
Journal of Naval Science and Engineering
2013, Vol.9, No.2, pp. 1-11

1

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK
TRAFFIC DETECTION

Georgios KAKAVELAKIS, Lt.Cdr.

Hellenic Navy General Staff, Hellenic Republic
gekakavelakis@gmail.com,gkaki@yahoo.com

Abstract

 Abusive network traffic—to include unsolicited e-mail, malware propagation, and
denial-of-service attacks—remains a constant problem in the Internet. Despite extensive
research in, and subsequent deployment of, abusive-traffic-detection infrastructure, none of the
available techniques addresses the problem effectively or completely. The fundamental failing of
existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new
mitigation techniques. Within this framework, we develop a real-time, online system that
integrates transport layer characteristics into the existing SpamAssasin tool for detecting
unsolicited commercial e-mail (spam).

Keywords: Network traffic, spam, machine learning, system analysis, auto-learning

1. INTRODUCTION

 Electronic mail (e-mail) is one of the most popular applications of the
Internet, enabling users to easily communicate by exchanging electronic
messages at no upfront cost, quickly, reliably and easily. Unfortunately, this
popular communication media has been exploited [1]. Many methods have been
proposed to address the increasing problem of spam, such as content filtering,
rule-based and learning-based systems. Spammers, however, adapt accordingly
and find countermeasures, such as fake IP [2] addresses or compromised hosts,
also known as botnets, to evade blacklisting. Traffic-characterization studies [3,
4, 5] try to address these issues by examining network characteristics associated
with spam behavior at the IP and TCP [6] level. These techniques are promising

Georgios KAKAVELAKIS

2

since it is more difficult for spammers to thwart such characteristics by
manipulating the IP or TCP layer.

 2. RELATED WORK

 Traffic-characterization methods are a recent novel approach to
differentiating sources of abusive traffic. Several prior works are directly
relevant to our research. These methods try to identify spam by leveraging the
network or transport-layer properties. Whereas spammers have the ability to
alter the content of a message or spoof an IP address or sender domain, they
have much less power to forge network (e.g., IP) or transport-level (e.g., TCP)
properties.

 Ramachandran et al. [7] examine the spamming behavior at the network
layer (IP layer) focused on network-level properties such as: IP address space,
autonomous systems (AS), BGP route announcements. Another approach on
traffic characterization was proposed by Schatzmann et al. [8] focused on the
network-level characteristics from the perspective of an AS or ISP. Their idea is
based on the assumption that a large number of e-mail servers perform some
level of pre-filtering (e.g., blacklisting). Hao et al. [9], however, showed that
AS alone as a feature may cause a large rate of false positives. Further studies
[4, 10] have shown that a spammer can evade this technique by advertising
routes from a forged AS number [9].

 In a spirit similar to Ramachandran et al., Beverly and Sollins [3]
explored transport-layer characteristics in order to determine whether spam e-
mail presents different behavior from legitimate e-mail. Their idea is based on
the premise that spammers have to send large volumes of e-mail to be effective,
which suggests that the network links involved would experience contention
and congestion. Therefore, transport-layer properties such as number of lost
segments and the roundtrip time (RTT) would have different metrics in such a

A Real-Time System for Abusive Network Traffic Detection

3

Figure 1. System Architecture

contentious environment, allowing discrimination between spam and legitimate
behavior. Moreover, Ouyang et al. [5] conducted a large-scale empirical
analysis of transport-layer characteristics on 600K+ messages, based on the
work of Beverly and Sollins. Performance-wise, they showed that transport-
layer features are stable over time and can classify spam with 85–92%
accuracy.

3. SYSTEM ARCITECTURE

 An overview of our
real-time system is shown in
(Figure 1). It comprises four
main components:
SpamAssassin, SpamFlow
Analysis Engine, SpamFlow
Plug-in, and the SpamFlow
Classification Engine. We
refer to SpamFlow Analysis
Engine, SpamFlow Plug-in,
and SpamFlow Classification
Engine as spamflow, plugin,
and classifier, respectively.
Furthermore, we have a
separate process running in promiscuous mode, which captures every packet of
the SMTP [11] session using libcap and stores it to disk.

 3.1. Spamassassin

 SpamAssassin [12] is an open-source, rule-based, content filter. Each
rule is assigned a score using a genetic algorithm. All scores are then
aggregated to produce an overall score for each message. The classification

Georgios KAKAVELAKIS

4

process involves comparing the overall score with a user-defined threshold and
if the score is above the threshold, then the message is classified as spam;
otherwise, as legitimate. Moreover, using a modular architecture,
SpamAssassin can be extended to include other filtering techniques, such as
real-time blackhole lists (RBLs), whitelists, collaborative filtering, learning-
based techniques (e.g., naïve Bayes), and others.

 3.2. Spamflow

 Spamflow [3] serves as our network analyzer. It promiscuously, using
libpcap [13], listens on the network interface, builds corresponding flows, and
extracts TCP features for each flow. We modified spamflow for our purposes to
extract TCP features for a given message identified by the (host IP address, host
port number) tuple. Finally, we modified our mail server to add to the header of
each e-mail the (IP address, TCP port number) identification tuple of the remote
mail-transport agent (MTA) [14] sending the mail.

 3.3. Spamflow Plugin

 Spamflow cannot operate as a standalone application for real-time
traffic analysis therefore, we developed, using Perl [15], a module that
integrates spamflow into SpamAssassin and allows it to operate in a real-time
fashion. It performs two main tasks that are related to spamflow and classifier.
The first task is to provide spamflow with the 2-tuple identifier of the current
message under inspection and receive in return the features that correspond to
the given message identifier. Once plugin obtains the features, the second task
involves classification: passing the features, via XML-RPC [16] , over to the
classifier and retrieving the corresponding classification.

A Real-Time System for Abusive Network Traffic Detection

5

 3.4. Spamflow Classification Engine

 As mentioned above, we have implemented classifier using

Python [17] and the Orange [18] machine-learning package. Our classifier
implementation comprises three machine-learning algorithms: naïve Bayes
[19,20], decision trees (C4.5) [21], and support-vector machines (SVM) [22].
We selected three algorithms because we wanted to examine if the
classification performance of our system is a function of the classification
method, and these algorithms are known to provide good performance.

4. RESULTS

This section describes the results from our system evaluation in both a

virtual test bed and a live-test environment. A virtual test bed provides insights
about the behavior of a system and allows for more controllable conditions,
allowing us to reach more reliable and reproducible results. Live testing, on the
other hand, is important because it reveals how the system interacts with
possibly unknown features of the external environment [23].

 4.1. Test Bed Evaluation

An overview of our virtual environment is shown in (Figure 2). It

consists of three building blocks: the client side, server side, and network
emulator. The client side generates, through an e-mail replayer, the required
SMTP [12] traffic, which is then received, analyzed, and classified on the
server side.

The replayer reads from the TREC public spam corpus [24] containing

92,187 messages, of which 52,788 are spam and 39,399 are legitimate. For each
message the replayer sets the type of service (tos) field in the IP header of each

Georgios KAKAVELAKIS

6

message to some value, depending on its class. Thus spam and legitimate
messages have different tos values, which allows us to redirect them through
different paths in our network emulator, and finally transmits the message, after
having established an SMTP session with our mail server.

Figure 2. Virtual System Architecture

The role of the network emulator is to simulate congestion, in the form
of longer delay, delay variance, retransmissions, etc., that large volumes of
spam traffic will cause on the link. In our case, our goal is to reproduce the TCP
characteristics that spam TCP traffic exhibits, such as TCP timeouts,
retransmissions, resets, and highly variable roundtrip time (RTT) estimates [3].
For our evaluation, we selected Dummynet [25], a publicly available tool that
allows packets to pass through virtual network links to introduce delay, loss,
bandwidth constraints, queuing constraints, etc.

Table 1 shows how the three classifiers performed with respect to

training times and classification throughput. Examining the results, we observe
that naïve Bayes provides the higher throughput among the three classifiers,
and this conforms to the fact that its decision rule is much simpler than the
other two, whereas C4.5 has the lowest training time. SVM, on the other hand,

A Real-Time System for Abusive Network Traffic Detection

7

achieves the lowest throughput and the largest training time, due to the more
complex decision model.

 Training Times (msec)

across samples
 10 100 1000 10000

Throughput
(msgs/sec)

Bayes 0.884 15.016 105.453 104.843 1300

C4.5 0.151 0.964 16.017 29.785 1100

SVM 0.721 12.691 224.250 260.018 700

Table 1. System Performance

The significant takeaway from these measurements is that, taking into

account the relative independence of our system from the classification method,
we can select the classification model that fit our needs. For example, the low
training time of C4.5 makes it a good candidate when we need to retrain often
and want to minimize idle times.

 4.2. Live Testing

We deployed our system in a live environment for a selected domain

from January 25, 2011 to March 2, 2011, where we collected a trace of 5,926 e-
mail messages. Ground truth was first established via SpamAssassin. We then
manually examined all the legitimate messages and relabeled those that were
false negatives. Even though the volume of traffic captured is small and
represents a small portion of the Internet traffic, the results with respect to
accuracy, precision, and recall were strong.

Auto-learning is the incremental process of building the classification

model based on exemplar e-mail messages that achieve certain threshold
values. In our case, we use the flow features of e-mail messages otherwise
classified via orthogonal methods as having very high or very low scores. More
specifically, we explicitly retrain each classification model each time we

Georgios KAKAVELAKIS

8

observe a message with a particularly high score from the other SpamAssassin
categories (rule- and Bayesian-word based) that meets our threshold criteria;
i.e., having a score above or below our threshold. After retraining is complete,
we evaluate our models on subsequent messages until we observe one or more
messages with scores above or below our thresholds, at which point we stop
and retrain the models.

We set up two thresholds: one for spam messages and one for legitimate

based on the spam and ham score distributions, which proved effective as it
allowed the classifiers to be trained on total of 2,685/5,510 (48.7%) spam and
267/416 (64.2%) ham messages. Figure 3 shows the classification performance
of the three classifiers as a function of cumulative training samples received.

Figure 3. Autolearning Analysis

We observe a gradual improvement in the performance in all metrics,

with C4.5 and SVM achieving constant high rates above 95% in accuracy,
precision, and recall with as few as 1,024 (210) training examples. While
accuracy is interesting, it is essential that a spam classifier have a very low false

A Real-Time System for Abusive Network Traffic Detection

9

positive rate. For this reason we also show precision results for each classifier.
In other words, of those emails identified as spam, what fraction truly are. With
as few as 64 (26) training examples, all reached constant high precision rates
above 95%.

To better understand the sensitivity of our auto-learning results to the

imposed thresholds, we experiment with a spam threshold three deviations
above mean. By increasing the spam threshold, the SpamFlow auto-learning
uses fewer spam-training examples. However, we expect to have higher
confidence in their true disposition of spam with the higher threshold. With the
spam score threshold raised to 40, we trained the classifiers with only 30 spam
training examples many fewer than the number of ham examples. The results
are interesting with the precision rate remaining above 97% across all
classifiers with as few as six training flows.

5. CONCLUSIONS

In this research, we implemented the necessary infrastructure to perform

real-time, on-line transport-layer classification of email messages. We detail the
system architecture to integrate network transport features with SpamAssassin,
an MTA, and a classification engine. Our testing reveals that the system can
handle realistic traffic loads. Using our techniques, we achieve accuracy,
precision, and recall performance greater than 95 percent after receiving only ≈
210 messages during live, real-world production testing.

We note, however, that our live-testing corpus is small. Our intent in

this work was to demonstrate the practical feasibility of using transport network
traffic features. In future work, we plan to investigate SpamFlow’s performance
in large, production systems against much larger volumes of traffic. Our hope is
to enable the practical deployment of transport-layer based abusive traffic
detection and mitigation techniques to system administrators.

Georgios KAKAVELAKIS

10

REFERENCES

[1] Messaging Anti-Abuse working Group (MAAWG), "Email metrics program: The
network's operator perspective," Tech. Rep. 13, November. 2010. Available:
http://www.maawg.org/sites/maawg/files/news/MAAWG_2010-
Q1Q2_Metrics_Report_13.pdf.

[2] J. Postel. (1981, September). Internet protocol. Internet RFC 791 Available:
http://www.faqs.org/rfcs/rfc791.html.

[3] R. Beverly and K. Sollins, "Exploiting transport-level characteristics of spam," in
CEAS 2008 - Fifth Conference on Email and Anti-Spam.

[4] X. Zhao, D. Pei, L. Wang, D. Massey and A. Mankin, "An analysis of BGP multiple
origin AS (MOAS) conflicts." in Proceedings of the First ACM SIGCOMM Workshop on
Internet Measurement (IMW), 2001.

[5] T. Ouyang, S. Ray, M. Allman and M. Rabinovich, "A Large-Scale Empirical
Analysis of Email Spam Detection through Transport-level Characteristics," Technical Report
10-001, International Computer Science Institute., January 2010.

[6] Postel. (1981, September). Transmission control protocol. Internet RFC 793 Available:
http://www.ietf.org/rfc/rfc793.txt.

[7] A. Ramachandran and N. Feamster, "Understanding the network-level behavior of
spammers." in Proceedings of ACM SIGCOMM.

[8] D. Schatzmann, M. Burkhart and T. Spyropoulos, "Inferring spammers in the network
core," in Passive and Active Conference, Seoul,South Corea, 2009, pp. 229–238.
[9] S. Hao, N. A. Syed, N. Feamster, A. G. Gray and S. Krasser, "Detecting spammers
with SNARE: Spatio-temporal network-level automatic reputation engine." in In Proceedings
of the 18th Conference on USENIX Security Symposium.

[10] J. Karlin, S. Forest and J. Rexford, "Autonomous security for autonomous systems."
Computer Networks, vol. 52, pp. 2908–2923, 2008.

A Real-Time System for Abusive Network Traffic Detection

11

[11] J. Klensin. (2001, April). Simple mail transfer protocol. Internet RFC 2821 (Standards
Track) Available: http://www.ietf.org/rfc/rfc2821.txt.

[12] J. Mason. Filtering spam with SpamAssassin. Presented at HEANet Annual
Conference. Available: http://wiki.apache.org/spamassassin/PresentationsAndPapers.

[13] V. Jacobson, C. Leres and S. McCanne, "Packet Capture Library (pcap)," vol. 1.0.0,
October 27, 2010.

[14] D. Crocker, "Mail transfer agent," in Internet RFC 5598-Internet Email Architecture
pp. 31.

[15] W. Larry. Perl. Available: http://perldoc.perl.org/.

[16] D. Winer. (1998, April). XML-RPC specification. Available:
http://www.xmlrpc.com/spec.

[17] G. Van Rossum. Python. Available: http://www.python.org/

[18] Laboratory of Artificial Intelligence, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia, "Orange: A Component Based Machine Learning Library for
Python," vol. 2.0, 2010.
[19] R. O. Duda and P. E. Hart, "Bayes decision theory," in Pattern Classification and
Scene AnalysisAnonymous John Wiley & Sons, 1973, pp. 10.

[20] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[21] J. R. Quinlan, "C4.5: Programs for Machine Learning," 1993.

[22] V. N. Vapnik, "Estimation of Dependencies Based on Empirical Data," 1992.

[23] M. Carbone and L. Rizzo, "Dummynet Revisited," ACM SIGCOMM Computer
Communication Review, vol. 40, pp. 12–20, April 2010.

[24] G. Cormack and T. Lynam. 2005 TREC public spam Corpus.

[25] L. Rizzo, "Dummynet: A Simple Approach to the Evaluation of Network Protocols,"
ACM Computer Communication Review, vol. 27, pp. 31–41, 1997.

