

Application of Fisher Discriminant Analysis in Safety Evaluation

ZHU XiaoZhen^{1, a}

¹Wuhan University of Technology, Wuhan, China

^astartlife321@163.com

Keywords: Fisher discriminant analysis, Bayes discriminantanalysis, safety evaluation.

Abstract. The multivariate statistical method of Fisher discriminant analysis is applied to safety evaluation, through the analysis of the original data, the assessment process, built up to reflect the evaluated object security status of evaluation function model, so as to simplify the subsequent similar evaluation target workload. The two mine in south of a mining enterprise subordinate to the environmental conditions in six integrated index evaluation, comprehensive index function model is established, finally, the Fisher discrimination obtained results with Bayesian discriminant obtained results, the correctness of the model is verified that the model reliability is high, and simple and practical.

Introduction

Discriminant analysis is in the known research object is divided into several types and has achieved a number of various types of a number of known samples of observations based on, according to certain criteria and establish discriminant and samples of unknown type were discriminant analysis.^[1]Fisher discriminant is used for safety evaluation, the original evaluation object to establish a discriminant function, in order to simplify the subsequent similar evaluation, to reduce the workload, to achieve the purpose of rapid safety evaluation of similar issues. In order to verify the accuracy of the discriminant function, compared with the results of Bayesian discriminant, the results are reliable and practical.

Fisher Discriminant Principle

Discriminant analysis is refers to the pre-established criteria and establish discriminant function classification of known, unknown classification of individual observations are substituted into the corresponding variables. According to the criteria (such as function value is greater than a certain value) to classify an unknown individual should belong to the known classification in which a method of judging the.^[2]

ØIETI

Fisher discriminant basic idea: in order to overcome due to the high dimension caused by the "Curse of dimensionality", high-dimensional data points are projected to low dimensional space (such as one-dimensional, which can achieve data intensive. Fisher discriminant analysis method is based on the number of existing observations of the number of features (discriminant factor) to identify new samples, to determine the properties of the forecast analysis method.^[3]Because of the discrimination method of the original data distribution has no special requirements, so it is very suitable to do not know in advance the distribution of sample, and can consider the various factors affecting the comprehensive judgment.

Multi overall Fisher discriminantfunction

Assume that there are kgeneral including $G_1, \ldots, G_k, n_1, n_2, \ldots n_k$ are the sample numbers.

 $x_{\alpha}^{(i)} = (x_{\alpha 1}^{(i)}, \dots, x_{\alpha p}^{(i)})$ is an observation vector of second sample in first total. Model of discriminant function is $y(X) = c^{T}X$ (when there are k in general there are (k - 1) discriminant functions). $c = (c_{1}, c_{2}, \dots, c_{p})^{T}, x = (x_{1}, x_{2}, \dots, x_{p}), X^{(i)} = (x_{1}^{(i)}, x_{2}^{(i)}, \dots, x_{p}), x_{p}$

$$\mathbf{X} = \begin{pmatrix} x_1, & x_2, & \cdots, & x_p \end{pmatrix}.$$

$$\mathbf{n} = n_1 + n_2 + \dots + n_k. \tag{1}$$

$$y^{(i)} = c^T X^{(i)} (i = 1, 2, \dots, k), y = c^T X$$
 (2)

In more general conditions, sum of squares between $groupsQ_1 = c^TBc$, between Group Sum of Squares $Q_2 = c^TLc$. Formula (3) and formula (4) respectively represent the difference between groups and within group difference.

$$B = \sum_{i=1}^{k} n_i (X^{(i)} - X) (X^{(i)} - X)^2$$
(3)

$$\mathbf{L} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(X_j^{(i)} - X^{(i)} \right) \left(X_j^{(i)} - X^{(i)} \right)^T$$
(4)

Fisher criterion is to select the coefficient vector c, so that the objective function $\lambda(c) = \frac{Q_1}{Q_2}$ to achieve maximum value. For the sake of λ maximum value, according to the necessary condition for the

existence of an extremal,so $\frac{\partial \lambda}{\partial c} = 0$, Bc = λ Lc, λ and c is exactly the eigenvector corresponding generalized characteristics of B, L matrix and the root.

$$(B - \lambda L)c = 0 \to (L^{-1}B - \lambda E) = 0$$
⁽⁵⁾

The largest eigenvalue of $L^{-1}B$ is obtained from the root λ_1 and the corresponding feature vector c_1 , then the first discriminant function is $y_1 = c_1^T X = \sum_{j=1}^P c_j x_j$. In the same way, other discriminant function $y_t = c_t^T X$ [$t = 1, 2, \dots, r(r \le p)$], including non-zero characteristic root

 $\lambda_1 \ge \lambda_2 \ge$, ..., λ_r , corresponding to the characteristic vector of c_1 , c_2 , ..., $c_r (r \le p)$.

The greater the characteristic function is, the stronger the ability of discriminant function is stronger. Discriminant function from $y_1 to y_t$ discriminant ability gradually weakened, the cumulative discriminant ability of the former m discriminant function is the formula (6).

$$sp_m = \sum_{l=1}^m pl = \frac{\sum_{l=1}^m \lambda_l}{\sum_{i=1}^p \lambda_i} (l = 1, \dots, p)$$
 (6)

After the discriminant function is established, the classification of the test samples should be treated. The first discriminant function of the discriminant ability to a certain extent, can be calculated for each type of $y_1.y_1^{(1)}$, $y_1^{(2)}$, ..., $y_1^{(k)}$ from re ranking as $y_{(1)} \le y_{(2)} \le \dots \le y_{(k)}$, between G_{ij} and G_{ij+1} get the demarcation point according to the number of two adjacent weighted average as formula (7). If the sample xmakes $d_{i-1, i} \le y(x) \le d_i$, $i+1, x \in G_i$.^[4]

$$d_{i, i+1} = \frac{n_i y_{(i)} + n_i y_{(i+1)}}{n_i + n_i} (i = 1, \dots, k-1)$$
(7)

Two general Fisher discriminant

N is a d dimension samples, x_1 , x_2 , ..., x_N , of which N_1 belonged to the ω_1 sample as a subset of X_1, N_2 belong to the sample of ω_2 , recorded as X_2 . All kinds of sample mean vector, such as the formula (8). In the sample class, the dispersion matrix S_i and the total class scatter matrix S_{ω} are (9) and (10) respectively. In addition, scatter matrix between samples is expressed by the formula (11).^[5]

$$\mu_i = \frac{1}{N_i} \sum_{x \in X_i} x , \quad i = 1, \quad 2$$
(8)

$$S_i = \sum_{x \in X_1} (x - \mu_i) (x - \mu_i)^T$$
, $i = 1, 2$ (9)

IETI Transactions on Computers, 2016, Volume 2, Issue 2, 73-81. <u>http://www.ieti.net/tc</u> An International Open Access Journal

$$S_{\omega} = S_1 + S_2 \tag{10}$$

$$S_b = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T \tag{11}$$

Establish discriminant, and determine the critical value of y_0 .

$$\mathbf{y} = (\mu_1 - \mu_2)^T S_w^{-1} \mathbf{x} \tag{12}$$

$$y_0 = \frac{n_1 \bar{y}^{(1)} + n_2 \bar{y}^{(2)}}{n_1 + n_2} \tag{13}$$

Criteria for: given a new data $\mathbf{x} = (x_1, x_2, \dots, x_p)^T$ to the set of the discriminant function to get the results labeled as y. If $\mathbf{y} > y_0$, $\mathbf{x} \in G_1$, otherwise, $\mathbf{x} \in G_2$. If $\overline{y}^{(1)} < \overline{y}^{(2)}$, it is the criteria that $\mathbf{y} > y_0$, $\mathbf{x} \in G_2$, otherwise $\mathbf{x} \in G_1$.^[6]

Constructing Evaluation Function and Discriminant Analysis

A Southern Mining Group, carries out the evaluation of the factors of its subordinate enterprises of the two mine environmental conditions, according to previous experience and the characteristics of coal mine in the south, take the evaluation factors: X_1 ,roadway passing rate(%); X_2 , dust concentration (mg/m^3); x 3, ambient temperature (°C); x 4, wind speed (m/s); x 5, roadway minimum pedestrian width (m); x 6, roadway minimum pedestrian height (m).The original data (using the scoring method) and the index system of the 6 comprehensive indexes were evaluated in the table 1~ table 8.^[7]

Table1Pass Rate of roadway (%)

Index	>95	90~95	85~90	80~85	<80
Level	5.00	4.00	3.00	2.00	1.00

rablezDust concentration(<i>mg/m)</i>							
Index	<4	4~6	6~8	8~10	>10		
Level	5.00	4.00	3.00	2.00	1.00		

Table2Dust Concentration (mg/m^3)

Index	18~22	22~24	24~26	26~28	>28
Level	5.00	4.00	3.00	2.00	1.00
		Table 4 Wine	d Speed (m/s)		
Index	2.5~3.5	2~2.5	1.5~2	1.5~1	<1
Level	5.00	4.00	3.00	2.00	1.00
Index	Table 5Mir	nimum Pedestr 1.1~1.2	ian Width of ro 1~1.1	oadway (m) 0.8~1.0	<0.8
Index		nimum Pedestr $\frac{1}{1}$		• • •	<0.8
Level	5.00	4.00	3.00	2.00	1.00
Index	Table >1.8	6 Minimum P	edestrian Heigl	$\frac{1.2 - 1.4}{1.2 - 1.4}$	<1.2
Level	5.00	4.00	3.00	2.00	1.00

Table 3 Ambient Temperature(°C)

Level12345ContentUnsafeLess secureGeneral
securityMore secureSafety

Table 8Raw Data

Data	Grube Number	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	E(*)
	1	94.87	4.03	23.1	2.01	1.17	1.79	4
	2	93.15	5.35	22.7	2.32	1.19	1.72	4

3	91.57	4.89	22.2	2.21	1.13	1.68	4
4	90.78	5.87	23.8	2.48	1.10	1.60	4
5	91.45	4.55	22.9	2.23	1.14	1.67	4
6	92.67	4.70	23.0	2.42	1.13	1.70	4
7	85.10	6.87	25.2	1.63	1.09	1.59	3
8	86.54	7.91	24.0	1.75	1.00	1.41	3
9	87.69	6.17	25.9	1.98	1.05	1.47	3
10	89.34	7.32	24.3	1.55	1.07	1.52	3
11	87.77	7.12	25.1	1.67	1.03	1.46	3
12	86.67	7.23	25.3	1.72	1.05	1.48	3

Using two general Fisher discriminant model and principle, the calculation is as follows:

(1) Calculate the two kinds of security evaluation level mean and covariance matrix

$$\mu_1 = (92.415 \quad 4.898 \quad 22.95 \quad 2.278 \quad 1.143 \quad 1.693)^T \tag{14}$$

$$\mu_2 = (87.185 \quad 7.103 \quad 24.967 \quad 1.717 \quad 1.048 \quad 1.488)^T \tag{15}$$

$$A = \begin{pmatrix} 2.455 & -0.868 & 0.15 & 2.01 & 0.027 & 0.097 \\ 0.735 & 0.452 & -0.25 & 2.23 & 0.047 & 0.027 \\ -0.845 & -0.008 & -0.75 & 2.21 & -0.013 & -0.013 \\ -1.635 & 0.972 & 0.85 & 2.48 & -0.043 & -0.093 \\ -0.965 & -0.348 & -0.05 & 2.23 & -0.003 & -0.023 \\ 0.255 & -0.198 & 0.05 & 2.42 & -0.013 & 0.007 \end{pmatrix}$$
(16)

$$B = \begin{pmatrix} -2.085 & -0.233 & 0.233 & -0.087 & 0.042 & 0.102 \\ -0.645 & 0.807 & -0.967 & 0.033 & -0.048 & -0.078 \\ 0.505 & -0.933 & 0.933 & 0.263 & 0.002 & -0.018 \\ 2.155 & 0.217 & -0.667 & -0.167 & 0.022 & 0.032 \\ 0.585 & 0.017 & 0.133 & -0.047 & -0.018 & -0.028 \\ -0.515 & 0.127 & 0.333 & 0.003 & 0.002 & -0.008 \end{pmatrix}$$
(17)

$$S_{1} = \begin{pmatrix} 6.885 & 1.367 & -2.163 & -4.794 & -2.064 & 0.768 \\ 1.367 & 0.812 & -0.441 & -0.971 & -0.857 & 0.091 \\ -2.163 & -0.441 & 1.282 & 0.724 & 0.859 & -0.261 \\ -4.794 & -0.971 & 0.724 & 4.392 & 1.190 & -0.538 \\ -2.064 & -0.857 & 0.859 & 1.190 & 1.058 & -0.187 \\ 0.768 & 0.091 & -0.261 & -0.538 & -0.187 & 0.127 \end{pmatrix}$$
(18)

$$S_{2} = \begin{pmatrix} 4.476 & 0.919 & -0.643 & -4.680 & -1.192 & 1.121 \\ 0.919 & 2.012 & -1.971 & -0.579 & -0.491 & 0.113 \\ -0.643 & -1.971 & 2.006 & 0.219 & 0.392 & -0.067 \\ -4.680 & -0.579 & 0.219 & 5.165 & 1.182 & -1.305 \\ -1.192 & -0.491 & 0.392 & 1.182 & 0.364 & -0.255 \\ 1.121 & 0.113 & -0.067 & -1.305 & -0.255 & 0.392 \end{pmatrix}$$
(19)

$$S_{\omega} = \begin{pmatrix} 11.360 & 2.286 & -2.806 & -9.475 & -3.256 & 1.888\\ 2.286 & 2.824 & -2.412 & -1.550 & -1.348 & 0.204\\ -2.806 & -2.412 & 3.347 & 0.943 & 1.251 & -0.328\\ -9.475 & -1.550 & 0.943 & 9.557 & 2.372 & -1.843\\ -3.256 & -1.348 & 1.251 & 2.372 & 1.421 & -0.441\\ 1.888 & 0.204 & -0.328 & -1.843 & -0.441 & 0.519 \end{pmatrix}$$
(20)

	1 1 1 0 0 1 7 0 0	44021.739 43928.994	44010 074	42055 002	44042 447	42002 104
c -1	44021.739 44104.331	44010.874	44093.650	44038.471	44125.209	43965.392
$S_{\omega}^{-1} =$	44049.830	43955.903	44038.471	43984.209	44070.546	43911.300
		44043.447				
		43883.104				
						(21)

(2) Obtaining the coefficients of Fisher discriminant function by using $y = (\mu_1 - \mu_2)^T S_{\omega}^{-1} x$. The coefficients are c_1 , c_2 , c_3 , c_4 , c_5 , c_6 , then we can get

$$y = 82532.747x_1 + 82351.713x_2 + 82506.956x_3 + 82407.810x_4 + 82571.872x_5 + 82265.936x_6$$

See Table 9 for the discrimination data.

Table 9Grubeto	be evaluated
----------------	--------------

Samples to be	Grube Number	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Evaluation Result
evaluated	1	85.54	7.12	25.3	1.67	1.15	1.37	
evaluated	2	91.57	5.39	23.1	2.11	1.13	1.58	

(3) According to the data of two not evaluated, determine the critical value of y_0 and classify samples.

$$\bar{y}^{(1)} = 10078904.399, \bar{y}^{(2)} = 10304476.942, y_0 = \frac{n_1 \bar{y}^{(1)} + n_2 \bar{y}^{(2)}}{n_1 + n_2} = 10191690.670$$

Discriminant results are shown in Table 10.

Table 10 DiscriminantResult

Number	у	Result
1	10078904.399	3
2	10304476.942	4

Comparative Analysis

The evaluation model is established by using Bayesian discriminant analysis to evaluate the 2 mines:

$$Z_4(X) = \ln(1/5) - 1918.4435 + 23.836X_1 + 67.68X_2 + 16.116X_3 + 67.274X_4 + 700.09X_5$$
$$- 21.12X_6$$

$$Z_3(X) = \ln(1/5) - 1869.1269 + 22.944X_1 + 70.054X_2 + 18.21X_3 + 60.741X_4 + 688.72X_5$$
$$- 26.144X_6$$

The evaluation results are shown in Table 11.

Samples to be	Grube Number	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Evaluation Result
	1	85.54	7.12	25.3	1.67	1.15	1.37	3
evaluated	2	91.57	5.39	23.1	2.11	1.13	1.58	4

Table 11 BayesDiscriminant Results

The obtained results were compared with theresults of Bayesian discriminant, the results were consistent, and the evaluation model established by Fischer discriminant function was safe and reliable.

In summary,Fisher discriminant method is based on the more rigorous statistical classification theory, when the training samples for a long time, it is expected to achieve more accurate classification results.^[8]Analysis to establish the evaluation function model is suitable for the use of

Fisher discriminant method is simple and reliable. In the safety assessment of the application of Fisher discriminant analysis not only simplify the problem, can also be used for simple safety evaluation, for the establishment of different characteristics, regional characteristics of different evaluation function is different, in use should be closely combined with the actual situation, after the establishment of the model should be continuously updated optimization model, makes the results more reliable and effective.

References

[1]Xiu Lin, mathematical statistics, cedar, et al. Multivariate statistical analysis [M]. China StatisticalPublishing House, 1999

[2]YuanZhifa, Zhou Jing Yu. Multivariate statistical analysis [M]. Beijing: Science Press, 2002:216-230

[3]Dong Long Jun, Li Xibing, Bai Yunfei. A fisher discriminant analysis model for classifying of roof coal cavability of steep seam[J].Journal of China coal society, 2009, 34 (1): 58-63.

[4]MiuJianbo, Xu open. Cluster analysis and discriminant analysis in safety evaluation of the comprehensive application of [J]. industrial safety and environmental protection, 2007, 33 (9): 16-18.
[5]Pan Jinsong. Fisher's discriminant analysis and application of [J]. mathematics in practice and understanding, 2013,05:155-162.

[6]The research and application of Zhao Lina.Fisher discriminant method [D]. Tutor: Xu Wenke. Northeast Forestry University, 2013

[7]Lei Jing, Shen Feimin.Bayes discriminant analysis using the [J]. theory of industrial safety and environmental protection in safety evaluation, 2004, 30 (5): 39-40.

[8]Shi Xiuzhi, Zhou Jian. Evaluation of safety and reliability of mine ventilation system using Fisher discriminant method [J]. Journal of mining and safety engineering, 2011, 27 (4): 562-567.