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Abstract: A survey of the metric theory of the continued fraction expansions related to random Fibonacci 
Type sequences discussed by Sebe and Lascu is given. The limit properties of these expansions have been 
studied. A Wirsing-type approach to the Perron-Frobenius operator of the generalized Gauss map under its 
invariant measure allows us to get close to the optimal convergence rate. Actually, we obtain upper and 
lower bounds of the convergence rate which provide a near-optimal solution to the Gauss-Kuzmin-Lévy 
problem for these expansions. 
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INTRODUCTION 
In this paper we consider a non-regular continued 
fraction expansions introduced by Chan [1].  
In fact, Chan considered some continued fraction 
expansions related to random Fibonacci-type 
sequences which were studied in detail by Sebe 
and Lascu in [6, 4, 5].  
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where na ‘s are non-negative integers. The 
numbers ( ) ( ) 1 2/ , ,n n m

p x q x a a=     are the n -th 

order convergent of )0,1x ∈  . Then 

( ) ( )/ ,n np x q x x n→ → ∞ . Here np ’s and nq ’s 
satisfy for +∈ n  the following: 
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with ( ) ( ) ( ) ( )0 0 1 10, 1, 1, 0p x q x p x q x−= = = =  and 

0 0a = . In [1] it was shown that the invariant 
probability measure of the transformation τm  is  
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IA∈B , where IB  is the σ - algebra of the Borel 

subsets of I . Hence, ( ) ( )( )1 ,m m m IA A Aγ γ τ −= ∈B , 

the sequence ( )n n
a

+∈  is strictly stationary on 

( ), ,I mI γB . 
METRIC PROPERTIES. Roughly speaking, the 
metrical theory of continued fraction expansions is 
about the sequence ( )n n

a
+∈  and related 

sequences. For any n +∈  and  
( ) ( )1, ,n n

ni i i= ∈   we will say that 
( )( ) ( ){ }: , 1n

m k kI i a i k nω ω= ∈Ω = ≤ ≤  is the 

fundamental interval of rank n  and make the 
convention that ( )( )0

mI i = Ω , where Ω  is the set 

of irrationals in I . We will write 

( ) ( )( )1, , n
m n mI a a I a= , n +∈  . If 2n ≥  and 

ni ∈  , then we have ( ) ( )( )1, , n
m n mI a a I i= . For 

any n +∈   we have     
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the Brodén-Borel-Lévy formula for this type of 
expansions. It allows us to determine the 
probability distribution of ( )n n
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We have already noticed that the sequence 
( )n n
a

+∈
is strictly stationary on ( ), ,I mI γB . As such, 

a doubly infinite version of it, say ( )l
l

a
∈

 should 

exist on a richer probability space. Indeed, such a 
version can be effectively constructed on 

( )2 2, , mII γB  where mγ , the extended measure, is 

defined by  

      ( )
( )( )( )

2
2 ,

1 1
m m I

B

dxdyB k B
m x y

γ = ∈
− + +

∫∫ B .   (6)  
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under mγ . The definition of ( )l
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with the natural extension mτ  of mτ  which is a 
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for any i ∈  . We thus see that ( )l
l

a
∈

 is an 

infinite order chain in the theory of dependence 
with complete connections (see [2], section 5.5). 
GAUSS-KUZMIN-TYPE THEOREM 
It is only recently [6, 4, 5] that the limits and 
ergodic properties of these expansions have been 
studied. It should be stressed that the ergodic 
theorem does not yield rates of convergence for 
mixing properties; for this a Gauss-Kuzmin 
theorem is needed.  
Limits properties. Let us consider the random 
system with complete connections RSCC ([2])  
                  ( ) ( )( ){ }, , , , ,I II u P+ + B P ,                 (7) 
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consider the family of (conditional) probability 
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γ  on IB  defined by their 

distribution functions 
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s
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 is a { }I a -valued Markov chain 

on ( ),, ,I m aI γB  which starts from 0, 0as a= ≥  and 

has the following transition mechanism: from state 
{ }s I a∈   the possible transitions are to any 

state ( )( )/ 1 1im m s− − +  with the corresponding 

transition probability ( )( ), 1m iP m s− , i ∈  . Thus 
the transition operator (Perron-Frobenius 
operator) mU  of all Markov chains ( ),n a n

s
∈

for any 

bounded complex-valued measurable function f  
on I , is given by  
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It was investigated in [6, 4, 5] the Perron-
Frobenius operator of the continued fraction 
transformation τm  under different probability 
measures on IB . The asymptotic behavior of this 
operator is given by 
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bounded variation. A variation ( )fν  for ( ), , ,IL I λ∞ B  
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ν
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details see [4, 5].  
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associated with the RSCC (7) has the transition 
operator U , with the transition probability function  
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A WIRSING TYPE APPROACH. Using a Wirsing-
type approach [7], in [6] it was obtained a better 
estimate of the convergence rate involved. The 
strategy was to restrict the domain of the Perron-
Frobenius operator of mτ  under its invariant 
measure mγ  to the Banach space of functions 
which have a continuous derivative on I . Define a 
linear operator ( ) ( )→:mV C I C I  by 

( )′= −m mV g U f , ( )g C I∈ , where f g′ = . Since 

mU  is a Markov operator, mV  is well defined. It is 

easy to check that ( ) ( )′ ′= −1 nn n
m mU f V f , n +∈  , 

( )1f C I∈ . In [6] Sebe proved that there are 
positive constants 1m mv w< <  and a real-valued 
function ( )m C Iϕ ∈  defined by  
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x I∈ , where the coefficient me  is chosen such 
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has a unique solution ma I∈ . For this unique 
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In Theorem 5.3 in [6] there are obtained upper 
and lower bounds of the convergence rate, 
respectively ( )nwO  and ( )nvO , which provide a 
near-optimal solution to the Gauss-Kuzmin-Lévy 
problem. Let µ  be a probability measure on IB  
such that µ λ . For any +∈ n , put 
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( ) ( )µ τ= <n n
m mF x x , ∈x I , where 0

mF  is the 

identity map. Let 

( ) ( )( ) ( )( )( ) ( )′= − + − + ∈0 01 1 1 ,mf x m x m x m F x x I

where ( ) µ
λ

′ =0 .dF
d

 Let us recall this theorem. 

THEOREM 1 (Near optimal solution to Gauss-

Kuzmin-Lévy) Let ( )∈0
mf C I  such that ( )′ >0 0mf  

and let µ  be a probability measure on IB  such 
that µ λ .  For any +∈ n  and ∈x I  we have  
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For example, for = 5m , the equation ( ) = 0mE x , 

with = =3 5 1.709975me , has as unique 
acceptable solution = = 0.428487ma a . For this 

value of a , the function ϕ
ϕ
m

m mV  attains its 

maximum equal to 3.349763 at x=0 and x=1 and 
has a minimum 

( ) ( )ϕ
ϕ

= =0.008438 3.319392m

m m

m a
V

. It follows 

that upper and lower bounds of the convergence 
rate are respectively ( )5

nwO  and ( )5
nvO  as 

→ ∞n , with >5 0.298528v  and <5 0.301259w .  
Obviously, the determination of the exact 
convergence rate remains an open question. We 
may derive it using the same strategy as in [3]. 
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