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Abstract 

 
 Abusive network traffic—to include unsolicited e-mail, malware propagation, and 
denial-of-service attacks—remains a constant problem in the Internet. Despite extensive 
research in, and subsequent deployment of, abusive-traffic-detection infrastructure, none of the 
available techniques addresses the problem effectively or completely. The fundamental failing of 
existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new 
mitigation techniques. Within this framework, we develop a real-time, online system that 
integrates transport layer characteristics into the existing SpamAssasin tool for detecting 
unsolicited commercial e-mail (spam).   
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1. INTRODUCTION 
  
 Electronic mail (e-mail) is one of the most popular applications of the 
Internet, enabling users to easily communicate by exchanging electronic 
messages at no upfront cost, quickly, reliably and easily. Unfortunately, this 
popular communication media has been exploited [1]. Many methods have been 
proposed to address the increasing problem of spam, such as content filtering, 
rule-based and learning-based systems. Spammers, however, adapt accordingly 
and find countermeasures, such as fake IP [2] addresses or compromised hosts, 
also known as botnets, to evade blacklisting. Traffic-characterization studies [3, 
4, 5] try to address these issues by examining network characteristics associated 
with spam behavior at the IP and TCP [6] level. These techniques are promising 
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since it is more difficult for spammers to thwart such characteristics by 
manipulating the IP or TCP layer. 
 
 2. RELATED WORK 
  
 Traffic-characterization methods are a recent novel approach to 
differentiating sources of abusive traffic. Several prior works are directly 
relevant to our research. These methods try to identify spam by leveraging the 
network or transport-layer properties. Whereas spammers have the ability to 
alter the content of a message or spoof an IP address or sender domain, they 
have much less power to forge network (e.g., IP) or transport-level (e.g., TCP) 
properties.  
 
 Ramachandran et al. [7] examine the spamming behavior at the network 
layer (IP layer) focused on network-level properties such as: IP address space, 
autonomous systems (AS), BGP route announcements. Another approach on 
traffic characterization was proposed by Schatzmann et al. [8] focused on the 
network-level characteristics from the perspective of an AS or ISP. Their idea is 
based on the assumption that a large number of e-mail servers perform some 
level of pre-filtering (e.g., blacklisting). Hao et al. [9], however, showed that 
AS alone as a feature may cause a large rate of false positives. Further studies 
[4, 10] have shown that a spammer can evade this technique by advertising 
routes from a forged AS number [9].  
 
 In a spirit similar to Ramachandran et al., Beverly and Sollins [3] 
explored transport-layer characteristics in order to determine whether spam e-
mail presents different behavior from legitimate e-mail. Their idea is based on 
the premise that spammers have to send large volumes of e-mail to be effective, 
which suggests that the network links involved would experience contention 
and congestion. Therefore, transport-layer properties such as number of lost 
segments and the roundtrip time (RTT) would have different metrics in such a 
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Figure 1.  System Architecture 

contentious environment, allowing discrimination between spam and legitimate 
behavior. Moreover, Ouyang et al. [5] conducted a large-scale empirical 
analysis of transport-layer characteristics on 600K+ messages, based on the 
work of Beverly and Sollins. Performance-wise, they showed that transport-
layer features are stable over time and can classify spam with 85–92% 
accuracy. 
 

3. SYSTEM ARCITECTURE 
 
 An overview of our 
real-time system is shown in 
(Figure 1). It comprises four 
main components: 
SpamAssassin, SpamFlow 
Analysis Engine, SpamFlow 
Plug-in, and the SpamFlow 
Classification Engine. We 
refer to SpamFlow Analysis 
Engine, SpamFlow Plug-in, 
and SpamFlow Classification 
Engine as spamflow, plugin, 
and classifier, respectively. 
Furthermore, we have a 
separate process running in promiscuous mode, which captures every packet of 
the SMTP [11] session using libcap and stores it to disk.  
 
 3.1. Spamassassin 
  
 SpamAssassin [12] is an open-source, rule-based, content filter. Each 
rule is assigned a score using a genetic algorithm. All scores are then 
aggregated to produce an overall score for each message. The classification 
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process involves comparing the overall score with a user-defined threshold and 
if the score is above the threshold, then the message is classified as spam; 
otherwise, as legitimate. Moreover, using a modular architecture, 
SpamAssassin can be extended to include other filtering techniques, such as 
real-time blackhole lists (RBLs), whitelists, collaborative filtering, learning-
based techniques (e.g., naïve Bayes), and others.   
  
 3.2. Spamflow 
  
 Spamflow [3] serves as our network analyzer. It promiscuously, using 
libpcap [13], listens on the network interface, builds corresponding flows, and 
extracts TCP features for each flow. We modified spamflow for our purposes to 
extract TCP features for a given message identified by the (host IP address, host 
port number) tuple. Finally, we modified our mail server to add to the header of 
each e-mail the (IP address, TCP port number) identification tuple of the remote 
mail-transport agent (MTA) [14] sending the mail. 
 
 3.3. Spamflow Plugin 
  
 Spamflow cannot operate as a standalone application for real-time 
traffic analysis therefore, we developed, using Perl [15], a module that 
integrates spamflow into SpamAssassin and allows it to operate in a real-time 
fashion. It performs two main tasks that are related to spamflow and classifier. 
The first task is to provide spamflow with the 2-tuple identifier of the current 
message under inspection and receive in return the features that correspond to 
the given message identifier. Once plugin obtains the features, the second task 
involves classification: passing the features, via XML-RPC [16] , over to the 
classifier and retrieving the corresponding classification.  
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 3.4. Spamflow Classification Engine 

 
 As mentioned above, we have implemented classifier using 

Python [17] and the Orange [18] machine-learning package. Our classifier 
implementation comprises three machine-learning algorithms: naïve Bayes 
[19,20], decision trees (C4.5) [21], and support-vector machines (SVM) [22]. 
We selected three algorithms because we wanted to examine if the 
classification performance of our system is a function of the classification 
method, and these algorithms are known to provide good performance.    
 

4. RESULTS 
 
This section describes the results from our system evaluation in both a 

virtual test bed and a live-test environment. A virtual test bed provides insights 
about the behavior of a system and allows for more controllable conditions, 
allowing us to reach more reliable and reproducible results. Live testing, on the 
other hand, is important because it reveals how the system interacts with 
possibly unknown features of the external environment [23].  
 
 4.1. Test Bed Evaluation 

 
An overview of our virtual environment is shown in (Figure 2). It 

consists of three building blocks: the client side, server side, and network 
emulator. The client side generates, through an e-mail replayer, the required 
SMTP [12]  traffic, which is then received, analyzed, and classified on the 
server side.  

 
The replayer reads from the TREC public spam corpus [24] containing 

92,187 messages, of which 52,788 are spam and 39,399 are legitimate. For each 
message the replayer sets the type of service (tos) field in the IP header of each 
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message to some value, depending on its class. Thus spam and legitimate 
messages have different tos values, which allows us to redirect them through 
different paths in our network emulator, and finally transmits the message, after 
having established an SMTP session with our mail server.  

 

 
Figure 2. Virtual System Architecture 

The role of the network emulator is to simulate congestion, in the form 
of longer delay, delay variance, retransmissions, etc., that large volumes of 
spam traffic will cause on the link. In our case, our goal is to reproduce the TCP 
characteristics that spam TCP traffic exhibits, such as TCP timeouts, 
retransmissions, resets, and highly variable roundtrip time (RTT) estimates [3]. 
For our evaluation, we selected Dummynet [25], a publicly available tool that 
allows packets to pass through virtual network links to introduce delay, loss, 
bandwidth constraints, queuing constraints, etc.   

 
Table 1 shows how the three classifiers performed with respect to 

training times and classification throughput. Examining the results, we observe 
that naïve Bayes provides the higher throughput among the three classifiers, 
and this conforms to the fact that its decision rule is much simpler than the 
other two, whereas C4.5 has the lowest training time. SVM, on the other hand, 
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achieves the lowest throughput and the largest training time, due to the more 
complex decision model.  

 
 Training Times (msec)  

across samples 
 10 100 1000 10000 

Throughput 
(msgs/sec) 

Bayes 0.884 15.016 105.453 104.843 1300 

C4.5 0.151 0.964 16.017 29.785 1100 

SVM 0.721 12.691 224.250 260.018 700 

Table 1. System Performance 
 
The significant takeaway from these measurements is that, taking into 

account the relative independence of our system from the classification method, 
we can select the classification model that fit our needs. For example, the low 
training time of C4.5 makes it a good candidate when we need to retrain often 
and want to minimize idle times.    
 
 4.2. Live Testing 

 
We deployed our system in a live environment for a selected domain 

from January 25, 2011 to March 2, 2011, where we collected a trace of 5,926 e-
mail messages. Ground truth was first established via SpamAssassin. We then 
manually examined all the legitimate messages and relabeled those that were 
false negatives. Even though the volume of traffic captured is small and 
represents a small portion of the Internet traffic, the results with respect to 
accuracy, precision, and recall were strong.  

 
Auto-learning is the incremental process of building the classification 

model based on exemplar e-mail messages that achieve certain threshold 
values. In our case, we use the flow features of e-mail messages otherwise 
classified via orthogonal methods as having very high or very low scores. More 
specifically, we explicitly retrain each classification model each time we 
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observe a message with a particularly high score from the other SpamAssassin 
categories (rule- and Bayesian-word based) that meets our threshold criteria; 
i.e., having a score above or below our threshold. After retraining is complete, 
we evaluate our models on subsequent messages until we observe one or more 
messages with scores above or below our thresholds, at which point we stop 
and retrain the models.  

 
We set up two thresholds: one for spam messages and one for legitimate 

based on the spam and ham score distributions, which proved effective as it 
allowed the classifiers to be trained on total of 2,685/5,510 (48.7%) spam and 
267/416 (64.2%) ham messages. Figure 3 shows the classification performance 
of the three classifiers as a function of cumulative training samples received. 

 
Figure 3. Autolearning Analysis 

 
We observe a gradual improvement in the performance in all metrics, 

with C4.5 and SVM achieving constant high rates above 95% in accuracy, 
precision, and recall with as few as 1,024 (210) training examples. While 
accuracy is interesting, it is essential that a spam classifier have a very low false 
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positive rate. For this reason we also show precision results for each classifier. 
In other words, of those emails identified as spam, what fraction truly are. With 
as few as 64 (26) training examples, all reached constant high precision rates 
above 95%.  

 
To better understand the sensitivity of our auto-learning results to the 

imposed thresholds, we experiment with a spam threshold three deviations 
above mean. By increasing the spam threshold, the SpamFlow auto-learning 
uses fewer spam-training examples. However, we expect to have higher 
confidence in their true disposition of spam with the higher threshold. With the 
spam score threshold raised to 40, we trained the classifiers with only 30 spam 
training examples many fewer than the number of ham examples. The results 
are interesting with the precision rate remaining above 97% across all 
classifiers with as few as six training flows.  
  

5. CONCLUSIONS 
 
In this research, we implemented the necessary infrastructure to perform 

real-time, on-line transport-layer classification of email messages. We detail the 
system architecture to integrate network transport features with SpamAssassin, 
an MTA, and a classification engine. Our testing reveals that the system can 
handle realistic traffic loads. Using our techniques, we achieve accuracy, 
precision, and recall performance greater than 95 percent after receiving only ≈ 
210 messages during live, real-world production testing.  

 
We note, however, that our live-testing corpus is small. Our intent in 

this work was to demonstrate the practical feasibility of using transport network 
traffic features. In future work, we plan to investigate SpamFlow’s performance 
in large, production systems against much larger volumes of traffic. Our hope is 
to enable the practical deployment of transport-layer based abusive traffic 
detection and mitigation techniques to system administrators.  
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