗, there is

#Z ′s′w `M ′ #Z ′Zsw,

by the rule from (1), so the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 0 such that the claim holds for all sequences
of moves of length m, where 0 ≤ m ≤ k.

Induction Step. Consider any sequence of moves #Zsw `k+1
H #u′q′v′, where w, v′ ∈ Σ∗, u′ ∈ Γ∗,

q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#Zsw `kH #uqv `H #u′q′v′

where v ∈ Σ∗, u ∈ Γ∗, q ∈ Q. Then, there exits a rule xqa → x′q′ ∈ R, where u = yx,
u′ = yx′, v = av′, which was used to perform the (k + 1)th move. Since both yx and yx′ satisfy
E and y = y′c, where c ∈ Σ ∪ {ε} and y′ = Γ∗, by the construction of M ′, there exists a rule
c′xqa→ c′x′q′ ∈ R′, where, if c = ε, c′ = Z ′, otherwise c′ = c. By the induction hypothesis,

#Z ′s′w `∗M ′ #Z ′uqv.

Consequently, by using c′xqa→ c′x′q′, M ′ can make the move

#Z ′uqv `M ′ #Z ′u′q′v′.

The resulting configuration of M ′ corresponds to the new configuration of H, and the claim
holds.

Claim 8. If #Z ′s′w `kM ′ #Z ′uqv, where v, w ∈ Σ∗, u ∈ Γ∗, q ∈ Q, u = c1c2 . . . c|u| and c1 E c2 E
· · · E c|u|, for some k ≥ 1, then #Zsw `∗H #uqv.
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Proof. This claim is established by induction on k ≥ 1.

Basis. Let k = 1. From the construction of M ′, there exists the only applicable rule from (1),
Z ′s′ → Z ′Zs. Since Z satisfies E, then for

#Z ′s′w `M ′ #Z ′Zsw,

where w ∈ Σ∗, there is #Zsw `0H #Zsw and the basis holds.

Induction Hypothesis. Suppose that there exists k ≥ 1 such that the claim holds for all sequences
of moves of length m, where 1 ≤ m ≤ k.

Induction Step. Consider any sequence of moves

#Z ′s′w `k+1
M ′ #Z ′u′q′v′,

where w, v′ ∈ Σ∗, u′ ∈ Γ∗, q′ ∈ Q. Since k + 1 ≥ 1, this sequence can be written in the form

#Z ′s′w `kM ′ #Z ′uqv `M ′ #Z ′u′q′v′,

where v ∈ Σ∗, u ∈ Γ∗, q ∈ Q. Then, there exits a rule cxqa → cx′q′ ∈ R′, where u = ycx,
u′ = ycx′, c ∈ Γ∪ {Z ′}, v = av′, which was used to perform the (k+ 1)th move. Since yc and cx′

satisfy E, the order E is preserved. Then, by the construction of M ′, used rule was introduced
to R′ according to some rule xqa→ x′q′ ∈ R. By the induction hypothesis,

#Zsw `kH #uqv.

Consequently, by using xqa→ x′q′, H can make the move

#uqv `H #u′q′v′.

The resulting configuration of H corresponds to the new configuration of M ′ and the claim
holds.

Consider a special case of Claim 7 #Zsw `kH #uqv when u, v = ε, q ∈ F . H accepts w. Then,

#Z ′s′w `∗M ′ #Z ′q,

and, by the construction of M ′, there exists a rule Z ′q → q from (2). M ′ can also accept w.
Hence, L(H) ⊆ L(M ′).

In a special case of Claim 8, M ′ performs the sequence of moves

#Z ′s′w `kM ′ #Z ′uqv,

where u, v = ε, q ∈ F . Then, by the construction of M ′, there exists a rule Z ′q → q from (2). By
using this rule, M ′ can accept w. However, on the basis of #Zsw `∗H #uqv and, since u = v = ε
and q ∈ F , H accepts w as well. Hence, L(M ′) ⊆ L(H).

Consequently, L(H) = L(M ′), and the lemma holds.
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Lemma 6. CF−OPPDA 6= ∅

Proof. Consider the language LR =
{
w reversal(w) | w ∈ {a, b}∗

}
. Obviously, LR ∈ CF. Suppose

that there exists an OPPDA H = (M,E), where

M =
(
Q,Σ, R, s, Z, F

)
,

and L(H) = LR. Additionally, let uv ∈ L(H), where |u| = |v|. To check the equality of u with
its reversal v, H has to remember u first. So, with every symbol of u read from the input, H has
to enter a unique configuration different from all the previous configurations.

Now, suppose that u = (aibj)k, where i, j > card(Q) and k > card(Σ). To save the information
about the lengths of the sequences of as and bs, H has to insert nonempty sequences of the
symbols into the pushdown. Indeed, states are not enough to encode this. Each sequence on the
pushdown must differ from the previous one—contain different symbols. With the mth sequence,
where m > card(Σ), H has to use the previously used symbol to differentiate the sequences.
However, it is in the conflict with E, which is a contradiction. Therefore, the lemma holds.

Lemma 7. RG ⊆ OPPDA

Proof. For any regular language K, there is a finite automaton M =
(
Q,Σ, R, s, F

)
satisfying

L(M) = K. Then, we can define the OPPDA H = (M ′,E), where M ′ =
(
Q,Σ, R′, s, a, F

)
with a

being an arbitrary symbol from Σ and R′ = R ∪ {as→ s}. Obviously, L(H) = K, so the lemma
holds.

Lemma 8. OPPDA−RG 6= ∅

Proof. This lemma follows from Example 3 (recall that L(H) /∈ RG).

Theorem 4. RG ⊂ OPPDA ⊂ CF

Proof. By Lemma 5, OPPDA ⊆ CF. By Lemma 6, CF − OPPDA 6= ∅. By Lemma 7,
RG ⊆ OPPDA. By Lemma 8, OPPDA − RG 6= ∅. Hence, RG ⊂ OPPDA ⊂ CF, so the
theorem holds.

6 Conclusions

In this final section, we briefly conclude all the achieved results. First, we studied pure versions
of PDAs and proved that the absence of special pushdown symbols does not affect their accepting
power; one-pushdown PPDAs still characterize CF and PPDAs with two or more pushdown lists
characterize RE — that is they are Turing-complete. Next, we introduced an order above the
pushdown lists of multi-pushdown PPDAs and proved that they characterize CF regardless of a
number of their pushdown lists. Finally, we introduce PPDAs with ordered pushdown symbols.
We proved that they characterize a superfamily of RG, however, only a subfamily of CF.
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