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Abstract

Dendritic Cells (DCs) are highly potent Antigen-Presenting Cells
(APCs) that have a key role in mediating tolerance or immunity
to self and non-self antigens. In their immature stage DCs are
highly phagocytic and undergo a maturation process after taking
up an antigen. DC maturation is characterized by activation of
mechanisms of antigen presentation, increased expression of Major
Histocompatibility Complex (MHC) class II and co-stimulatory
molecules in the plasma membrane, and secretion of cytokines
and chemokines. Despite the fact that the role of calcium (Ca?*) in
DC function has been clearly established, regulation of Ca?* signals
in these cells is not well known. However, recently it has been
demonstrated that functional capacitative Ca®* release-activated
Ca?" (CRAC), Transient Receptor Potential Melastatin-2(TRPM2)
and TRP Vanilloid- 1 (TRPV1) channels are critical for mouse DC
maturation and migration. Also, Ryanodine Receptor-1 (RyR1)
signaling activated by L-type Ca?* channel CaV1.2 cause rapid MHC-II
expression in the plasma membrane of DCs. The understanding of the
regulation of Ca?*signals in DCs is essential, to potentially modulate
DC functions in disease processes. Therefore, in this review, we
discuss recent studies on the expression and roles of Ca?* channels in
DC biology and function.
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Introduction

Dendritic cells (DCs) are Antigen-Presenting Cells (APCs) that
play a critical role in the regulation of both: innate and adaptive
immune responses. Initially, DCs were described by Ralph
Steinman in 1973 [1], as a different immune cell population in
the spleen and lymph nodes of mice. DCs are the only APCs that
have the ability to induce a primary immune response in naive T
lymphocytes, and therefore they are considered the most potent
APCs, influencing the type and quality of the response [2]. DCs
can exist in two main states: In a steady state immature Dendritic
Cells (iDCs) and fully mature DCs (mDCs). The distinction
between immature and mature DCs is based on phenotypic
markers and biological functions [3]. iDCs lack or have low levels
of several important accessory molecules that mediate binding
and stimulation of T cells, such as CD40, CD54, CD58, CD80, CD83
and CD86. They also express high levels of intracellular Major

Histocompatibility Complex (MHC) class I molecules. On the cell
surface, iDCs express high levels of chemokine receptors such as
CCR1, CCR5, and CCR6. Functionally, iDCs are characterized by
high endocytic activity and low T-cell stimulation potential [4-
7]. Phenotypic maturation is characterized by down-regulation
of the capacity to capture antigens and up regulation of antigen
processing and presentation functions. The mDCs phenotype
is characterized by expression of high levels on the surface of
MHC II, CCR7, CD40, CD54, CD80, CD83, CD86, CD58 and low
expression of CCR1, CCR5, CCR6 [4-7]. DCs are also able to interact
with other cells besides T cells, such as Natural Killer (NK) cells,
neutrophils, and epithelial cells [8-10]. Other critical roles of
DCs in immunity are the maintenance of B cell function, the
establishment of immunological memory, and the maintenance
of peripheral tolerance [11].

DC Subsets

DCs are widely distributed in all tissues, especially in those
that provide an environmental interface, such as the skin and
mucosal tissues. Similar to other immune cells, DCs are divided
in subsets, which have been shown to possess a differential
ontogeny, morphology, phenotype, transcriptional programs
and functions [12]. In mice, DCs can be subdivided into CD8*
CD11b* and CD8 CD11b* conventional DCs (cDCs), a lineage
originated from a myeloid progenitor in the bone marrow. cDCs
characteristically express high levels of MHC class II and the
integrin CD11c, but not B220 marker [13-16]. cDC subsets are
activated by microbial products through cell surface Toll- like
Receptors (TLRs) to produce inflammatory cytokines such as
interleukin (IL)-1, IL-6, IL-12, and tumor necrosis factor-alpha
(TNF-a) and they are specialized in the activation of CD8* and
CD4* T cells [17]. They have a predominant role in MHC- II
presentation and immunological tolerance, inducing clonal
deletion of auto reactive T cell or Treg differentiation [18,19].
CD8* CD11b* DCs are specialized in the induction of CD8* T cell
immunity. They are the main source of IL-12 and IL- 15 [18], two
cytokines involved in the differentiation of cytotoxic CD8" T cells
and have the ability to prime CD8" T cell responses in a cross-
presentation dependent mechanism [20]. CD8 CD11b*cDCs can
sense pathogens and migrate from non-lymphoid tissues to
regional lymph nodes charged with self and foreign antigens.
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Other cDCs subsets include migratory CD103* CD11b" DCs,
CD103" CD11b* DCs, and Langerhans Cells (LCs), which are
abundant in the intestinal mucosa and skin [21-24]. DCs can
also be originated from a lymphoid progenitor. Plasmacytoid
DCs (pDCs) are the prominent subset of this group, which
phenotypically express CD8a* CD11b- B220* DC SING* [25,26].
The other pDCs specific surface marker is the murine Siglec H
[27]. pDCs are a specialized population that have the ability to
produce very large amounts of interferon alpha/beta (IFN-
a/B) upon activation and a limited ability to prime naive CD4*
and CD8* T cells. They are an important DCs subset in viral and
anti-tumoral immunity [26]. Other DCs subsets include in vitro
or in vivo inflammatory or infection-derived DCs, which develop
from monocytes in response to stimulation such as Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF), IL-4 and
TNF-a [28]. A summary of DC subsets is showed in Table 1.

Early studies using Ca?* ionophores and Ca2* chelators
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have shown that Ca? signals may trigger maturation and
functional properties of DCs [29-31]. Intracellular Ca* ions
are crucial second messengers to initiate signaling pathways
for fundamental cellular functions, such as cell cycle, survival,
apoptosis, migration, and gene expression[32,33]. Regulation
of intracellular Ca** concentrations ([Ca®]; ~100 nM) involves
both Ca?* entry from the extracellular space and Ca* release from
intracellular stores, such as calciosomes, Endoplasmic Reticulum
(ER), lysosomes, or mitochondria, by specialized pumps and ion
channels [32-34]. Although [Ca®'] increase triggers signaling
pathways in the cell, the exquisite spatial and temporal
organization of Ca* oscillations, waves and sparks might also
provide a code for selective activation of signaling pathways and
their duration. For example, a short [Ca*], increase is observed
in lymphocytes during immunological synapse, release of lytic
granules, and cytotoxicity. In contrast, prolonged [Ca*'], increase

regulates cytokine production, cell differentiation, effector

Activation

Antigen presentation
Migration

Cytokines production

Figure 1: Calcium channels in DCs: Extracellular signals (chemokines, cytokines, microbial peptides, etc) are recognized by DCs by means of G pro-
tein-coupled receptors or receptor protein tyrosine kinases, activating the formation of 1,4,5-triphosphate (IP3) that in turn binds to IP3 receptors
in the ER and calciosomes, causing Ca?** release. Decrease in the luminal Ca?* in the ER is detected by the Stromal Interaction Molecule 1/2 (STIM1/2)
resulting in the activation of Capacitative Ca?** Release-Activated Ca?* (CRAC) channels, allowing Ca?* influx across the plasma membrane. Chemokines
also activate Transient Receptor Potential Melastatin- 2(TRPM2) channels in DC lysosomes. The Ca** signals activate transcription factors such as
Nuclear Factor of Activated T cells (NFAT) or Nuclear Factor-kB (NF-kB) for gene expression. TRPM4, a Ca** activated TRP channel that allows Na*
into the cell is expressed in the plasma membrane of DCs and indirectly regulates DC functions by decreasing the driving force for Ca?* entry through
CRAC channels. DCs also express TRP Vanilloid-1 (TRPV1) and Ryanodine receptor (RyR) channels but their functions are still not clear.
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Table 1: Dendritic cell subsets.
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B220 or Langerin
DC subsets CD8a CD103 CD205 CD11b CD45RA DC-SING (CD207) MHC class 11 CD11c
pDCs + - - + ++ - + +
CD8a+ DCs + low + + - - +/- ++ +++
CD8a-CD11b+ DCs - +/- + + - ND - ++ +++
CD103+ DCs - + ++ - - + ++ ++
Lung
‘ - + - + - - - + ++
Intestine
Langerhans cells - - ++ + - - ++ ++ ++
Monocyte-derived
. - - + - + - ++ ++
inflammatory DCs

functions, etc. The present review addresses the role of Ca*
channels in DC functions [33,35].

Ca?*Release-Activated Ca?* Channels (CRAC) in DC

The main mechanism for Ca* entry in immune cells, including
DCs, is the Store-Operated Ca?* Entry (SOCE). SOCE is activated
by Ca®* release from the intracellular stores and involves the
activation of Capacitative Ca?* Release-Activated Ca?* (CRAC)
channels in the plasma membrane (Figure 1) [34,36,37].
SOCE-mediated Ca** influx provides ions not only for signaling
purposes, but also for ER and calciosomes store refilling. SOCE
activation can be initiated by stimulation of G protein-coupled
receptors or stimulation of receptor protein tyrosine kinases
by external signals (cytokines, chemokines, bacterial peptides,
etc), leading to activation of Phospholipase C (PLC) that in turn
hydrolyzes phosphatidylinositol- 4,5- bisphosphate (PIP2) to
release Inositol-1,4,5-triphosphate (IP3) and Diacylglycerol
(DAG) [33,34].The subsequent binding of IP3 to IP3 receptors in
the ER and calciosomes causes a rapid and transient Ca? release,
raising the [Ca®'], (Figure 1). On the other hand, the decrease in
the luminal Ca?* in the ER is detected by the stromal interaction
molecule 1/2 (STIM1, STIM2; Ca* sensors; Figure 1), resulting
in its conformational change (oligomerization and aggregation)
and activation of CRAC channels [33,34]. CRAC channels, which
pore is formed by CRACM/Orai 1-3 proteins, then allow influx
of extracellular Ca?* across the plasma membrane (Figure 1).
CRAC are highly Ca*-selective, low conductance channels with
a characteristic inwardly rectifying current-voltage relationship
[33,34]. Interestingly, Orai and STIM proteins may have different
tissue distribution, selectivity and conductivity for Ca?.

As a result of [Ca*], increase several signaling pathways
and transcription factors are activated, such as the calmodulin-
calcineurin pathway that activate the Nuclear Factor of Activated
T cells (NFAT), the Ca?*- dependent kinase-calmodulin (CaMK)
pathway which activate the Cyclic-adenosine monophosphate-
Responsive Element Binding protein (CREB), and the nuclear
factor B (NFkB) pathway. Moreover, the DAG formed from PIP2
hydrolysis can activate the Protein kinase C pathway (PKC), and
Ras-mitogen-activated protein kinase, which ultimately activate
transcription factors such as Activating Protein-2 (AP-2) and
NF«B [33,34].

Although the presence of CRAC currents and its role in DC
maturation have previously been demonstrated in mouse DCs
[36], it has only recently been shown that Orai2 and STIM2
are most abundant in DCs [38]. Furthermore, recruitment of
Orai2 and STIM2 towards the immunological synapse has been
observed during antigen presentation of DC to T lymphocytes
[38]. Likewise, studies using CRAC blockers have shown that
this channel plays an important role in DC maturation, cytokine
production (TNF-a and IL-6) and chemotaxis [37]. DC maturation
can be triggered in vitro by increasing [Ca*"] by stimulating them
with peptidoglycan (PGN), CpG DNA, microbial products like
Lipopolysaccharide (LPS) [39,40], or ionophores [29-31]. It has
also been suggested that LPS, PGN and CpG induced activation
of PLC y2 [39], which in turn acts on PIP2 to produce IP3 that
leads to Ca?* release from intracellular stores; followed by
CRAC channel activation (reviewed in [34]) causing the nuclear
translocation of calcineurin-dependent NFAT factor and cytokine
production, such as IL-2 [33,41]. On other hand, DC maturation
with Ca% ionophoresis associated with NFkB activation, likely by
activating Calcium/Calmodulin-dependent Kinase II (CaMKII),
which inactivates NFkB-inhibiting molecule IkB similar to what
has been shown in T cells [42].

In addition, DC chemotaxis depends on Ca?* influx. DC
chemotactic response to chemokines, including (C-X-C motif)
ligand 12 (CXCL12) and (C-C motif) ligand 21 (CCL21), results
in PLC activation, IP3 production, Ca®* release from intracellular
stores, and subsequent activation of CRAC channels and Ca?*
influx [31,40,43,44].

Transient Receptor Potential (TRP) Channel in
DC

Our previous study has shown that lysosomal Ca?* release
through TRP Melastatin-2 (TRPM2) channel, the second member
of the TRP melastatin-related channel family, plays an important
role in DC maturation and chemotaxis (Figure 1) [40]. TRPM2
channel is expressed in DC only in lysosomes [40]. This channel is
synergically activated by Adenosine Diphosphate Ribose (ADPR)
and Ca?, and allows entry of sodium (Na*), Ca*, potassium (K*)
and caesium (Cs*) into the cytosol. In addition to Ca*, cyclic ADPR
(cADPR), hydrogen peroxide (H,0,) and Nicotinic acid Adenine
Dinucleotide Phosphate (NAADP) may directly or indirectly
facilitate TRPM2 gating by ADPR [45]. DCs may produce ADPR by
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means of CD38 activity, an ectoenzyme that use (3-Nicotinamide
Adenine Dinucleotide ($-NAD*) as a substrate to catalyse the
production of ADPR, cADPR, and NAADP, and by activation of
the Poly(ADPR)-Polymerase/Poly(ADP-ribose) Glycohydrolase
(PARP/PARG) pathway during DNA repair, replication and
transcription [45]. DCs lacking TRPM2 channels express reduced
levels of co stimulatory molecules, such as CD80, CD86, MHC-II
and CD83, in the plasma membrane when they are stimulated
with TNF-a and CpG DNA, than TRPM2 expressing-DCs [40]. They
also show reduced Ca* signals in response to CXCL12 and CCL21,
affecting the chemotaxis response towards these chemokines
[40]. However, the mechanisms that link CD38 and PARP/PARG
pathways to TRPM2 and to chemokine receptors are still not
clearly understood.

DCs also express TRP Vanilloid-1 (TRPV1) protein in their
plasma membrane, another non-selective Ca** channel of the TRP
family, which is activated by capsaicin. But, there is controversial
data on the expression and function of this channel in DCs. Earlier
studies from Basu and Srivastava showed that extracellular Ca*
influx via TRPV1 activation induces mouse DC maturation and
provokes increase in the expression level of MHC class II and
CD86 on the surface [46]. Conversely, O’Connell P] et al. [47]
did not detect TRPV1 transcripts and TRPV1 currents in bone
marrow derived-mouse DCs. A recent study by Téth Bl et al. [48]
shows molecular and functional expression of TRPV1 channels
in monocyte derived-human DCs. Although DC stimulation with
capsaicin induces Ca?* mobilization, this reduces the expression
level of maturation markers in DCs, such as CD83 and CCR7 [48].
On the other hand, TRPM4, a Ca*-activated TRP channel that
allows Na* into the cell, indirectly regulates DC migration but not
maturation by decreasing the driving force for Ca?* entry through
CRAC channels [43].

Ryanodine and Purinergic Receptors in DC

Ryanodine Receptor-1 (RyR1), a channel expressed in
intracellular Ca?* stores, is also expressed in DCs [49,50]. RyR1
signaling coupled with L-type Ca®* channel CaV1.2, which has
been also detected in DCs, cause rapid MHC class II expression
in the plasma membrane of DCs [50]. Interestingly, RyRs are also
activated by cADPR and NAADP*, and might contribute through
these pathways to DC maturation [44,51,52]. Finally, DCs express
Purinergic Receptors (P2Rs), P2X (ligand-gated ion channels) and
P2Y (G-protein coupled receptors) on their surface, such as P2X1,
P2X4, and P2X7,and P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y14,
respectively. DC stimulation with Adenosine Triphosphate
(ATP), a Damage-Associated Molecular Pattern (DAMP) molecule
released by injured cells during inflammation and necrosis, or
UTP results in characteristic Ca** signaling associated to P2X or
P2Y, mainly P2X7 [53-57].

Concluding Remarks

Not much is known about Ca? channel expression and
Ca?* regulation in DCs. Recent studies have addressed the role
of CRAC, TRPV1, TRPM2, RyR1 and CaV1.2 channels in DC
maturation and migration. However, the mechanisms that lead
to activation of these channels during DC function are not well
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understood. Moreover, future studies still need to address which
channels regulate Ca?* signals during antigen presentation,
immune synapse, apoptosis, and other DC functions. The meaning
of Ca?* oscillations, frequency and patterns are unknown, which
might play an important role in establishing and/or maintaining
immunological tolerance or immunity to self and non-self
antigens.
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