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ABSTRACT

Objective: To evaluate the ability of Bacillus spp. as direct-fed microbials (DFM) to
biodegrade aflatoxin B1 (AFB1) by using an in vitro digestive model simulating in vivo
conditions.
Methods: Sixty-nineBacillus isolateswere obtained from intestines, and soil sampleswere
screened by using a selective media method against 0.25 and 1.00 mg/mL of AFB1 in
modifiedCzapek-Doxmedium. Plateswere incubated at 37 �Cand observed every two days
for two weeks. Physiological properties of the three Bacillus spp. candidates were charac-
terized biochemically and by 16S rRNA sequence analyzes for identification. Tolerance to
acidic pH, osmotic concentrations of NaCl, bile salts were tested, and antimicrobial
sensitivity profiles were also determined. Bacillus candidates were individually sporulated
by using a solid fermentation method and combined. Spores were incorporated into 1 of 3
experimental feed groups: 1) Negative control group, with unmedicated starter broiler feed
without AFB1; 2) Positive control group, with negative control feed contaminated with
0.01% AFB1; 3) DFM treated group, with positive control feed supplemented with 109

spores/g. After digestion time (3:15 h), supernatants and digesta were collected for high-
performance liquid chromatography fluorescence detection analysis by triplicate.
Results: Three out of those sixty-nine DFM candidates showed ability to biodegrade
AFB1 in vitro based on growth as well as reduction of fluorescence and area of clearance
around each colony in modified Czapek-Dox medium which was clearly visible under
day light after 48 h of evaluation. Analysis of 16S-DNA identified the strains as Bacillus
amyloliquefaciens, Bacillus megaterium and Bacillus subtilis. The three Bacillus strains
were tolerant to acidic conditions (pH 2.0), tolerant to a high osmotic pressure (NaCl at
6.5%), and were able to tolerate 0.037% bile salts after 24 h of incubation. No significant
differences (P > 0.05) were observed in the concentrations of AFB1 in neither the su-
pernatants nor digesta samples evaluated by high-performance liquid chromatography
with fluorescence detection between positive control or DFM treated groups.
Conclusions: In vitro digestion time was not enough to confirm biodegradation of AFB1.
Further studies to evaluate the possible biodegradation effects of the Bacillus-DFM when
continuously administered in experimentally contaminated feed with AFB1, are in progress.
1. Introduction

Aflatoxins are naturally occurringmycotoxins that are produced
by some strains of Aspergillus species which are commonly found
in cereals worldwide and bring significant threats to the food in-
dustry and animal production [1]. At least 14 different types of
aflatoxins are produced in nature [2,3]. Aflatoxin B1 (AFB1) is
considered the most toxic and is produced by both Aspergillus
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flavus and Aspergillus parasiticus [4]. Several physical and
chemical methods have been developed to reduce aflatoxins [2,3].
Unfortunately, these methods have restrictions in terms of
product nutrition, organoleptic qualities, and adverse health
effects, which motivate emphasis on biological methods of
degradation of aflatoxins [5–7]. Bacillus spp. are probiotics
accepted by human or animals as direct fed microbials (DFM).
Our laboratory has showed the safety and efficacy of individual
monocultures for prophylactic and/or therapeutic efficacy against
Salmonella infections under both laboratory and field conditions
as well as the development of a novel, cost-effective DFM with
potential for widespread utilization and improved production, de-
livery and clinical efficacy for poultry [8–14].

The aim of this study was to screen Bacillus candidates capable
of biotransforming AFB1. Hence, the DFM candidates could not
only be used as probiotics but also as an antidote for aflatoxins.

2. Materials and methods

2.1. Isolation and characterization of Bacillus spp.

Previous research conducted in our laboratory focused on
isolation of several Bacillus spp. from environmental and
poultry sources [8–10,12]. Identification was carried out by using a
bioMerieux API 50 CHB (catalog No. 50 430, Biomerieux,
Durham, NC) test kit. Isolates generally recognized as safe
(GRAS) was affirmed as described by Wolfenden et al. [8].
For our preliminary experiment, sixty-nine isolates were cho-
sen based on consistent in vitro anti- Salmonella spp., Clos-
tridium spp., and Campylobacter spp. activity (Data not shown).

2.2. In vitro evaluation of biodegradation of AFB1

A modified Czapek-Dox medium with the following
composition per liter proved satisfactory: sucrose, 3.000%;
NaNO3, 0.300%; K2HPO4, 0.100%; MgSO4, 0.050%; KCl,
0.050%; FeSO4, 0.001%; yeast extract (Difco, BD, Becton,
Dickinson and Company; Sparks, MD 21152, USA; 38800 Le
Pont de Clair, France), 0.005%; agar, 2.000% [5]. To evaluate
AFB1 (Sigma–Aldrich, Oakville, ON) inhibition, standard
solutions were diluted in chloroform and added to the medium
to reach a final concentration of 1 mg/mL of medium, and
while it was still hot, the chloroform was driven off. About
30 mL of the medium was added to each Petri dish and
allowed to solidify. Sixty nine GRAS isolates were grown in
tryptic soy broth (TSB) (catalog No. 211 822, Becton
Dickinson, Sparks, MD) for 24 h at 37 �C and then washed 3
times in 0.9% sterile saline by centrifugation (3900 r/min,
4 �C, 15 min). About 10 mL of each isolate was placed on the
center of the Petri dish plate with modified Czapek-Dox me-
dium. After point inoculation, the plates were incubated at 37 �C
and examined at intervals of 1–2 days for up to 2 weeks under
ultraviolet light (UV) for AFB1 utilization. On initial examina-
tion, plates had to be exposed to UV for about 15 min to develop
fluorescence. Utilization of toxin was indicated by a zone of
non-fluorescence in the colony.

2.3. Identification of candidate isolates

Out of the 69 GRAS isolates, three showed capacity to
biodegrade AFB1 (data not shown). Those isolates were further
identified by 16S rRNA sequence analysis (Microbial ID Inc.,
Newark, DE 19713, USA). Then, the candidate Bacillus strains
were chosen for physiological tests as described byMenconi et al.
[12], and sporulated. The biological detoxification of AFB1 was
determined in an in vitro digestion model as described below.

2.4. Bile salt tolerance

The method of Gilliland et al. (1984) [15], with some
modifications, was used to determine bile salt tolerance. TSB
containing 0.000%, 0.037%, 0.075%, 0.150%, and 0.300% of
bile salts No. 3 (Catalog No. 213 010, Becton Dickinson and
Co., Sparks, MD 21152, USA) was inoculated with 107 CFU/
mL of each potential probiotic strain, after being centrifuged
at 5000 r/min for 15 min and washed 3 times from their 24 h
growth cultures. Samples were incubated for 24 h at 37 �C
with shaking at 100 r/min. Growth in control (no bile salts)
and test cultures was evaluated at 2, 4, and 24 h by streaking
samples on trypticase soy agar (TSA) (catalog No. 211822,
Becton Dickinson, Sparks, MD) for presence or absence of
growth.

2.5. Resistance in conditions of the intestinal tract
evaluation: pH, temperature, and NaCl

A basal TSB medium was used in these series of in vitro
studies. A 24 h culture of each isolate was used as the inoculum
whereby the cells were spun down and re-suspended in 0.9%
sterile saline. Then, 100 mL of the suspension was inoculated
into 10 mL of TSB of each test tube. Two incubation time
points, i.e. 2 h and 4 h, were evaluated for each of the variables
(pH, temperature, and NaCl). The rationale for these two points
was mainly based on the transit time of food matter in the
gastrointestinal tract of poultry. The temperatures tested were 15
and 45 �C. The concentrations of NaCl tested were 3.5% and
6.5% (w/v). The isolates were tested for growth at pH of 2 and 3.
The tubes were incubated with reciprocal shaking, at the specific
test temperatures or 37 �C for the tests on pH and concentrations
of NaCl. At the time points evaluated, each sample was streaked
on TSA for presence or absence of growth, to confirm livability
of the strains. The turbidity of each tube was also noted as an
indication of growth or no-growth. Each treatment was tested
with triplicate tubes.

2.6. Antibiotic resistance

Selected colonies on TSA plates were inoculated and
cultured for 24 h in TSB at 37 �C. Strains were then sent to a
Veterinary Diagnostic Laboratory (University of Arkansas, Di-
vision of Agriculture, Fayetteville, AR, 72703, USA) for anti-
biotic sensitivity analysis by using Kirby–Bauer methodology.
The diameter of the inhibition zones and the interpretative zone
sizes were reported. Twelve antibiotics were tested, and their
concentrations were reported as shown in Table 1. The results
were expressed in terms of resistant, and susceptible.

2.7. Sporulation procedure

In an effort to grow high numbers of viable spores, a solid-
state fermentation (SSF) media developed by Zhao et al. was
selected and modified for use in these experiments [16]. Briefly, a
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liquid media component was added to a mixture of 70% rice
straw and 30% wheat bran at a rate of 40% by weight. The
SSF media was added to a 250 mL Erlenmeyer flask and
sterilized by autoclaving for 30 min at 121 �C. Candidate
isolates were grown individually overnight at 37 �C in TSB,
then 2 mL of a candidate culture was added to the prepared
SSF media. The inoculated flasks were incubated for 24 h at
37 �C, and then incubated for another 72 h at 30 �C. The
cultures were removed from their flasks, placed onto Petri
dishes, and then dried at 60 �C. Following this, the cultures
were aseptically ground into a fine powder to generate stable
spores (~1011 spores/g). Spores were mixed into the feed with
a rotary mixer for 15 min. Samples of feed containing the
DFM candidate culture were taken and a 1:10 dilution was
made with saline. All samples were subject to 100 �C for
10 min. These samples of ten-fold dilutions were placed on
TSA, and incubated at 37 �C for 24 h to count the number of
spores per gram of feed.

2.8. Determination of biological detoxification of AFB1

in an in vitro digestion model

Freshly prepared, unmedicated corn-soy based starter feed
was used for all in vitro trials. DFM candidates were incor-
porated into 1 of 3 experimental feed groups: 1) Negative
control group, with unmedicated starter broiler feed without
AFB1; 2) Positive control group, with negative control feed
contaminated with 0.01% AFB1; 3) DFM treated group, with
positive control feed supplemented with 109 spores/g. In vitro
digestion of the three diets with or without DFM supplemen-
tation was performed by triplicate according to previously
published methods, with minor modifications [17]. All in vitro
digestion steps were carried out at 40 �C to simulate avian
body temperature, by using a water-jacketed incubator
(Forma Scientific Inc., Marietta, OH, USA) customized with
bars that rotated the tubes horizontally at 19 r/min. To mimic
crop digestion, 50 g of each diet and 100 mL of 0.03 mol/L
HCl were placed in 50 mL polypropylene centrifuge tubes and
mixed vigorously. The pH was measured (ranged from 5.19 to
5.22) and the tubes were incubated for 30 min. Next, to mimic
proventricular digestion, 150000 IU pepsin (Sigma–Aldrich
Canada Ltd Oakville, Ont., Canada) and 25 mL of 1.5 mol/L
HCl were added to each tube. Values of pH were measured
(ranged from 1.37 to 1.96) and the mixtures were then incu-
bated for a further 45 min. Following this, 341.5 mg of
Table 1

Antibiotic sensitivity test results for Bacillus spp. isolates.

Antibiotics Concentration Candidate 1 Candidate 2 Candidate 3

Bacitracin 10 IUI/IE/U R R R
Erythromycin 15.00 mg R R R
Gentamycin 10.00 mg S S S
Clindamycin 2.00 mg R R R
Ceftiofur 30.00 mg R R R
Neomycin 30.00 mg S S S
Novobiocin 5.00 mg R R R
Penicillin 10 IUI/IE/U S S S
Ormethoprim 1.25 mg S S S
Tetracycline 30.00 mg S S S
Triple sulfa 1.00 mg S S S
Spectinomycin 100.00 mg S S S

R: Resistant; S: Susceptible.
8'pancreatin (Sigma–Aldrich Canada Ltd.) was added in
32.5 mL of 1.0 mol/L NaHCO3, and the pH was adjusted to
between 6.3 and 6.7 with 1.0 mol/L NaHCO3. Volumes were
equalized in the tubes by adding distilled water, and the sam-
ples were incubated for a further 2 h. After removal of solids
and awns, the samples were first centrifuged at 4100 r/min for
5 min. After digestion time (3:15 h), supernatants and digesta
(by triplicate) were collected for AFB1 analysis by high-
performance liquid chromatography with fluorescence detec-
tion (HPLC-FLD) method by using a Romer Derivatization
Unit (Romer Labs, Inc., MO 63084-1156, USA).

2.9. Statistical analysis

Data of the determination of biological detoxification of
AFB1 by HPLC-FLD of the DFM candidates in an in vitro
digestion model were subjected to ANOVA as a completely
randomized design by using the GLM procedure of SAS/STAT®

9.2. Data were expressed as mean ± SE. Significant differences
among the means were determined by using Duncan's multiple-
range test at P < 0.05.

3. Results

Table 2 shows the identification of Bacillus spp. isolates by
bioMerieux API 50 CHB and 16S rRNA sequence analyzes. The
three isolates were characterized as Bacillus subtilis (B. subtilis)/
Bacillus amyloliquefaciens (B. amyloliquefaciens) by the bio-
Merieux API identification kit. However, further sequence
analysis of 16S rRNA, which is the predominant molecular
technology currently available for microbial identification
revealed that B. amyloliquefaciens was for candidate 1, Bacillus
megaterium (B. megaterium) for candidate 2 and B. subtilis for
candidate 3 (Table 2).

The results of the bile salt tolerance of the Bacillus spp.
isolates after 2, 4, and 24 h of incubation are summarized in
Table 3. All the three DFM candidates were able to grow
when cultured at 0.037% bile salt concentration for 2 h, 4 h,
and 24 h of incubation. The results of the effect of pH, tem-
perature, and NaCl on the three DFM candidates are summa-
rized in Table 4. Vegetative cells were evaluated for
conditions similar to those found in the stomach. All three
candidates were able to survive at pH 2 and pH 3 for 2 h.
Furthermore, vegetative cells grew at 15 �C and 45 �C at both
times of incubation of 2 h and 4 h and were also able to
tolerate up to 6.5% of NaCl (Table 4).

The antibiotic resistance and susceptibility of the DFM
candidates to twelve antibiotics are summarized in Table 1. All
three DFM candidates were sensitive to gentamycin, neomycin,
Table 2

Identification of Bacillus spp. isolates by bioMerieux API 50 CHB and

16S rRNA sequence analysis.

Bacillus isolates API 50 CHB
identification (%)

16S RNA
identification (%)

Candidate 1 B. subtilis/B.
amyloliquefaciens (98.2)

B. amyloliquefaciens
(96.00)

Candidate 2 B. subtilis/B.
amyloliquefaciens (96.6)

B. megaterium
(99.57)

Candidate 3 B. subtilis/B.
amyloliquefaciens (99.7)

B. subtilis
(99.52)



Table 5

Determination of biological detoxification of AFB1 by HPLC-FLD of DFM candidates in an in vitro digestion model.

Groups AFB1 in feed before
digestion (ppb)

AFB1 in solid feed after
in vitro digestion (ppb)

AFB1 in supernatant after
in vitro digestion (ppb)

Negative control < 1.1 < 1.1 < 1.1
Positive control 750.9 352.60 ± 22.85 40.60 ± 3.49
DFM treatment 757.6 349.97 ± 11.52 37.23 ± 2.94

Data are expressed as mean ± SE (P > 0.05).

Table 3

Bile salt tolerance of Bacillus spp. isolates after 2, 4, and 24 h of incubation in TSB medium.

Bacillus isolates 0.000% 0.037% 0.075% 0.150% 0.300%

2 h 4 h 24 h 2 h 4 h 24 h 2 h 4 h 24 h 2 h 4 h 24 h 2 h 4 h 24 h

Candidate 1 + + + + + + – – – – – – – – –

Candidate 2 + + + + + + – – – – – – – – –

Candidate 3 + + + + + + – – – – – – – – –

+: Tolerant; −: Non-tolerant.

Table 4

Effect of pH, temperature, and NaCl on the Bacillus spp. isolates.

Bacillus
isolates

pH of 2 pH of 3 15 �C 45 �C 3.5% NaCl 6.5% NaCl

2 h 4 h 2 h 4 h 2 h 4 h 2 h 4 h 2 h 4 h 2 h 4 h

Candidate 1 + – + – + + + + + + + +
Candidate 2 + – + – + + + + + + + +
Candidate 3 + – + – + + + + + + + +

+: Tolerant; −: Non-tolerant.
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penicillin, ormethoprim, tetracycline, triple sulfa, and spectino-
mycin, and resistant to bacitracin, erythromycin, clindamycin,
ceftiofur, and novobiocin (Table 1).

Table 5 summarizes the determination of biological detox-
ification of AFB1 by HPLC-FLD of the DFM candidates in an
in vitro digestion model. In the present study, no significant
differences (P > 0.05) were observed in the concentrations of
AFB1 in neither the supernatants nor digesta samples evaluated
by HPLC-FLD between positive control or DFM treated
groups.
4. Discussion

Antibiotics as growth promoters in livestock have been in
practice for over five decades. However, rising socio-political
concerns with their use has prompted a quest for alternative
methods of disease intervention and optimization of growth
promotion in commercial poultry farming. The use of DFM
as an alternative approach has gained momentum in recent
years [8–14]. The advantages of application, pathogen reduction,
immunomodulation, performance enhancement and synthesis of
antimicrobials and enzymes have given probiotics and DFM a
clear edge over antibiotics making their use highly sustainable
[8–14]. Conversely, biological degradation of aflatoxins occurs in
nature since aflatoxins are chemically stable but not appear to
accumulate in natural environments [5]. Several investigators
have demonstrated that microorganisms in the environment can
be chosen as sources for biological degradation of aflatoxins [6,18].
Earlier research conducted in our laboratory focused on
isolation of sixty nine GRAS Bacillus spp. isolates with
consistent in vitro anti- Salmonella spp., Clostridium spp., and
Campylobacter spp. activity [8–14]. In the present study, three
out of those sixty nine DFM candidates previously evaluated,
in addition showed ability to biodegrade AFB1 in vitro,
based on growth as well as reduction of fluorescence and
area of clearance around each colony (data not shown).
Analysis of 16S DNA identified the strains as
B. amyloliquefaciens, B. megaterium and B. subtilis; all three
were considered GRAS organisms. Furthermore, their
physiological properties, tolerance to acidic conditions and
high osmotic pressure and relative tolerance to bile salts
make them suitable candidates as DFM. In the present study,
in vitro digestion time was not enough to confirm
biodegradation of AFB1. Further studies to evaluate the
possible biodegradation effects of the Bacillus-DFM when
continuously administered in broiler chickens feed
contaminated with AFB1, are in progress.
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