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Abstract 

 
Subgraphs that occur in complex networks with significantly higher 
frequency than those in randomized networks are called Network Motifs. 
Such subgraphs are the basic building blocks of complex networks. They 
often play important roles on functioning of those networks. Finding 
network motifs is a computationally challenging problem. Finding network 
motifs often requires solving subgraph isomorphism problem which is NP-
complete. Instead of this, several methods apply similarity queries on 
biological networks to find similar patterns that exist frequently according 
to given threshold values. As these networks are stored in databases, we 
need efficient methods for accessing and querying these databases. As these 
networks are generally represented as graphs in theory, several graph 
indexing methods are developed for answering queries on them. This paper 
summarizes network motifs and indexing techniques in biological networks. 
 

BİYOLOJ İK AĞLARDA A Ğ MOT İFLERİ VE 
İNDEKSLEME TEKN İKLER İ 

 

Özetçe 
 

Karmaşık ağlarda rastgele oluşturulmuş ağlara oranda önemli derece daha 
fazla sıklıkta bulunan alt ağlar ağ motifleri olarak adlandırılır. Söz konusu 
alt ağlar ilgili karmaşık ağın temel yapı taşlarıdır. Bunlar genellikle ait 
oldukları karmaşık ağlarda önemli roller oynarlar. Ağ motiflerinin 
bilgisayar vasıtasıyla tespit edilmesi zor bir problemdir. Ağ motiflerinin 
tespiti genellikle NP-complete zorluk derecesine sahip alt ağ izomorfizm 
probleminin çözümünü gerektirir. Bunun yerine, çeşitli yöntemler, biyolojik 
ağlarda tanımlı oranlardan daha fazla sıklıkta bulunan benzer yapıları 
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tespit etmek için benzerlik sorguları uygularlar. Bu ağlar veritabanlarında 
saklanıldığından, bu veritabanlarına hızlıca erişebilecek ve veritabanını 
sorgulayabilecek etkili yöntemlere ihtiyaç duymaktayız. Söz konusu ağlar 
teorik olarak genelde çizge yapısında tanımlandığı için bu sorguları 
cevaplamaya yardımcı olacak çeşitli çizge indeksleme teknikleri 
geliştirilmi ştir. Bu çalışmada, biyolojik ağlardaki ağ motifleri ve 
indeksleme teknikleri hakkında özet bilgi sunulmuştur. 
 
Keywords: Biological Networks, Network Motif, Graph Indexing  
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 1.  INTRODUCTION  

One of the fundamental goals of molecular biology is to understand 
the biological processes that are the driving forces behind organisms’ 
functions. Recent advances in high throughput technology have resulted in 
an explosion of bioinformatics data to achieve this goal. Complete genome 
sequences of more than 100 organisms are now determined. Datasets 
containing DNA [1], proteins [2], comparative genomics data [3] and 
networks [4] are widely available. 

 
Out of different bioinformatics data, biological networks constitute 

one of the most important classes. While most bioinformatics data, such as 
DNA and protein sequences and protein structures, show the contents and 
structure of individual bio-chemical entities, biological networks show how 
different bio-chemical entities interact with each other to perform vital 
functions. Understanding these interactions is critical as they can reveal 
significant information that is impossible or very difficult to achieve by 
analyzing individual entities that make up these interactions. 

 
Numerous applications follow an interaction pattern that resembles 

biological networks. Wireless networks, sensor networks, homeland 
security, defense analysis, operations management are just a few examples 
to these applications. A critical common property of these applications is 
that although the individual entities may have specific function, they serve a 
role in the entire network by communicating with other entities. Thus, 
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eliminating or altering a single entity does not only affect the function of 
that entity, it may affect the function of other entities. 

 
In order to find sub-networks with similar communication patterns in 

two networks, it is not sufficient to look at the identities of the nodes and the 
topologies of the matching sub-networks. This is because even when the 
two sub-networks are identical, their connection to the rest of their networks 
contains valuable information such as how fast the information disseminates 
and how robust the sub-network is to alterations. Therefore, role of this sub-
network in the entire network has to be considered in order to obtain an 
accurate understanding of its function. 

 
A fundamental question on networks is identification of similarities 

between them. Finding similarities between two networks requires 
computing a mapping of the interacting entities of the input networks. The 
graph/subgraph isomorphism problems can be reduced to global/local 
network alignment problems in polynomial time. Given that the graph and 
subgraph isomorphism problems are GI-complete and NP-complete 
respectively [5], network alignment problem is GI and NP complete, too. A 
method designed for aligning two networks must handle the following 
difficulties: 

 
* Each sub-network as well as the entire network shows a process. 

Therefore, network comparison cannot be considered as a mere graph 
alignment. The alignment should reflect parts of networks that have similar 
impacts on their organisms. In addition to focusing on the topological 
similarities and the similarities between the bio-chemical contents of the 
entities, the method should also consider the impact of the sub-networks on 
the alignment. 

 
* The method should be able to search the similarities between a 

query network and a database of potentially large number of networks. A 
trivial solution is to sequentially align the query network to all the database 
networks one by one. This, however, is not practical as the comparison of 
even a pair of networks is a costly operation. 
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* The method should not only align two networks in which the 

interacting entities are compatible with each other (such as protein 
interaction networks - all the entities are proteins), but also can align 
networks having different types of entities (such as metabolic networks 
where enzymes interact through reactions and compounds). 
 
 2.  NETWORK MOTIFS 
 
 Biology of a living cell involves many intricate networks of 
interdependent events and interactions among biomolecules. Examples of 
such networks include transcriptional or gene regulation networks, protein–
protein interaction (PPI) networks, metabolic pathways, neural networks, 
etc. In 2002, Milo et al. [7] showed that networks from diverse fields 
(biological and non-biological) contain several small topological patterns 
that are so frequent that it is unlikely to occur by chance. Different networks 
tend to have different sets of such frequent local structures. These patterns, 
referred to as ‘network motifs’, are recognized as ‘the simple building 
blocks of complex networks’ [7]. The discovery spawned a multitude of 
research efforts in the past decade and the area is fertile to this day. Network 
motifs are also studied in such other networks as the electronic circuits and 
power distribution networks, ecological networks (food web), software 
engineering diagrams, molecular structures, World Wide Web (the Internet), 
and social networks, etc. 
 Biologists are interested in knowing whether the functional behavior 
of a motif can be predicted from its structural topology as well as whether 
the abundance in appearance of such a motif necessarily implies biological 
significance. Some studies also investigated how network motifs might be 
shaped by evolution. For example, when a network is placed under fixed 
environmental conditions, evolution optimizes the network topology for 
some specific functions, and no motifs form in this process [8]. But, when 
the same network is placed under varying environmental conditions where 
each condition demands different functional behavior from the network, 
several network motifs emerge. This happens since motifs, although having 
the same topology, are able to perform different tasks in different input 
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conditions. Yet other studies have argued that overabundance of a network 
substructure might be a secondary result of some other phenomena [9], or 
that network motifs might not have evolutionary traces [10]. 
 
 All in all, the ability to computationally determine motifs in a given 
network is an essential step in furthering these research efforts. Given a 
network G and a set of random graphs, we need to identify all k-node 
(equivalently, size-k, throughout the article) sub-graphs that are statistically 
overrepresented in G. However, one of the difficulties is that determining if 
two graphs are topologically equivalent requires ‘graph isomorphism’ 
checking, a highly computation-intensive problem with no known 
polynomial-time solution. This problem is compounded by the fact that the 
number of sub-graphs of a given size in a network is exponential in both the 
network size and the sub-graph size. Moreover, real-life networks tend to be 
large and dense in many cases. The computations also need to be carried out 
on a large number of random graphs, typically ranging from hundreds to one 
thousand. By far, even the best-known algorithms cannot find motifs with 
more than 10 nodes in a large, dense network within a practical time frame 
without doing heuristics [11].  
 
 Motif finding algorithms use various strategies in order to overcome 
these difficulties. One of the notable strategies is the use of ‘sub-graph 
sampling’ through the target network instead of ‘exact enumeration’ to 
acquire an acceptable turn-around time. Another strategy is to generate all 
possible sub-graphs of a fixed size, and for each sub-graph count its 
frequency in the target network. The latter strategy, called ‘motif-centric 
approach’, can lead to reduction in isomorphism-related computations when 
coupled with other strategies, namely ‘symmetry breaking’ and ‘mapping’ 
[12]. However, this strategy suffers when looking for larger motifs as the 
number of sub-graphs of a given size grows exponentially [13]. 

 
 3.  STRATEGIES FOR MOTIF-FINDING ALGORITHMS 
 

Tasks involved in finding network motifs typically include the 
definition of frequency concepts, random graph generation, determining 
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statistical significance of the frequency of a sub-graph and deciding sub-
graph isomorphism, etc. 

 
The frequency of a subgraph H in the input graph G is the number of 

different occurrences of H in G. Those different occurrences may have 
common vertices and edges according to different definitions of frequency. 
As an example, three different types of frequency definitions are given in 
[16]. In these definitions, overlap of vertices and edges are handled 
differently. In the first one, overlap of both vertices and edges in different 
subgraph matches are allowed and every match is added into frequency 
value. The second frequency definition only allows vertex overlaps and 
counts edge-disjoint matches. Finally, the third one disallows overlapping in 
different subgraph matches. 

 
According to different types of graphs (directed or undirected, 

labeled or unlabelled), various isomorphism concepts can be described, but 
generally, two graphs G and H are called as isomorphic if there is a mapping 
between their vertices such that each edge in G can be mapped to an edge in 
H and vice versa. Checking whether two graphs are isomorphic is a NP 
problem. On the other hand, a generalized version of this problem, namely 
subgraph isomorphism problem, is related with two graphs and checks 
whether one graph contains a subgraph which is isomorphic to other graph. 
This problem is NP-complete. Nevertheless, there exist some techniques 
such as canonical labeling [17] to solve this problem for small subgraphs in 
practice. In addition to this, canonical labeling was used for efficient 
pruning schemes, with respect to graph isomorphism, in some of the 
techniques presented in [18, 19]. 

 
Network motifs are not only recurrent structures in the given 

network, but also they have statistical significance with respect to some 
threshold values. These values can be described according to some concepts 
such as frequency, uniqueness, P-value and z-score. A subgraph is frequent 
if it occurs more than a threshold (such as F) in the given network. 
Additionally, a subgraph is unique if its frequency in the given network is 
higher than (at least a certain amount) its mean frequency in the randomized 



Network Motifs and Indexing Techniques on Biological Networks 

93 

graphs. The P-value is the probability of whether the frequency of the 
subgraph in a randomized network is greater than or equal to its frequency 
in the given network. That subgraph is called as statistically significant if P-
value is less than a threshold (depends on the network). The final concept z-
score has almost an opposite meaning according to P-value and represents 
the difference between the frequency in the given network and the mean 
frequency in the randomized network. 

 
There are several random graph generation methods in the literature, 

but the important point is that the randomized graphs must have similar 
properties with the input network such as degree distribution of vertices and 
average path length. In this point of view, the most common random graph 
generation method used in network motif discovery is edge-switching 
method. It randomly selects two edges and exchanges the target vertices of 
each other so that the number of vertices and edges and the degree 
distribution of the vertices are preserved. There exist also other techniques 
such as ‘Erdos–Re´nyi’ (ER), ‘Baraba´si–Albert’ (BA) and ‘Matching 
Method’ for random graph generation. 

 
According to above-mentioned concept and definitions, network 

motif discovery problem can be described as follows: Given a network G 
(represented as a graph), motif size k, frequency threshold F, number of 
random networks N and P-value P, discover all subgraphs in G that are 
consistent with the given thresholds. 

The initial algorithms perform exhaustive search for discovering 
network motifs in the input networks. Milo not only defined the term 
“network motif” but also proposed an exhaustive search algorithm in his 
study [7]. However, exhaustive search has an exponential computational 
time with respect to motif or network size and it is infeasible to discover 
large size motifs by using only this approach. 

 
Several strategies were developed to solve different parts of the 

network motif discovery problem. One of the problems is the exponential 
search space size with respect to motif or network size. A simple way of 
generating a size-k subgraph is to start with a size-2 (single edge) subgraph 
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and extend it with one vertex each time. A search tree, called as pattern 
growth tree, can represent this process. In this tree structure, each node 
represents a subgraph and its children nodes represent subgraphs that are 
extended by the parent subgraph by one vertex. In other words, the parent 
subgraph is actually a subgraph of its children subgraphs. There are several 
benefits of this tree structure if it is generated properly. First of all the 
pattern growth tree generated for size k-1 subgraphs in the previous 
executions can be used for searching size-k subgraphs which decreases the 
computational cost. Secondly, each subgraph can be generated only once to 
avoid redundant computation. Finally, downward closure property of 
frequency can be used to prune some parts of the tree for efficiency. 

 
Another problem is the exponential computational time with respect 

to enumeration of all occurrences of a size-k subgraph on the input network 
for large k values. One method to handle this problem is processing only 
random sample subgraphs in the input network with using a probabilistic 
approach. This method is called as sampling strategy and used by a couple 
of algorithms in the literature. Two versions of sampling method, namely 
edge sampling and node sampling, are used in the popular network 
discovery systems. 

 
 4.  INDEXING ON BIOLOGICAL NETWORKS 
 
 Biological networks hold the information on how molecules work 
collectively to perform key functions. Because of this, extracting knowledge 
from biological networks has been an important goal in computational 
biology. One way to do this is their comparative analysis that aims to 
identify the similarities between them by aligning them. However, 
alignment of biological networks is a computationally challenging problem. 
Existing methods often map the global and local network alignment 
problems to graph and subgraph isomorphism problems, respectively. These 
two problems however have no known polynomial time solutions. In the 
literature, two approaches exist to tackle this problem. First one either 
ensures optimality or at least a user supplied confidence in the optimality 
[20, 21]. The second one encompasses the heuristic approaches that do not 
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provide any optimality guarantees [22, 23]. Both of these approaches are 
computation intensive, and thus, they require a significant amount of 
running time and memory space. 
 
 Given a database that contains a large set of biological networks, a 
similarity query returns all database networks that have a higher alignment 
score with the query network compared to a user-specified similarity 
threshold. Rapid growth in the size of biological network databases coupled 
with the costly network alignment necessitates efficient methods for 
accessing and querying these databases. Exhaustively aligning each query 
network with all the networks in a large database one by one is neither 
practical nor feasible. Therefore, alternative techniques that reduce the 
number of network alignments are direly in need. In this context, database 
indexing has been successfully used for similarity queries on traditional 
databases, such as relational, multi-dimensional or time series databases. 
Biological network databases have inherent properties that distinguish them 
from such traditional databases. 
 
 4.1.  Feature Based Indexing 
 
 Several indexing methods exist for similarity searches in graph 
databases. Majority of these methods can be classified as feature based 
indexing methods. These methods start by picking specific features of the 
networks for filtering purposes. Then, they pick corresponding features from 
the query network and match them with the features that exist in the 
networks of the database. They prune database networks that have low 
similarity value according to those matching. Finally, they do exact 
matching for the remaining database networks with the query network. 
 
 Due to noisy and incomplete characteristics of biological networks, 
approximate matching has become much more useful than exact matching 
for querying them. Substructure Index-based Approximate Graph 
Alignment (SAGA) [24] is a recent study that applies approximate matching 
on these networks. SAGA uses fragments of database networks as features 
and tries to combine them together to find larger matches. 
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 The aim of SAGA method is to find subgraphs in the graph database 
that are similar to the query graph. Here, similarity allows vertex 
mismatches, vertex gaps (insertion and deletion) and graph structural 
differences. Vertex mismatches corresponds to two vertices representing 
different entities but having similar functionalities. Vertex gaps represent 
the vertices in one graph that cannot be matched to any vertex in the other 
graph. Graph structural differences allow for differences in vertex 
connectivity relationships. Each vertex in a graph has both a label and a 
unique id in SAGA. This unique id is used to establish a total order among 
the vertices. SAGA applies approximate matching in describing similarity 
between two graphs. 
 
 The main idea behind SAGA is to generate an index, namely 
FragmentIndex on small structures of the database graphs and then used it 
for matching fragments of the query graph with the fragments in the 
database graphs. After that, those matching fragments are used for larger 
matching. Given a query graph, SAGA enumerates the fragments in the 
query in a similar way to database graphs. It probes FragmentIndex for each 
query fragment. Then, it filters out unmatched index entries. At the end of 
filtering step, SAGA produces a set of small fragment hits. In the following 
step, SAGA assembles those smaller hits into bigger matches. Finally, it 
examines each candidate match and produces a set of real matches. 
 
 There exists also some other feature based indexing techniques in the 
literature. GraphGrep chooses paths as index feature [25]. gIndex uses 
frequent subgraphs for the same purpose [26]. Both methods apply exact 
subgraph matching which have limited usage on biological networks. Grafil 
[27] extends gIndex to support approximate matching for modeling 
similarity on biological networks. 
 
 4.2.  Tree Based Indexing 
 
 Tree based indexing arranges the database networks hierarchically at 
different nodes in a tree. Thus, each node of a tree is a summary of a subset 
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of the database networks. For a given query network, the methods in this 
category align the query network to each node starting from the root node. 
Then, they progressively move down through the tree and filter out branches 
(i.e., subsets of networks) in the process. 
 
 One of the popular methods for graph indexing is Closure-Tree 
(CTree) [28]. Tree supports both subgraph and similarity queries. It 
organizes the networks in the database using a B-tree (namely C-tree) 
structure. Each leaf node represents a database network. Each internal node 
(called as graph closure) has structural information about its descendants in 
order to facilitate effective pruning. The internal nodes are actually 
hypothetical networks that are obtained by aligning the networks 
corresponding to their children nodes. An interesting property of the C-tree 
is the following: The score of the alignment of any query network with an 
internal node is at least as much as that with a leaf node rooted at that 
internal node. Following from this, given a query network, CTree algorithm 
starts aligning query to the root node. It then precedes to the children nodes. 
It prunes an entire subtree rooted at an internal node, if the alignment to that 
internal node has a score less than the given cutoff. 
 
 CTree supports both subgraph and similarity queries. CTree 
processes a subgraph query in two steps. In the first step, it traverses the  
C-tree and prunes nodes according to pseudo subgraph isomorphism and 
returns a candidate answer set. In the second step, it applies exact subgraph 
isomorphism on each candidate answer and returns the final answer set. 
 
 As exact similarity computing is expensive, CTree computes 
approximate graph similarity (or distance) using a heuristic graph mapping 
method. For this purpose, CTree contains a heuristic method, namely 
Neighbor Biased Mapping (NBM), in which the neighbors of a mapped 
vertex pair have higher chances to be mapped in the remaining iterations of 
the mapping process. CTree supports K-NN (K Nearest Neighbor) and 
range queries by using a priority queue that stores the nodes of C-tree. 
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 There exist few algorithms that apply tree based indexing on graph 
databases. Berretti et. al. applied metric trees to attributed relational graph 
(ARG) databases for content-based image retrieval [29]. ARGs are clustered 
hierarchically according to their mutual distances and indexed by M-trees 
[30]. Queries are processed in a top-down manner by routing the query 
along the index tree where each node refers to a cluster. It uses triangular 
inequality to prune the unnecessary nodes. In the tree construction and at 
query time, the graph matching problem was solved by an extension of the 
A* algorithm that uses a lookahead strategy and a stopping threshold. 
Recently, this technique is used to model graphical representations of 
foreground and background scenes in videos [31]. The resulting graphs are 
clustered using the edit-distance metric, and similarity queries are answered 
using a multi-level index structure.  
 
 4.3.  Reference Based Indexing 
 
 Reference based indexing summarizes the database networks using a 
small set of networks called references. The methods in this category align 
all database networks with all the references as a preprocessing step. Given 
a query network, instead of aligning it with the database networks, they 
align it with the references. Using these and precomputed alignments they 
filter a substantial subset of the database. 
 
 A recent indexing method for answering similarity queries on 
biological networks is Reference-based Indexing for Biological Network 
Queries (RINQ) [32]. RINQ uses a small set of networks as reference 
networks. Then, it aligns them with the database networks and stores all the 
alignment mappings and scores offline. After that, it aligns the given query 
network only with the reference networks. Finally, according to these 
alignment scores, it computes a lower and an upper bound for the similarity 
value between query network and each database network. By using these 
lower and upper bound values, RINQ prunes some of the database networks 
directly, selects some of the database networks as a part of result set without 
extra computation, and, applies exact matching for the remaining database 
networks. 



Network Motifs and Indexing Techniques on Biological Networks 

99 

 
 RINQ has two major steps, namely index creation (which is done 
offline once) and query processing. The index creation step has two phases. 
In the first phase, RINQ creates a large set of candidate references from the 
database networks. Then, it selects a subset of these candidates as the actual 
reference networks according to their performances over a set of training 
queries. 
 
 The success of RINQ depends on the selection of reference 
networks. The candidate reference set in RINQ has the following properties: 
 
 * Each reference network has a small number of vertices so that the 
query network aligns with the reference network quickly. For this purpose, 
RINQ sets the size of each reference network as the size of largest query 
allowed. 
 
 * At least one reference network aligns well with any database 
network to find tight lower and upper bounds for any query network that 
aligns well with that reference network. 
 
 * Each reference network differs from the rest significantly to avoid 
redundant calculation in the further steps.  
 
 In the candidate reference set generation step, RINQ randomly 
selects a database network. Then, it randomly selects a vertex and extends it 
until it generates a subgraph having desired number of vertices. After that, it 
aligns that subgraph with the already generated candidate reference 
networks. If it is not similar to any of the candidate references, RINQ puts 
that subgraph into candidate reference network set. After this step, RINQ 
selects a subset of the candidate reference set as the actual reference set by 
using a set of training queries. RINQ selects actual reference set according 
to alignment scores with respect to training queries. It uses at most 100 
networks in the actual reference set. It stores the alignment and score for 
each alignment between the query network and actual reference networks. 
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 RINQ calculates an exact lower bound and an approximate upper 
bound value for the similarity between the query network and each database 
network using reference networks. Computing upper and lower bounds take 
much less time than aligning the query network with the database networks. 
In the final step, if the upper bound value for a database network is lower 
than the cutoff value, it is filtered (cannot be in the result set). If the lower 
bound value is greater than the cutoff value, it is directly put into result set. 
If the lower bound value is lower and upper bound value is greater than 
cutoff value, RINQ applies the costly network alignment algorithm for that 
database network.    
 
 5.  SUMMARY 
 
 Recent developments in technology have led to large amount of real 
network generation in various fields of life. Subgraphs that occur in these 
networks with significantly higher frequency than those in randomized 
networks are called Network Motifs. Such subgraphs are the basic building 
structures of these networks. It is essential to extract information from these 
complex and large networks by discovering network motifs in them. By this 
way, we can reveal the hidden knowledge behind huge and complex 
datasets in knowledge-based systems. The frequency of a subgraph in a 
large graph shows a possibility of being a network motif. But, it has to be 
analyzed further to determine whether it has a functional role for that large 
graph. In this context, additional significance concepts are defined to 
determine whether a subgraph is a motif or not. 
 
 One way to find similarities efficiently for fast discovery of network 
motifs is to create index structures for similarity queries. There are three 
different approaches to indexing biological network databases in the 
literature. In the first approach, feature based indexing extracts sets of 
predefined features from all database networks. Thus, the methods in this 
category summarize the database networks with these features. Given a 
query network, they extract same or similar features for that query network. 
They compare those features of the query with the feature set of the entire 
database. Using this comparison, they alter some of the networks in the 
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database quickly. The second approach, tree based indexing, arranges the 
database networks hierarchically at different nodes in a tree. Thus, each 
node of a tree is a summary of a subset of the database networks. For a 
given query network, the methods in this category start aligning the query 
network to each node starting from the root node. Then, they progressively 
move down through the tree and alter out branches (i.e., subsets of 
networks) in the process. The third approach, reference based indexing, 
summarizes the database networks using a small set of networks called 
references. The methods in this category align all database networks with all 
the references as a preprocessing step. Given a query network, instead of 
aligning it with the database networks, they align it with the references. 
Using these and precomputed alignments they alter a substantial portion of 
the database. Finally, we conclude our analysis by showing a comparison 
between the three approaches. 
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