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Abstract 

Numerical methods are commonly used in engineering where the analytical results 
are not reached or as a support of experimental studies. Various techniques are being used 
as a numeritical method as finite difference, finite volume or finite elements, etc.  In this 
study, numerical solutions are obtained for a circular fin of rectangular profile using finite 
difference method, and the results are compared to the analytical solutions. It is seen that 
the analytical solution and numerical results are found to be compatible. 

 

DİKDÖRTGEN KES İTL İ BİR DAİRESEL KANATÇI ĞIN 
SONLU FARK MODEL İ 

Özetçe 
 

Analitik çözümün mümkün olmadığı durumlarda veya deneysel çalışmalara destek 
olmak amacıyla sayısal yöntemler mühendislikte yaygın olarak kullanılmaktadır. Sayısal 
yöntemler olarak sonlu farklar, sonlu hacim, sonlu eleman metodları gibi çeşitli yöntemler 
kullanılmaktadır. Bu çalışmada sonlu fark yöntemi kullanılarak dikdörtgen kesitli dairesel 
bir kanatçık için sayısal çözüm elde edilmiş ve hesaplanan sonuçlar analitik çözümle 
karşılaştırılmıştır. Analitik ve sayısal sonuçların birbirleriyle oldukça uyumlu oldukları 
görülmüştür.  

 
Keywords: Circular Fin, Numerical Methods, Finite Difference Method. 
Anahtar Kelimeler: Dairesel Kanatçık, Sayısal Yöntemler, Sonlu Fark Yöntemi. 
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1. INTRODUCTION 

Numerical analysis is the combination of mathematics and computer 
programming that creates and implements algorithms for solving the 
problems of continuous mathematics. These problems occur throughout the 
natural sciences, social sciences, engineering, and the other fields. The 
growth in power and availability of digital computers has led to an 
increasing use of numerical solution of the models in science and 
engineering. 

Numerical methods are commonly used in engineering where the 
analytical results are not reached, or as a support of experimental studies. 
Various techniques are used to solve the tough partial differential equations 
which cannot be solved analytically. Most common used numerical method 
for solving a partial differential equation is the finite difference approach. In 
this study, finite difference method is used to get the numerical solution of 
heat transfer inside a circular fin. The temperature distribution inside a 
circular fin is governed by the general heat conduction equation. This 
equation is a three dimensional equation that has both a source term and a 
transient component. But a fin can be assumed steady if the base 
temperature, ambient fluid temperature and combined convection-radiation 
heat transfer coefficient are constant. Therefore, a one dimensional steady 
simplified conduction equation is used with no heat source. 

2. FINITE DIFFERENCE METHOD 

Finite-difference methods are numerical methods for solving 
differential equations by approximating them with difference equations. The 
derivatives are approximated by finite differences, so finite difference 
methods are discretization methods. Today, these methods are the most used 
approach in numerical solutions of partial differential equations [1]. The 
finite difference approach is based upon converting the differential 
equations to finite difference equations using the numerical expressions of 
the derivatives.  
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The error in an approximation is defined as the difference between 
the approximation and the exact analytical solution. The two sources of 
error in finite difference methods are round-off error and the discretization 
error. The round-off error is the loss of precision due to computer rounding 
of decimal quantities, where the discretization error is the difference 
between the exact solution of the finite difference equation and the exact 
quantity assuming perfect arithmetic. 

The finite difference formulas for the first and second derivatives 
can be obtained from Taylor series expansion.  

 

 
Figure 1 The function y=f(x) 

 
The Taylor Series Expansion for the point xi+1 and xi-1 from the Figure 1: 
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if the first derivatives at xi are expressed from the equations above:  
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and the second expression can be defined as: 
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The o(h) term on the right hand side is the truncation error. The finite 
difference equations for the first derivative are called forward difference 
expression with error of order h: 
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and backward difference expression with error of order h: 
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If equation 2 is subtracted from equation 1, and the first derivative is 
derived from the result, the central difference equation for the first 
derivative with error order of h2: 
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is obtained. 
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If the equations 1 and 2 are added together, the second derivative finite 
difference equation can be written as: 
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with error order of h2. 
 
The error order of h means if you decrease h to half, the error also be 
expected to decrease to half.  But if the error is order of h2, it means that if 
you decrease the h to half, the error is expected to decrease to 1/h2 times. 
Therefore, to use the expressions with error of high order should be 
preffered. But such expressions may be more complicated and they can 
increase the calculation time.  The finite difference expressions with error 
order oh, h, h2, h4 can be found in the literature. In this study, it has been 
avoided using the finite difference expressions with error order of h, 
because it is needed much larger grid points to decrease the truncation error 
into the acceptable limits. Thus, the first order forward and backward 
difference expressions with error order of h2: 
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has been preferred to the equations 7 and 8 [2]. 

To use a finite difference method to find a solution to a problem, at first the 
problem's domain must be discretized. This is usually done by dividing the 
domain into a uniform grid (Fig.2). 
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Figure 2 The discretized problem domain 

The grid may be 1, 2 or 3 dimensional with respect to the nature of the 
problem. A 2-dimensional grid is used in this study because temperature 

change with respect to φ  axis, 
φ∂

∂T
 is zero. 

3. GEOMETRY 

In thermal engineering, circular fins are widely used to enhance the 
heat transfer from the surfaces. Adding a circular fin to an object increases 
the amount of surface area in contact with the surrounding fluid, which 
increases the convective and radiative heat transfer between the object and 
surrounding fluid and the surfaces. The radiative heat transfer usually can be 
neglected if the convection is forced convection. Because the surface area 
increases as length from the object increases, a circular fin transfers more 
heat than a similar pin fin at any given length. Circular fins are often used to 
increase the heat transfer in liquid–gas heat exchanger systems. A schematic 
diagram for a circular fin of rectangular profile is given in Figure 3 [3]: 
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Figure 3 Schemetic Diagram of a Circular Fin with rectangular profile 

 
4. GOVERNING EQUATION  
 
The general heat conduction equation in a medium can be expressed 

in rectangular, cylindrical and spherical coordinate systems. Cylindrical 
coordinates conduction equation is used in this study since the problem is 2-
dimensional if this coordinate system is chosen. If rectangular or Cartesian 
coordinate system is would be chosen, the problem would be 3-dimensional 
ant it would be much more complicated to solve the problem.  

The general heat conduction equation in cylindrical coordinates is 
given as: 
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where k is thermal conductivity, ρ is density, c is specific heat, and gene&  is 

the heat generated in a unit volume. 
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The base temperature, ambient fluid temperature, the combined convection-
radiation coefficient, and thermal conductivity of the fin material are 
assumed as constant. The problem is a steady, and there is no heat 
generation inside the fin. Under these assumptions, the governing equation 
becomes: 
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For the governing equation, the central difference expressions can be written 
as: 
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Using these finite difference equations, for the internal grid points, the 
governing equation (14) is discretized as: 
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Boundary Conditions 

At the base of the fine, the temperature is constant, and it the base 
temperature. So, the boundary condition for the base is: 

bji TT =,         (19) 

as seen in Figure 4. 

 

Figure 4 The boundary condition for the base of the fin 

For the upper  side, the heat conducted from the lower nodes should be 
equal to the convection to outside 
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T
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as seen in Figure 5, where ∞T  is the ambient fluid temperature. 
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Figure 5 The boundary condition for the upper side of the fin 

As this equation is dicretized by equation 11, the boundary condition 
becomes: 
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For the lower  side, the heat conducted from the upper nodes should be 
equal to the convection to outside: 

( )∞−=
∂
∂− TTh

z

T
k        (22) 

as seen in Figure 6. 
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Figure 6 The boundary condition for the lower side of the fin 

As this equation is dicretized by equation 12, the boundary condition 
becomes: 
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For the tip of the fin, the heat conducted from the inner nodes should be 
equal to the convection to outside: 
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∂
∂− TTh

r

T
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as seen in Figure 7. 



İbrahim GİRGİN, Cüneyt EZGİ 
 

 64 

 

Figure 7 The boundary condition for the tip of the fin 

As this equation is dicretized by equation 12, the boundary condition 
becomes: 
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5. STUDY  

 A Matlab code has been written to calculate the temperature 
distribution inside the fin. Gauss-Seidel iterative method was used for 
iteration with an overrelaxation parameter, w, between 1 and 2 to speed up 
convergence: 

( ) ( )oldjinewjiji TwwTT ,,, )1( −+=      (26) 

After finding the temperature distribution, the heat transferred to 
ambient air from the fin has been calculated from the equation: 
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base
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since the heat transferred to ambient fluid is equal to the heat that is 
conducted from the base of the fin.  

The fin efficiency is defined as: 

max,fin

fin
fin

Q

Q
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=η        (28) 

where max,finQ& is the heat transfer from a perfect fin with an infinite 

thermal conductivity, which has a surface temperature equal to the base 
temperature. So  max,finQ&  is defined as: 

( )∞−= TThAQ basefinfin max,
&      (29) 

Heat transfer from the fin was calculated numerically and compared to 
the analytical solution exist in the literature. The analytical solution of 
efficiency is given as:  
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Bessel functions of the first and second kind. 
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6. RESULTS  
 
The temperature distribution inside the fin was calculated 

numerically for 3 cases: 212 =rr c , 312 =rr c , and 412 =rr c . The heat 

transfer from the fin was calculated numerically from the Eq.27, and fin 
efficiency was calculated from Eq.28, for different ξ  values,   

2/1

2/3














=

p
c kA

h
Lξ       (31) 

where cL is corrected length, 2/tLLc +=  and  tLA cp = . 

The results are given in Figure 8. The square, diamond, and triangle 
values are the numerical results while the continuous solid lines are 
analytical values from Equation 30. There is a good agreement between the 
numerical solution and the analytical solution as it is seen in the figure.  

It is seen in the figure that fin efficiency approaches to 1 as the 
dimensionless variable ξ  goes to zero.  

As fin length L or convection coeffient h goes to zero, or thermal 
conductivity k of the fin is very large in Eq. 31, ξ  approaches to 0, which 
means that the temperature of the fin is close to the temperature of the base, 
which means the efficiency is very close to 1, as expected. 
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    Figure 8 Numerical Results vs. Analytical Solution 
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