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ABSTRACT 
 

 Meshless methods are became an alternative to most popular numerical 
methods used to solve engineering problems such as Finite Difference and 
Finite Element Methods. Because of element free nature, problems are solved 
using meshless methods depending on the general geometry and conditions of 
the problem. Mixed Meshless Local Petrov-Galerkin (MLPG) approach is 
based on writing the local weak forms of PDEs. Moving least squares (MLS) is 
used as the interpolation schemes. In this study contact analysis problem is 
modelled using Meshless Finite Volume Method (MFVM) with MLS 
interpolation and solved for beam contact problem. Meshless discretization 
and linear complementary equation of the 2-D frictionless contact problems 
are described first. Then the problem is converted to a linear complementary 
problem (LCP) and solved using Lemke’s algorithm. An elastic cantilever 
beam contact to a rigid foundation is considered as an example problem. 
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"KARI ŞIK" MLPG SONLU HAC İMLER YÖNTEM İ İLE MLS 
YAKLA ŞTIRMASI KULLANILARAK TEMAS PROBLEM İNİN 

ÇÖZÜMÜ 
 

ÖZ 

 Ağsız yöntemler son yıllarda Sonlu Farklar ve Sonlu Elemanlar 
Yöntemleri gibi mühendislik problemlerini çözmek için kullanılan en popüler 
sayısal yöntemlere alternatif haline gelmiş durumdadır. Ağsız yöntemlerin 
eleman bağımsız yapısı gereği problemlerin çözümleri yalnızca çözümün 
yapılacağı geometri ve problemin koşullarına bağlıdır. Karışık Ağsız Yerel 
Petrov-Galerkin (MLPG) yaklaşımı Kısmi Diferansiyel Denklemlerin (PDEs) 
yerel zayıf formlarının yazılması temeline dayanmaktadır. Hareketli En Küçük 
Kareler (MLS) yöntemi interpolasyon şeması olarak kullanılmaktadır. Bu 
çalışmada Ağsız Sonlu Hacimler Yöntemi (MFVM) ile MLS interpolasyon 
şeması birlikte kullanılarak temas analizi problemi modellenmiş ve kiriş temas 
problemi için çözülmüştür. Ağsız ayrıklaştırma ve 2-D sürtünmesiz temas 
problemlerinin doğrusal tamamlayıcı denklemleri ilk olarak açıklanmıştır. 
Daha sonra problem doğrusal tamamlayıcı probleme (LCP) dönüştürülmüş ve 
Lemke algoritması kullanılarak çözülmüştür. Örnek problem olarak rijit bir 
temele temas halindeki elastik bir konsol kiriş problemi ele alınmıştır. 
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 1. INTRODUCTION 

 Due to the complex nature of the engineering problems, scientists are 
interested in numerical methods to model and find solutions for engineering 
problems from different disciplines. In computational mechanics both Finite 
Difference and Finite Element Method (FEM) found a very important place to 
solve problems. Mostly FEM is preferred and many commercial programs are 
based on the theory of FEM to solve wide variety of engineering problems. But 
due to the element based nature, solution of the problems brings some 
difficulties and researches are made researches on new alternatives from the 
beginning of the 1990's. As a result number of mesh free methods are 
developed and still there are a lot of studies are continuing on this area. 

 The meshless methods overcoming the drawback of mesh-based 
methods, such as mesh-generation and poor solutions. Many mesh free 
methods are developed based on global weak forms, such as Smooth Particle 
Hydrodynamics (SPH) and the element-free methods which require certain 
meshes or background cells. Contrary to these methods, the meshless local 
Petrov Galerkin (MLPG) approach pioneered by Atluri (2004) [1] and his 
colleagues is based on writing the local weak forms of partial differential 
equations (PDEs), on overlapping local subdomains. The integration of the 
weak-form is also performed within the local sub-domains; thus negating any 
need for any kind of meshes or background cells, making the MLPG approach 
a truly meshless method. MLPG method is used in many areas such as elasto-
statics [2-5], elasto-dynamics [6], fracture mechanics [7], fluid mechanics and 
etc.  

 The MLPG approach gives oppurtunity to select trial and test functions, 
define the size and shape of local sub-domains, and has the ability to use 
various unsymmetric and symmetric weak forms of the PDEs. As a test 
function Heaviside function can be used in symmetric-weak forms to eliminat 
domain integrals.  

 Meshless Finite Volume Method (MFVM), using the Meshless Local 
Petrov-Galerkin (MLPG) “Mixed” approach, is developed for solving elasto-
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static problems and labeled as MLPG-5 in [8]. In MLPG mixed approach MLS 
are used as the interpolation schemes. The MLPG local weak form is written 
for the equilibrium equations over the local sub-domains, and the Heaviside 
test function is used. Xiao et.al. solved the 2D contact problem using MLPG 
with RBF [9]. They implement the meshless linear complementary formulation 
which can be solved by using Lemke’s algorithm. 

 In this study solution of the contact problem of elastic cantilever beam 
using Mixed MLPG Finite Volume Method (FVM) and Linear Complementary 
Problem (LCP) is modeled and solved. Meshless discretization and linear 
complementary equation of the 2-D frictionless contact problems is described. 
The problem is converted to LCP and solved using Lemke’s algorithm. An 
elastic cantilever beam contacting a rigid foundation is considered as an 
example problem. The beam is modeled as a thin body in the plane stress state. 
The result found by using MFVM of beam contact problem is compared with 
the results available in the literature. 

 2. MESHLESS APPROXIMATIONS 

 Radial Basis Functions are proposed to interpolate large sets of 
multivariate data before by many researchers. But lately it has been shown that 
a fast and accurate approximation method for large sets of multivariate data can 
be accomplished. An alternative to radial basis function interpolation and 
approximation is the so-called moving least squares method (MLS). In the 
traditional moving least-squares (MLS) method the amount of work is shifted. 
There is no large system to solve. Instead, for every evaluation one needs to 
solve a small linear system to find the coefficients of the moving local 
approximant, and then evaluate a summation [10]. 

 MLS is generally considered to be one of the best methods to 
interpolate random data with a reasonable accuracy, because of its 
completeness, robustness and continuity. A function u(x) can be approximated 
over a number of scattered local points { }x i , (i = 1, 2,...,n) as,  
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 (x) p (x)a(x), xT
su = ∀ ∈Ω  (1) 

where 1 2p (x) [ (x), (x),..., (x)]T
np p p=  is a monomial basis of order n and a(x) 

is a vector containing coefficients, which are functions of the global Cartesian 
coordinates [ ]1 2 3, ,x x x , depending on the monomial basis. They are determined 

by minimizing a weighted discrete L2 norm, defined, as: 
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where (x)iw  are the weight functions and ˆiu  are the fictitious nodal values. 

 One may obtain the shape function as, 
 

1 ˆ ˆ(x)=p (x)A (x)B(x)u (x)u, xT T
xu − ≡ Φ ∀ ∈∂Ω  (3) 

where matrices A(x) and B(x) are defined as, 
 A(x)=P WP, B(x)=P W, xT T

x∀ ∈∂Ω . (4) 

 The weight function in Eq. (2) defines the range of influence of node I. 
Normally it has a compact support. A fourth order spline weight function is 
used which is defined as, 
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where x-xI Id =  is the Eucludian distance from node xI to point x, rI is the 

size of the support for the weight function wI and thus determines support of 
the node xI. 
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 3. MLPG FINITE VOLUME METHOD 

 The equations of balance of linear and angular momentum can be 
written as: 

 ( ), ,
0; ;ij j i ij ji i

i

fσ σ σ
ξ
∂+ = = ≡

∂
 (6) 

where ijσ  is the stress tensor corresponding to the displacement field iu , if  is 

the body force. The boundary conditions are given by, 

 
,

,
i i u

i ij j i t

u u on

t n t onσ
= Γ
≡ = Γ

 (7) 

where iu  and it  are the prescribed displacements and tractions respectively on 

the corresponding parts of the boundary and in  is the unit outward normal to 

the boundary on the correponding points of Γ . A generalized local weak form 
of the differential equation (6) over a local sub-domain sΩ , can be written as: 

 ( ), 0
s

ij j i if v dσ
Ω

+ Ω =∫  (8) 

where iu  and iv  are the trial and test functions, respectively. By applying the 

divergence theorem, imposing the traction b.c. and using the Heaviside 
function as the test function, the local symmetric weak form of Eq. (8) can be 
found as in [11], 

 
s su st s

i i i iL
t d t d t d f d

Γ Γ Ω
− Γ − Γ = Γ + Ω∫ ∫ ∫ ∫ . (9) 

 With the constitutive relations of an isotropic linear elastic 
homogeneous solid, the tractions in Eq. (9) can be written in term of the 
strains: 
 i ij i ijkl kl jt n E nσ ε= =  (10) 
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where, ( )ijkl ij kl ik jl il jkE λδ δ µ δ δ δ δ= + +  with λ  and µ  being the Lame's 

constants. The strains are independently interpolated as, 

 
( ) ( )

1

(x)= (x)
N

K K
kl kl

K

ε ε
=

Φ∑ . (11) 

 With Eqs. (10) and (11), one may discretize the local symmetric weak-
form of Eq. (9), as, 
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 (12) 

 The number of the variables reduced by transforming the strain 
variables back to the displacement variables via the collocation methods. The 
interpolation of displacements can also be accomplished by using the same 
shape function, for the nodal displacement variables, and written as, 

 
( ) ( )

1

(x)= (x)
N

J J
i i

J

u u
=

Φ∑ . (13) 

 The strain-displacement relations are given by, 

 ( ), ,

1

2kl k l l ku uε = + . (14) 

 With the displacement approximation in Eq. (13), the two sets of nodal 
variables can be transformed through a linear algebraic matrix: 
 

( ) ( )( ) ( )I I J J
kl klm mH uε =  (15) 

which is reduced to the same number of nodal displacement variables by using 
the transformation. Data preparation, quadrature techniques and post 
processing issues are detailed in reference [11]. 
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 4. CONTACT PROBLEM OF A CANTILEVER ON RIGID 
FOUNDATION USING LCP 

 An elastic cantilever beam, in the plane stress state, contacting a rigid 
foundation is considered. The boundary and constraint conditions are 
illustrated in Fig. (1). Assume the beam, with a constant rigidity EI , is 
subjected to a uniform loading f. If the initial gap between the beam and the 
rigid foundation is given as 0δ , then the location of the contact interface 
computed from thin beam theory without shear deformation effect [9] is; 

 
0

4
72

c

EI
l

f

δ= . (16) 

 In order to verify the prediction by the present method, the thick beam 
theory [12] should be used as a reference. 
 In this paper the MLPG FVM is used with the MLS approximation and 
the problem is modeled using the LCP and solved. The beam is placed over a 
foundation with an initial gap ig  is configured in Figure (1). The boundary 

conditions can be easily seen from the Figure (1). 
 The beam parameters are: E=30,000, v=0.3, D=6, L=48, f=1, 0δ =0.01. 
The cross-section of the beam is assumed as rectangular with k=0.85, 

( )/ 2(1 ))G E v= +  and A=6. The location of contact by thin beam theory is 

lc=24.97 and by thick beam theory [9] is lc=21.37. 
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Figure 1: Contact problem of a cantilever on rigid foundation. 

 The contact problem is modeled using the MLPG-FVM. For each body 
the following equation has to be satisfied: 

 , ( ) 0 in  (e=1,2)e e e
ij j iu bσ + = Ω . (17) 

 The weak form of the equation (17) is found using the MLPG mixed 
method which gives the following equation for two body; 

 0,   (e=1,2)
e e
si st

e e e e
i it v d t v d

Γ Γ

− Γ − Γ ≥∫ ∫ . (18) 

 By applying meshless method to the equation (18), the following 
discrete equation for each node is found; 

 
1

0
n

ij j i
j

K u f
=

− ≥∑  (19) 

where,  
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e e e e
ij i i iK t v d f t v d

Γ Γ

= − Γ = Γ∫ ∫ . (20) 
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 Finally the following matrix system is obtained for two contacted 
elastic body by collecting the equations obtained from each local sub-domain 

( )i
sΩ  and without any element assembly one can write; 

 ( )
2

1

0e e e

e

K u f
=

− ≥∑ . (21) 

 In order to obtain Linear Complementary Equation (LCE), we can write 
the stiffness matrix in partitioned matrix form as: 

 

e e
e ii ic

e e
ci cc

K K
K

K K

 
=  
 

 (22) 

 Subscript 'c' refers the contact surface, and subscript 'i ' refers to other 
nodes. If we use eqn. (22) in eqn. (21) and eliminate we can write eqn. (21) in a 
small form where we have just the unknown values of u along the contact 
surface. In this aspect we can write equation (21) as follows: 
 

e e e e e
ii i ic c iK u K u f+ = , (23) 

 ( )
2

1

0e e e e
ci i cc c

e

K u K u
=

+ ≥∑ . (24) 

 We can find ui from equation (23) and then put into equation (24) so we 
will find the following relation: 

 ( )
2

1

0e e e
p c p

e

K u f
=

− ≥∑  (25) 

where, 
 

1[ ]e e e e e
p cc ci ii icK K K K K−= − , (26) 

 
1[ ]e e e e

p ci ii if K K f−= − . (27) 

 The initial gap is defined as 0 1 2 in  c
c cg u u= + Γ . So the following 

transformation based on this assumption, the gap is defined as; 
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1 1

2

0c c

c

Iu u

I Iu g

    
=    −    

. (28) 

 If we write equation (25) in expanded form we found the following one; 
 

1 1 1 2 2 2 0p c p p c pK u f K u f− + − ≥ . (29) 

 It can be written in matrix form by making some arrangements; 

 

1 2 1 21

2 2 2

0p p p pc

p p p

K K f fu

K K fg

   + −   ≥     −       
 (30) 

 
1 1 2 1 2 1 2( )c p p p p pu K K K g f f−  = + + −   (31) 

 
2 2 1 2 1 2 2 1 2 1 2 1 2( ) ( ) 0p p p p p p p p p p pK K K K K g K K K f f f− −   − + + + − − ≥    . (32) 

 If we denote K and f as follows; 

 

2 2 1 2 1 2

2 1 2 1 2 1 2

( )

( )

p p p p p

p p p p p p

K K K K K K

f K K K f f f

−

−

 = − + 

 = + − − 

, (33) 

equation (32) becomes to the following form: 
 0Kg f+ ≥ , (34) 

which can be solved by using Lemke’s algorithm as a LCE problem. 
 

 5. RESULTS OF THE BEAM CONTACT PROBLEM 

 The beam contact problem modeled using the MLPG Finite Volume 
Method as in equation (34) and solved using Lemke's algorithm as a LCE 
problem. Distribution of the displacement along the beam and the contact force 
is presented in Figure (2) and Figure (3) respectively.  
 As it can be seen from Figure (1), the line of contact of the surface is 
represented by Lc. Figure (2) shows the displacement of the beam and it is 
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observed that the displacement distribution along the beam is compatible with 
the line of contact along the beam surface. Figure (3) shows the distribution of 
the contact force along the beam.  
 

 
Figure 2: Distribution of the displacement along the beam. 

 
 In reference [9] it has been explained that, the location of contact 
(transition point) by thin beam theory is lc=24.97 and by thick beam theory is 
lc=21.37. Both MQ and TPS are studied in reference [9] and the calculated 
results with MQ shows closer to the thick beam result. The simulated contact 
force along the interface by using TPS with 4η =  gives a better result. In this 
study, it has been shown that the contact force along the interface is in good 
agreement with the thick beam theory. This result is found by using mixed 
MLPG FVM and using the LCP solution of the beam problem. 
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Figure 3: Contact force along the interface of a cantilever beam using MLS. 

 

 6. CONCLUSION 

 In this paper first of all the meshless approximations using MLS is 
mentioned. Then the general theory of the "mixed" MLPG Finite Volume 
Method is used to model the balance of linear and angular momentum. Contact 
problem of a cantilever beam on rigid foundation is modeled using the MLPG-
FVM. For each body a contact equation is written and the inequality is solved 
by using Lemke's algorithm as a LCE problem. 
 Distribution of the displacement along the beam and the contact force in 
agreement with the theory given in literature. The earlier studies in the 
literature reports that, the location of contact (transition point) by thin beam 
theory is lc=24.97 and by thick beam theory is lc=21.37. Both MQ and TPS 
interpolating schemes are studied before by other researchers shows closer 
results to the thick beam theory. In this study, it has been shown that the 
contact force along the interface is in good agreement with the thick beam 
theory. This means that the proposed "mixed" MLPG FVM using LCP with 
MLS approximation gives good results and could be used to solve contact 
problems. 
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