Epidemiological study on acute cutaneous leishmaniasis in Morocco

Kholoud Kahime ${ }^{1 *}$, Samia Boussaa ${ }^{1,2}$, Abderrahmane Laamrani-El Idrissi ${ }^{3}$, Haddou Nhammi ${ }^{3}$, Ali Boumezzough ${ }^{1^{*}}$
${ }^{1}$ Laboratory of Ecology \& Environment, (URAC 32, CNRST; ERACNERS 06), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
${ }^{2}$ ISPITS-Institut Supérieur des Professions Infirmières et des Techniques de Santé, Marrakesh, Morocco
${ }^{3}$ Directorate of Epidemiology and Disease Control, Ministry of Health, Rabat, Morocco

ARTICLE INFO

Article history:

Received 15 Jul 2015
Received in revised form 23 Jul 2015
Accepted 4 Aug 2015
Available online 9 Oct 2015

Keywords:

Zoonotic cutaneous leishmaniasis
Anthroponotic cutaneous
leishmaniasis
Epidemiology
Incidence
Morocco

Abstract

Objective: To describe and compare the epidemiological features of anthroponotic cutaneous leishmaniasis (ACL) caused by Leishmania tropica, and zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major in Morocco. Methods: We performed a retrospective study of ZCL and ACL cases reported during the last ten years in Morocco (2004-2013). Epidemiological data were analyzed by using Pearson's correlation method as well as Tukey test and digital maps were produced for incidence repartition calculated by using ArcMap GIS version 10. Results: A total of 41656 cases of cutaneous leishmaniasis were notified between 2004 and 2013 in Morocco. The mean incidence was 139 cases/100000 population/10 years and it was significantly higher in 2010. In the spatial context, ACL form was the most common in Morocco, while ZCL was the most important in terms of the number of reported cases. For both forms, the highest incidence occurred in females and children ($0-$ 14 years). When analyzed according to the number of cases in each province, Errachidia (8728 cases) and Azilal (3523 cases) were the most affected by ZCL and ACL, respectively, while the highest incidence was noted in Zagora (231 cases/ 100000 population/10 years) and in Chichaoua (97 cases/ 100000 population/10 years), for ZCL and ACL, respectively. Maps of incidence repartition were performed to identify the risk area of ZCL and ACL. Conclusions: ZCL and ACL are still major health problems in Morocco. We highlight the spatiotemporal change of cutaneous leishmaniasis incidence through the country during the last ten years and we underline the correlation between ZCL incidence and the percentage of rural population in Morocco.

1. Introduction

Leishmaniases are parasitic diseases with a wide range of clinical symptoms. In the skin, they range from localized cutaneous and mucocutaneous leishmaniasis to diffuse cutaneous leishmaniasis (CL), whereas in the viscera they range from subclinical to potentially fatal disease ${ }^{[1,2]}$. These parasitic protozoans are usually transmitted to a human host via a bite by an infected

[^0]female phlebotomine sandfly (Diptera: Psychodidae) on exposed parts of the human body. Leishmaniasis currently threaten 350 million persons in 88 countries ${ }^{[2]}$.

Caused by three Leishmania species [Leishmania major (L. major), Leishmania tropica (L. tropica) and Leishmania infantum (L. infantum)], CLs are endemic, widespread and represent a public health problem in most countries in the Mediterranean basin ${ }^{[3]}$.

In Morocco, CL is widely distributed as three nosogeographic entities. L. major is transmitted by Phlebotomus papatasi and is associated with zoonotic cutaneous leishmaniasis (ZCL) in the arid regions along the northern edge of the Sahara desert ${ }^{[4-6]}$. L. infantum is transmitted by Phlebotomus ariasi and causes zoonotic cutaneous disease (and mainly zoonotic visceral form) in the north and centre-south regions of the country ${ }^{[5-7]}$. Lastly, L. tropica, causative agent of anthroponotic cutaneous leishmaniasis (ACL), is widespread in the semi-arid regions of

Central and South-western Morocco, and transmitted by Phlebotomus sergenti (P. sergenti) $)^{[5,6,8]}$. The main reservoirs for ZCL by L. infantum and L. major, respectively, are dogs and rodents ${ }^{[9,10]}$, with humans fulfilling this function for ACL by L. tropica ${ }^{[11]}$.

Over the past decade, the epidemiological situation of CL has changed significantly. It is acquiring an increasingly epidemic status with geographic expansion to previously free areas and the emergence of new foci in several provinces of Morocco. A total of 24804 cases of L. major CL and 16852 cases of L. tropica CL were recorded between 2004 and 2013 in Morocco. L. infantum CL meanwhile is a rare condition with a few sporadic cases in the north of the country (especially in Sidi Kacem Province) and few epidemiological data are available ${ }^{[5,12]}$. This study was designed to describe and compare the epidemiological features of L. major and L. tropica CL cases during a ten year period (2004-2013) in Morocco.

2. Materials and methods

2.1. Study area and population

Located between the Atlantic and the Mediterranean between latitudes $21 \mathrm{~N}-36 \mathrm{~N}$ and longitudes $1 \mathrm{~W}-17 \mathrm{~W}$, Morocco was placed in the extreme northwest of the African continent. It had the most important permanent rivers in the Maghreb but suffers in semi-arid to arid areas from a lack of water during all seasons ${ }^{[13]}$. Morocco's climate was Mediterranean and mainly characterized by hot and dry summer where rainfall was almost completely absent except in mountain areas (which have significant thunderstorm activity) and particularly high evaporation. It was characterized also by a temperate to mild winter in the coastal strip, cool to cold in the country's interior, on the chains of the Atlas, in the Rif and the highlands of the eastern ${ }^{[14]}$.

Morocco had a surface area of $710850 \mathrm{~km}^{2}$ and a population of 29891708 with 13428074 inhabitants in rural areas ${ }^{[15]}$.

2.2. Epidemiological data

The present study was a retrospective analysis of the CL in Morocco. Epidemiological data were obtained from the bulletins, registers and reports published by the local and national medical services. These epidemiological data were recorded after active or passive screening (leishmaniasis is a certifiable disease in Morocco). We used clinical and epidemiological data provided by the Moroccan Directorate of Epidemiology and Fight Against Diseases, during 2004-2013 ${ }^{[16]}$.

2.3. GIS data base and statistic analysis

Digital maps were produced for incidence repartition calculated for the studied area by using ArcMap GIS version 10. The output was two maps each depicting the incidence of ZCL and ACL.

All data were analyzed by using SPSS software and Pearson's correlation method. Results were considered significant when the P-value was less than 0.05 by using a Tukey test.

3. Results

Table 1 shows the general characteristics of all provinces ($n=52$) affected by CL (ZCL and ACL) and the incidence (cases/ 100000 inhabitants/ 10 years) of CL in Morocco. For ZCL, the

Table 1
Geographic, demographic and epidemiologic characteristics of each province affected by CL in Morocco.

CL form	Provinces	Latitude	Longitude	Rural population (\%)	Incidence (cases/100000 inhabitants/ 10 years)
ZCL	Boulemane*	33.363	-4.730	70.93	35.01
	Errachidia*	31.934	-4.423	64.89	156.81
	Figuig	32.213	-1.368	51.20	179.32
	Jrada	34.312	-2.164	38.77	99.58
	Midelt	32.684	-4.735	100.00	39.75
	Ouarzazate*	30.907	-6.908	70.29	87.60
	Taourirte	34.416	-2.900	42.29	0.10
	Tata	29.746	-7.970	67.88	15.29
	Tinghir	31.522	5.518	78.27	15.18
	Zagora	30.332	-5.837	661.06	231.08
ACL	Agadir I Outanane	30.412	-9.604	I Outanane	0.23
	Al haouz	31.307	-7.858	89.22	14.64
	Al Hoceima	35.249	-3.938	70.06	2.65
	Azilal	31.967	-6.569	83.81	69.83
	Ben Slimane	33.616	-7.131	63.18	0.05
	Béni Mellal	32.339	-6.355	52.71	5.99
	Berkane	34.924	-2.320	42.24	0.22
	Boulemane*	33.363	-4.730	70.93	11.61
	Chefchaouen	35.171	-5.272	89.56	2.02
	Chichaoua	31.545	-8.765	87.09	96.96
	Chtouka	30.071	-9.162	86.65	0.44
	Ait Baha				
	Driouach	34.982	-3.383	70.64	5.02
	El jadida	33.241	-8.505	72.92	0.01
	El kelaa	32.050	-7.409	75.95	1.07
	Sraghna				
	Errachidia ${ }^{*}$	31.934	-4.423	64.89	0.45
	Essaouira	31.514	-9.770	421.73	66.55
	El Hajeb	33.693	-5.372	57.32	0.46
	Fahs Anjra	35.766	-5.667	100.00	1.13
	Fès	34.035	-5.000	2.33	0.84
	salah				
	Guelmim	34.234	-3.351	31.18	4.50
	Guercif	34.233	-3.351	100.00	6.11
	Inezgane	30.356	-9.550	8.10	0.17
	A Melloul				
	Kenitra	34.263	-6.581	50.94	0.05
	Khemisset	33.821	-6.069	58.03	0.19
	Khenifra	32.939	-5.668	47.23	0.31
	Larache	35.184	-6.151	53.52	1.40
	Marrakech	31.637	-7.997	21.22	0.33
	Meknes	33.893	-5.556	19.99	0.91
	Mdiq	35.684	-5.330	6.40	0.58
	Fnideq 3.68				
	Macoub 34.088 -5.181 07.90 5.32				
	Nador	35.168	-2.939	49.34	2.55
	Ouazzane	34.800	-5.583	18.88	8.56
	Ouarzazate*	30.907	-6.908	70.29	15.64
	Sale	34.038	-6.803	6.56	1.03
	Safi	32.321	-9.219	52.86	0.05
	Sefrou	33.831	-4.840	53.18	32.94
	Settat	33.002	-7.621	66.16	6.11
	Sidi Kacem	34.236	-5.713	69.91	17.88
	Sidi Slimane	34.261	-5.923	100.00	37.66
	Tanger	35.777	-5.839	7.73	0.17
	Taounate	35.249	-3.940	89.83	15.31
	Taroudannte	30.468	-8.869	76.11	5.67
	Taza	34.228	-4.021	66.33	12.96
	Tetouan	35.577	-5.368	24.37	4.19
	Tiznit	29.708	-9.730	75.97	0.26

*:Provinces with both ZCL and ACL forms.
highest incidence was observed in Zagora (231.08 cases/ 100000 inhabitants/study decade) and Figuig (179.32 cases/100000 inhabitants/study decade), followed by Errachidia (156.81 cases/ 100000 inhabitants/study decade). This high incidence could be linked to the elevated percentage of rural populations in these areas. The lowest incidence was determined in Taourirte (0.10 cases/100000 inhabitants/study decade) (Table 1).

Figure 1 presents the temporal evolution of CL (ZCL and ACL) cases in Morocco between 2004 and 2013. The highest CL cases were noted between 2008 and 2011 for ZCL and between 2010 and 2013 for ACL. The overall maximum of cases, for both forms, was reported in 2010.

Figure 1. Temporal evolution of CL (ZCL and ACL) cases in Morocco, 2004-2013.

Spatiotemporal analysis of ZCL (from 2004 to 2013) showed a northward migration of the disease to Jrada and Taourirt (Figure 2).

Figure 2. Map showing geographical distribution of ZCL incidence (cases due to L. major/100 000 population/(2003-2014 period) in Morocco provinces. Ouarzazate: Ouarzazat + Thinghir.

Concerning ACL, the highest incidence was observed in Chichaoua (96.96 cases/ 100000 inhabitants/study decade) followed by Azilal (69.83 cases/ 100000 inhabitants/study decade), whereas the lowest incidence occurred in Kenitra, Ben Slimane, Safi, El Jadida with incidence between 0.05 and 0.01 cases $/ 100000$ inhabitants/study decade (Table 1, Figure 3).

Figure 3. Map showing geographical distribution of ACL incidence (cases due to L. tropica/100 000 population/10 years) in Morocco (cases recorded between 2003 and 2014).

Epidemiological analysis of CL distribution according to age and gender showed that all ages and both genders were affected by the different forms of disease (Table 2). The analysis with
counterparts because of the unsightly lesions and the socioeconomic consequences for women of a perception of 'unmarriageability' due to unpleasing appearance ${ }^{[20]}$.

Table 2
Epidemiological characteristics of CL in Morocco (2004-2013).

CL form	Parameters		Year										Total	P
			2004	2005	2006	2007	2008	2009	2010	2011	2012	2013		
ZCL	Gender	Male	619	998	971	598	1458	1897	2757	995	351	243	10887	N.S
		Female	722	1176	1193	754	1973	2505	3687	1224	389	294	13917	
		Total	1341	2174	2164	1352	3431	4402	6444	2219	740	537	24804	
	Age group	< 5 years	202	273	334	210	523	816	1038	414	214	188	4212	$P<0.05$
		5-14 years	536	828	875	479	1392	1933	3408	1156	322	134	11063	
		15 years and above	603	1073	955	663	1516	1653	1998	649	204	215	9529	
		Total	1341	2174	2164	1352	3431	4402	6444	2219	740	537	24804	
ACL	Gender	Male	406	381	506	816	729	699	1037	970	1009	929	7482	N.S
		Female	585	483	691	1122	968	912	1226	1130	1127	1126	9370	
		Total	991	864	1197	1938	1697	1611	2263	2100	2136	2055	16852	
	Age group	< 5 years	232	214	359	470	610	584	896	858	864	926	6013	$P<0.05$
		5-14 years	364	304	380	644	560	533	690	694	688	513	5370	
		15 years and above	395	346	458	824	527	494	677	548	584	616	5469	
		Total	991	864	1197	1938	1697	1611	2263	2100	2136	2055	16852	

N.S: Not significant.
respect to age groups showed that children (less than 14 years) were significantly $(P<0.05)$ affected $(62 \% ; 67 \%)$ compared to adults $(38 \% ; 33 \%)$ for ZCL and ACL, respectively (Table 2).

4. Discussion

Human CL is widely distributed in Morocco. Compared with visceral leishmaniasis (3.17\%), CL accounted for 96.83% of leishmaniasis cases between 2004 and 2013. Within this CL form, ZCL presented 57.63% (about 24804 cases), while ACL recorded 39.20% (16852 cases) of CL cases reported in the same period.

ZCL is the oldest leishmaniasis form in Morocco. In the preSaharan area, it has been identified since $1914^{[17]}$, in the palm grove of Oued Tata, where a subsequent and major CL epidemic was manifested during the late 1970s. After Tata, two new epidemics were identified: one located along the Draa, in the depression of Ouarzazate and the other on the high plateau, south of Oujda ${ }^{[4,18]}$. Now identified as rampant in the country, the disease has spread endemically both in the per-arid Moroccan palm grove zone (the Tata-Akka-Foum Z'Guid triangle in Ouarzazate Province and in the Northern Oriental Highlands in the arid Ain-Beni Mathar strip ${ }^{[4,19]}$. Actually, ZCL in Morocco is caused by L. major zymodeme MON-25 and transmitted by P. papatasi, with Meriones shawi grandis as the main reservoir host ${ }^{[6]}$.

About 73 years after ZCL's Moroccan identification, the ACL form was identified in 1987. Since 1997, it has been considered as a major threat to public health ${ }^{[5]}$. It was widespread in semiarid regions, provinces in central and western slopes of the Atlas Mountains, from Azilal in the centre up to Essaouira in the west and Agadir-Guelmim in the south ${ }^{[8]}$. Currently, ACL is transmitted by the sandfly P. sergenti, with human as the only reservoir and caused by L. tropica with many zymodemes (MON-102, MON-107, MON-109, MON-112, MON-113, MON-122 and MON-123) ${ }^{[6]}$.

Leishmaniasis affects both genders with an equal distribution of cases between genders (56% female and 44% male for both infections of ZCL and ACL). This may be related to the fact that women sufferers seek medical advice more often than male

All ages are affected by the different forms of disease, with a high incidence for young children who are at most risk. The same result was recorded for L. tropica and L. major foci in Morocco ${ }^{[21-23]}$. This marked correlation may be explained by the inability of children's immune systems to fight CL infection, as well as the comparative resistance of older people to sandfly bites ${ }^{[24]}$. The large numbers of women and children infected also indicate that leishmania transmission may have occurred in the peridomiciliary habitat ${ }^{[6]}$.

According to urbanization, ACL (also known as the dry or urban) is characterized by its strong rural and urban population, in contrast to the high positive correlation between the ZCL (also recognized as the wet or rural) incidence and percentage of rural population $\left(R^{2}>0.49\right)$.

Moreover, over the past two decades, the epidemiological situation of CL has changed significantly. It acquired an increasingly epidemic status with geographic expansion into previously free areas in several provinces of South-east Morocco ${ }^{[23]}$. According to Bounoua et al. ${ }^{[25]}$, changes in climate may have resulted in an increase in ZCL incidence in Errachidia. In addition to noted global change, socio-economic factors such as poverty, lack of infrastructure, lifestyle and factors influencing the environment, appear to be among the major underlying determinants of leishmaniasis in the region, a result in agreement with previous studies ${ }^{[23,25,26]}$.

Concerning ACL, the highest incidence was observed in Chichaoua (96.96 cases/ 100000 inhabitants/study decade) and Azilal (69.83 cases/100000 inhabitants/study decade). This propagation may be related to the vector distribution. P. sergenti had an extensive geographical distribution and it was also reported in all bioclimatic rural as well as urban population habitats ${ }^{[6]}$. Furthermore, since humans constitute the only reservoir host for ACL, the movement of populations (travel, migration, etc.) may present a source of risk for the spread of the disease. These hypotheses may explain the increase of the incidence of ACL and its extension to new non-endemic areas in all directions.

This study reveals that ZCL and ACL pose a continuous and important health problem in Morocco. In the light of our findings, the change of spatiotemporal CL incidence was identified.

Epidemiological data clearly demonstrate the correlation between incidence of ZCL and the percentage of rural population in different provinces. The cosmopolitan character of species vector of ACL, and population movement may form a source of risk for the spread of ACL disease. Additionally, theses diseases may be linked to vector preferences, socio-economic conditions, climate and environmental factors. Finally, the use of spatial analyses is a highly useful tool in determining high incidence risk zones.

Conflict of interest statement

The authors report no conflict of interest.

Acknowledgments

Special thanks go to Ms Alison Judge, Cambridge UK, for her linguistic consultation.

References

[1] Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries 2015; 9(6): 588-96.
[2] World Health Organization. [Report of the meeting of the WHO Expert Committee on the fight against leishmaniasis]. Geneva: World Health Organization; 2010. [Online] Available from: http:// apps.who.int/gb/ebwha/pdf_files/EB128/B128_33-fr.pdf [Accessed on 21st May, 2015] French.
[3] Antoniou M, Gramiccia M, Molina R, Dvorak V, Volf P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Euro Surveill 2013; 18(30): 20540.
[4] Rioux JA, Lanotte G, Petter F, Dereure J, Akalay O, Pratlong F, et al. [Cutaneous leishmaniasis of the Western Mediterranean basin: the enzymatic identification eco-epidemiological analysis, the examples of three countries, Tunisian, Moroccan and French]. In: Rioux JA, editor. Leishmania taxonomy and phylogeny. Ecoepidemiological applications. Montpellier: Mediterranean Institute of Epidemiological and Ecological Studies; 1986, p. 365-95. French.
[5] Rhajaoui M. [Human leishmaniases in Morocco: a nosogeographical diversity]. Pathol Biol (Paris) 2011; 59: 226-9. French.
[6] Kahime K, Boussaa S, Bounoua L, Fouad O, Messouli M, Boumezzough A. Leishmaniasis in Morocco: diseases and vectors. Asian Pac J Trop Dis 2014; 4(Suppl 2): S530-4.
[7] Guessous-Idrissi N, Chiheb S, Hamdani A, Riyad M, Bichichi M, Hamdani S, et al. Cutaneous leishmaniasis: an emerging epidemic focus of Leishmania tropica in north Morocco. Trans R Soc Trop Med Hyq 1997; 91(6): 660-3.
[8] Guilvard E, Rioux JA, Gallego M, Pratlong F, Mahjour J, Marti-nez-Ortega E, et al. [Leishmania tropica in Morocco. III-The vector of Phlebotomus sergenti. Apropos of 89 isolates]. Ann Parasitol Hum Comp 1991; 66(3): 96-9. French.
[9] Echchakery M, Boussaa S, Kahime K, Boumezzough A. Epidemiological role of a rodent in Morocco: case of cutaneous leishmaniasis. Asian Pac J Trop Dis 2015; 5(8): 589-94.
[10] Boussaa S, Kasbari M, El Mzabi A, Boumezzough A. Epidemiological investigation of canine leishmaniasis in Southern Morocco. Adv Epidemiol 2014; http://dx.doi.org/10.1155/2014/104697.
[11] Dereure J, Rioux JA, Gallego M, Perières J, Pratlong F, Mahjour J, et al. Leishmania tropica in Morocco: infection in dogs. Trans R Soc Trop Med Hyg 1991; 85(5): 595.
[12] Rhajaoui M, Nasereddin A, Fellah H, Azmi K, Amarir F, AlJawabreh A, et al. New clinicoepidemiologic profile of cutaneous leishmanisis, Morocco. Emerg Infect Dis 2007; 13(9): 1358-60.
[13] Bennani A, Buret J, Senhaji F. [Initial national communication to the UN framework convention on climate change]. Kingdom of Morocco: Ministry of Land Management, Urban Planning, Housing and Environment; 2001 [Oniline] Available from: http://unfccc. int/resource/docs/natc/mornc1fres.pdf [Accessed on 25th May, 2015] French.
[14] Esper J, Franck D, Büntgen U, Verstege A, Luterbacher J, Xoplaki E. Long-term drought severity variations in Morocco. Geophys Res Lett 2007; 34: L17702.
[15] High Planning Commission of Morocco (HCP). [Census report]. Morocco: High Planning Commission of Morocco; 2010 [Oniline] Available from: www.hcp.ma/file/129637/ [Accessed on 25th May, 2015] French.
[16] Ministry of Health. [The CL data are provided by the Directorate of Epidemiology and Disease Control]. Rabat: Ministry of Health; 2015. [Oniline] Available from: http://www.sante.gov.ma/Pages/ ADM_Centrale/DELM.aspx [Accessed on 25th May, 2015] French.
[17] Foley H, Vialatte C, Adde R. [Existence in the South Moroccan (High Guir) of the East button endemic]. Bull Soc Path Exot 1914; 7: 114-5. French.
[18] Rioux JA, Guilvard E, Dereure J, Lanotte G, Denial M, Pratlong F, et al. [Natural infestation of Phlebotomus papatasi (Scopoli, 1786) by Leishmania major MON-25. About 28 strains isolated in Southern Morocco]. In: [Leishmania taxonomy and phylogeny. Eco-epidemiological applications]. Montpellier: Mediterranean Institute of Epidemiological and Ecological Studies; 1986, p. 47180. French.
[19] Rioux JA. [Eco-epidemiology of leishmaniasis in Morocco. Review of 30 years of cooperation]. Directorate of epidemiology and the fight against the disease. Ministry of Health. Kingdom of Morocco Epidemiological Bulletin No. 37, 1st quarter, 1999. French.
[20] Chiheb S, Guessous-Idrissi N, Hamdani A, Riyad M, Bichichi M, Hamdani S, et al. [Leishmania tropica cutaneous leishmaniasis in an emerging focus in North Morocco: new clinical forms]. Ann Dermatol Venereol 1999; 126(5): 419-22. French.
[21] Ramaoui K, Guernaoui S, Boumezzough A. Entomological and epidemiological study of a new focus of cutaneous leishmaniasis in Morocco. Parasitol Res 2008; 103(4): 859-63.
[22] Zougaghi L, Bouskraoui M, Amine M, Akhdari N, Amal S. [Cutaneous leishmaniasis due to Leishmania tropica in the area of Marrakech (Morocco): a rebellious focus]. Rev Francoph Lab 2011; 429: 35-9. French.
[23] Kahime K, Bounoua B, Messouli M, Boussaa S, Boumezzough A. Evaluation of eco-adaptation strategies of health to climate change: case of zoonotic cutaneous leishmaniasis (ZCL) as vulnerability indicator in pre-Saharan region of Morocco. In: Behnassi M, editor. Environmental change and human security in the Middle East and Africa. GECS 2012 Conference Proceedings: Springer/Cambridge University Press. Forthcoming.
[24] Arroub H, Alaoui A, Lemrani M, Habbari K. Cutaneous Leishmaniasis in Foum Jamâa (Azilal, Morocco): microenvironmental and socio-economical risk factors. J Agric Soc Sci 2012; 8: 10-6.
[25] Bounoua L, Kahime K, Houti L, Blakey T, Ebi KL, Zhang P, et al. Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. major) in Pre-Saharan North Africa. Int J Environ Res Public Health 2013; 10(8): 3172-91.
[26] Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7(5): e35671.

[^0]: *Corresponding authors: Kholoud Kahime, Laboratory of Ecology \& Environment, (URAC 32, CNRST; ERACNERS 06), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.

 E-mail: kahimkholoud@gmail.com
 Ali Boumezzough, Laboratory of Ecology \& Environment, (URAC 32, CNRST; ERACNERS 06), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.

 E-mail: aboumezzough @ gmail.com
 Peer review under responsibility of Hainan Medical College.

