

Contents lists available at ScienceDirect

Asian Pacific Journal of Tropical Biomedicine

journal homepage:www.elsevier.com/locate/apjtb

Document heading

Simultaneous HPTLC-UV530 nm analysis and validation of bioactive lupeol and stigmasterol in Hygrophila auriculata (K. Schum) Heine

Md Sarfaraj Hussain^{1*}, Sheeba Fareed¹, Mohammad Ali²

¹Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow–226026, Uttar Pradesh, India ²Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi–110062, India

ARTICLE INFO

ABSTRACT

Article history: Received 2 May 2012 Received in revised form 13 May 2012 Accepted 31 August 2012 Available online 28 August 2012

Keywords: Hygrophila auriculata HPTLC-UV Lupeol Stigmasterol Validation

Objective: To analyse the two marker compounds lupeol (LP) and stigmasterol (ST) from methanolic extract of Hygrophila auriculata (H. auriculata). Methods: Separation was achieved on aluminium plates precoated with silica gel 60F254 with toluene-methanol-formic acid (7.0: 2.7: 0.3 v/v/v) as mobile phase. Results: Densitometric analysis was performed at 530 nm in the reflectance mode. Compact bands for LP and ST were obtained at $R_{\rm F}$ 0.52 ± 0.02 and 0.28 ± 0.05. Linearity (r^2 =0.998 5 and 0.993 7), limit of detection (45 and 18 ng/band) limit of quantification (135 and 54 ng/band), recovery (98.2%-99.7% and 97.2%-99.6%), and precision (<2.18 and 1.91) were satisfactory for LP and ST respectively. Linearity range for LP and ST were 100-1 000 and 50-500 ng/band and the contents estimated as (0.19±0.1)% and (0.47±0.1)% w/w respectively. Conclu The method demonstrated efficient analysis testing of LP and ST in samples; therefore it can be used for routine analysis.

1. Introduction

Hygrophila auriculata (H. auriculata) (K. Schum) Heine (HA), a generally occurring wild herb belonging to Acanthaceae family has been advocated for the treatment of variety of diseases including most commonly diabetes and dysentery^[1-3]. As per our tradition, roots, seeds, and aerial parts of the plant has been used in the treatment of jaundice, hepatic obstruction, rheumatism, inflammation, urinary infection, gout, malaria and impotence[4]. The plant has been reported to contain flavonoids (apigenin 7-O-glucuronide, apigenin 7-O-glucoside)[5], alkaloids (asteracanthine and asteracanthicine)[6], aliphatic esters (25-oxo-hentricontyl acetate, methyl-8-hexyltetracosanoate)[7], minerals (Fe, Cu, Co)[8], sterols (stimagsterol)[9], triterpenes (lupeol, hentricotane, betulin, luteolin, luteolin 7-0-rutinosides) [7,10] and essential oils[6]. Earlier scientific investigation showed that the crude extract of HA has anti-nociceptive[11], antitumor^[12,13], antibacterial^[14,15], antioxidant^[16,17], hepatoprotective^[18-20], hypoglycemic^[21], haematinic^[22],

diuretic^[23] anabolic and androgenic activities^[24]. Nowadays, HPTLC has become a routine analytical technique due to its reliability in quantitation of analytes at nanolevel estimation and cost effectiveness^[25-28]. HPTLC chromatogram pattern comparison seems to be promising for fingerprinting the active compounds in plant extracts. A little information is only available regarding analytical methods for the gualitative and/or guantitative estimation of lupeol (1R, 3aR, 5aR, 5bR, 7aR, 9S, 11aR, 11bR, 13aR, 13bR,)-3a,5b, 8,8, 11a hexamethyl-1-prop-1-ene-2-yl-1, 2, 3, 4, 5,6, 7, 7a, 9,10, 11, 11b, 12, 13, 13a, 13b-hexadecahydrocyclopenta [a] chrysene-9-ol) and stigmasterol (3S, 8S, 9S, 10R, 13R, 14S, 17R)-17-[(E2R, 5S)-5-ethyl-6-methyl hept-3-en-2-yl] - 10, 13- dimethyl-2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17- dodecahydro-1H- cyclopenta [a] phenanthren-3-ol) (Figure 1 A, B & 2). A capillary gas chromatographic method has been developed for the qualitative analysis of sterols and triterpenes^[29], however, the HPTLC chromatographic fractionation of the main constituent's sterols and triterpenes has also been published^[30]. Earlier estimations have been done both for LP and ST in other plants either individual or simultaneous, by using hyphenated techniques like HPTLC[31-33], LC-MS/MS[34] and gas chromatography[35]. However, pertaining to our knowledge there is no any hyphenated HPTLC technique available anywhere else for simultaneous estimation of LP and ST in HA extract. So, the development and validation of LP and ST simultaneously by such a hyphenated technology like HPTLC-UV for the betterment of herbal quality standards.

2. Materials and methods

2.1. Plant material and chemicals

H. auriculata fresh plant were collected from the field area of Saharsa, Bihar, India in the month of January 2009; and the specimens (voucher no: SHC 55/01/2009) were authenticated by Dr. Anjani kumar Sinha (taxonomist), Department of Botany MLT Saharsa College, Bihar. Standard stigmasterol (Purity: 97% w/w) and lupeol (purity: 99% w/w) were purchased from Natural Remedies Pvt. Ltd, Bangalore, India. All the solvents used were of chromatography grade and other chemicals used were of analytical reagent (AR) grade. Precoated silica gel 60 F₂₅₄ HPTLC plates were purchased from E. Merck, Germany.

2.2. Preparation of standard and quality control (QC)samples

Stock solutions of LP and ST (10 mg/mL) were prepared in methanol, and by appropriate dilution standard solutions were prepared in the concentration range of 0.1 to 1.0 mg/mL. For calibration, LP standard solution $(1-10 \ \mu L)$ was applied to a HPTLC plate to furnish amounts in the range 100-1 000 ng/band, however ST standard solution $(0.5-5 \ \mu L)$ was applied to furnish amounts in the range 50–500 ng/band. Peak area and amounts applied were treated by linear least-squares regression. Each amount was applied six times. QC samples as low, medium and high at concentration level of 200, 400 and 800 ng/band were taken for LP and 100, 200 and 400 were considered for ST to carry out validation of the method.

2.3. Chromatography

determined by repeating the intra-day assay on three Chromatography was performed, as described previously different days. Precision was expressed as the coefficient [25–28] on 20 cm \times 10 cm aluminum Lichrosphere HPTLC of variation (CV, %) of measured concentrations for each plates precoated with 200- μ m layers of silica gel 60F₂₅₄ calibration level whereas accuracy was expressed as (E. Merck, Darmstadt, Germany). Samples were applied percentage recovery [(Drug found/drug applied) \times 100]. as bands 6 mm wide and 10 mm apart by means of Camag 2.5.2. Robustness (Muttenz, Switzerland) Linomat V sample applicator equipped with a 100 μ L syringe. The constant application rate was Robustness was studied in triplicate at 400 ng/band by 160 nL/s. Linear ascending development with toluenemaking small changes to mobile phase composition, mobile methanol-formic acid (7.0: 2.7: 0.3 v/v/v) as mobile phase was phase volume, and duration of mobile phase saturation performed in a 20 cm \times 10 cm twin-trough glass chamber and activation of TLC plates, the effect on the results were (Camag) previously saturated with mobile phase for 15 min at examined by calculation of RSD (%) and SE of peak areas. room temperature (25 \pm 2) °C and relative humidity 60% \pm 5%. Mobile phases prepared from toluene-methanol-formic acid (7.0: 2.7: 0.3 v/v/v) in different proportions (6.5: 3.2: 0.3, The development distance was 8 cm (development time 10 min) and 20 mL mobile phase was used. The plates v/v/v, 6.8: 2.9: 0.3, v/v/v, 7.2: 2.5: 0.3, v/v/v, and 7.0:2.7:0.3, v/ were dried at room temperature in air and derivatized with v/v) keeping the volume formic acid constant were used anisaldehyde-sulphuric acid reagent and warmed (at 75 $^\circ C$ for chromatography. Mobile phase volume and duration for 5 min) to identify compact bands. Densitometric analysis of saturation investigated were (20 ± 2) mL (18, 20, and 22) was performed at 530 nm in reflectance mode with a Camag mL) and (20±10) min (10, 20, and 30 min), respectively. The TLC scanner III operated by WinCATS software (Version plates were activated at (60 ± 5) °C for 2, 5, and 7 min before

attempt has been made to accept this challenge towards 1.2.0). The slit dimensions were 5 mm \times 0.45 mm and the scanning speed of 20 mm/s.

2.4. HPTLC–UV530nm fingerprinting and image analysis

The plants were air-dried and pulverized. 500 g of the powdered material were packed in muslin cloth and subjected to soxhlet extractor for continuous hot extraction with methanol for 72 h. Thereafter methanolic extracts of HA were filtered through Whatman paper no. 42 and the resultant filtrates were concentrated under reduced pressure and finally vacuum dried. The yield of the methanolic extract was 13.2% w/w. The protocol for preparing sample solutions was optimized for high quality fingerprinting and also to extract the marker compounds efficiently. Since the marker compounds were soluble in methanol, therefore methanol was used for extraction.

The fingerprinting of HA extracts were executed by spotting 10 ^µL of suitably diluted sample solution of the methanolic extract on a HPTLC plate. Each amount was applied six times. Peak area and amounts applied were treated by linear least-squares regression. The plates were developed and scanned as same discussed above. The peak areas were recorded and the amount of stigmasterol and lupeol was calculated using the calibration curve.

2.5. Method validation

Validation of the developed method has been carried out as per ICH guidelines for linearity, range, precision, accuracy, limits of detection (LOD) and quantification (LOQ), and recovery.

2.5.1. Precision and accuracy

Precision (inter and intraday) and accuracy of the assay were evaluated by performing replicate analyses (n=6) of QC samples at low, medium and high QC levels of 200, 400 and 800 ng/band for LP and 100, 200 and 400 ng/band for ST, respectively. Inter-day precision and accuracy were

^{*}Corresponding author: author: Md Sarfaraj Hussain, Faculty of Pharmacy, Integral University, Lucknow–226026 (Uttar Pradesh) India.

Tel: +91-8604415498

Fax: 0522-2890809

E-mail: sarfarajpharma@gmail.com

chromatography.

2.5.3. Sensitivity

To estimate the limits of detection (LOD) and quantification (LOQ), blank methanol was applied six times and the standard deviation (σ) of the analytical response was determined. The LOD was expressed as 3 σ /slope of the calibration plot and LOQ was expressed as 10 σ /slope of the calibration plot.

2.5.4. Recovery studies

Recovery was studied by applying the method to drug samples to which known amounts of marker corresponding to 50%, 100%, and 150% of the LP or ST had been added. Each level was analyzed in triplicates. This was to check the recovery of LP or ST at different levels in the extracts. Recovery of the markers at different levels in the samples was determined.

3. Results

3.1. Chromatography

Chromatogram were developed for both LP and ST under chamber saturation conditions using toluene-methanolformic acid (7.0: 2.7: 0.3 v/v/v) as mobile phase or solvent system (Figure 1B&C). The same mobile phase has been also employed for the separation of HA methanolic extracts (Figure 1D). The optimized saturation time was found to be 10 min. UV spectra measured for the spots showed maximum absorbance at about 530 nm therefore UV densitometry analysis was performed at 530 nm in the reflectance mode as HPTLC-UV530nm. Compact bands as sharp, symmetrical and with high resolution were obtained at $R_{\rm F}$ (0.52 \pm 0.02) and (0.28 ± 0.05) for LP and ST respectively (Figure 2).

As far as we are aware, there is no any HPTLC-UV method reported to quantify LP and ST simultaneously in HA herb or extracts. Therefore we have attempted to develop and validate a cost effective simple and sober UV hyphenated HPTLC technique to quantify bioactive marker components

Table 2

R_r, linear regression data for the calibration curve and sensitivity parameter for LP and ST.

I	Parameter	$R_{\rm F}$	Linearity range (ng/band)	Regression equation	r^2	$Slope\pm sd$	Intercept±sd	Standard error of slope	Standard error of intercept	LOD	LOQ
	LP	0.52	100-1 000	Y=0.005 9X+0	0.999 4	0.005 9±0.000 8	nil	0.001 1	na*	45	75
	ST	0.28	50-500	Y=0.013X-0.037	0.994 1	0.013 ± 0.006	0.037 ± 0.004	0.003	0.014	18	49
*not available (na).											

Table 3 Precision and accuracy of the method (intraday batch/interday batch).

Treesion and accuracy of the method (initiaday baten) method (baten).					
Group	Nominal concentrationa	Obtained ^{a,b}	Precision ^c	$Accuracy^d$	
Lupeol	200	198.3/196.2	1.80/2.18	99.1/98.1	
	400	396.8/392.8	1.75/1.86	99.2/98.2	
	800	801.4/798.3	1.53/1.70	100.2/99.7	
Stigmasterol	100	97.5/95.47	1.73/1.91	97.5/95.7	
	200	198.6/196.9	1.84/1.78	99.3/98.4	
	400	402.2/396.7	1.37/1.55	100.5/99.2	
	400 800 100 200	396.8/392.8 801.4/798.3 97.5/95.47 198.6/196.9	1.75/1.86 1.53/1.70 1.73/1.91 1.84/1.78	99.2/98.2 100.2/99.7 97.5/95.7 99.3/98.4	

^aConcentration in ng/band; ^bMean from six determinations (n=6); ^cPrecision as coefficient of variation (CV, %)=[(standard deviation)/(concentration ound)] \times 100; ^dAccuracy(%)=[concentration found)/(nominal concentration)] \times 100.

in this herb. LP and ST were well resolved at $R_{\rm F}$ 0.52 and 0.28 respectively (Figure 1A, 1B & 1C) from HA methanolic extract sample in the solvent system as same used in case of standards.

The plates were visualized at two different wavelengths 254, 366 and 530 nm as the compounds were found to absorb at variable spectrum range. In addition, this helped in the generating a better fingerprint data whereby species could be well differentiated on enhanced visual identification of individual compounds. The method developed here was found to be quite selective with good baseline resolution of each compound (Figure 1A).

The identity of the bands of compounds 1–9 in the sample extracts was confirmed by overlaying their UV absorption spectra with those of the standards at 530 nm (Table 1).

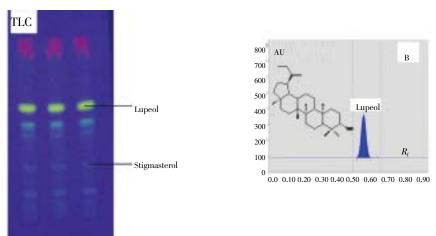
3.3. Calibration Table 1

TLC fingerprints of HA extracts at 530 nm.

• ·		
S. No.	$R_{ m \scriptscriptstyle F}$ value	Color of the band
1	0.13	Light blue band
2	0.22	Blue
3	0.28 (ST)	Intense blue
4	0.39	Blue
5	0.52 (LP)	Green
6	0.59	Purple
7	0.64	Light blue
8	0.69	Light blue
9	0.78	Red

Linearity of compounds (LP and ST) was validated by the linear regression equation and correlation coefficient. The six-point calibration curves for LP and ST were found to be linear in the range of 100-1000 ng/band and 50-500 ng/band. Regression equation and correlation coefficient for the reference compound were: Y = 0.005 9X (0.999 4) for LP, and Y = 0.013X - 0.037 for ST (0.994 1), which revealed a good linearity response for developed method and are presented in Table 2. The mean values (\pm sd) of the slope were 0.0059

Table 4 Robustness of the method.


Optimisation condition

Mobile phase (toluene-methanol-formic acid; proportions (6.5: 3.2: v/v/v, 7.2: 2.5: 0.3, v/v/v, and 7.0:2.7:0.3, v/v/v) Mobile-phase volume (18, 20, and 22 mL) Duration of saturation (10, 20, and 30 min) Activation of TLC plates (2, 5, and 7 min)

Table 5

Recovery	studies	of LP	and ST	•
----------	---------	-------	--------	---

Group	Concentration added to analyte (%)	Theoretical (ng)	Added (ng)	Detected (ng)	Recovery (%)	RSD (%)
Lupeol	50	400	200	589.3	98.2	1.92
	100	400	400	793.6	99.2	1.51
	150	400	600	996.8	99.7	1.49
Stigmasterol	50	200	100	291.5	97.2	1.14
	100	200	200	395.2	98.8	1.89
	150	200	300	497.8	99.6	1.17

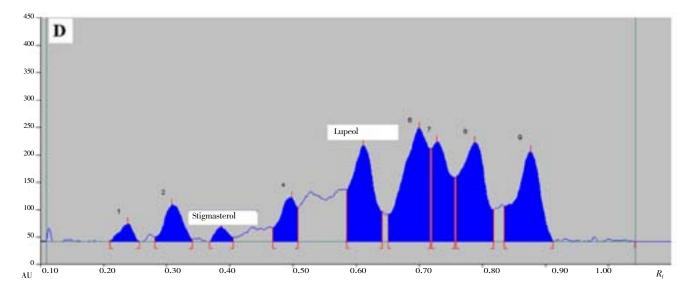
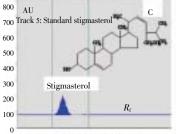



Figure 1. (A) TLC profile of H. auriculata (K. Schum) Heine methanolic extract after derivatization at 530 nm; Spot indicates stigmasterol and lupeol, respectively, (B) HPTLC chromatogram of standard lupeol structure at $R_{\rm F}$ 0.52, (C) HPTLC chromatogram of standard stigmasterol with structure at $R_{\rm F}$ 0.28 and (D) HPTLC chromatogram of methanolic extract of *H. auriculata* (K. Schum) Heine scanned at 530 nm [peak 1–11; LP (0.52)] and ST (0.28)].

	-	LP	S	Т
	SD	%RSD	SD	%RSD
0.3, v/v/v, 6.8: 2.9: 0.3,	1.63	1.52	1.59	1.35
	1.38	1.27	1.12	0.98
	1.92	1.83	1.07	0.91
	1.19	1.08	1.43	1.22

 ± 0.0008 and 0.013 ± 0.006 and intercept were zero and 0.037±0.004 respectively for LP and ST. No significant difference 3.5. HPTLC-UV530nm analysis of bioactive LP and ST in HA was observed in the slopes of standard plots (ANOVA, P > extract0.05).

3.4. Method validation

3.4.1. Precision and accuracy

Table 3 presents intra-day and inter-day precision (as coefficient of variation, % CV) and accuracy of the assay for LP and ST at three QC levels (200, 400 and 800 ng/band). Intra-day precisions (n = 6) for LP and ST were $\leq 1.80\%$ and $\leq 1.84\%$, however the inter-day precisions were $\leq 2.18\%$ and $\leq 1.91\%$ respectively, which demonstrated the good precision of proposed method. Intra-day accuracy for LP and ST were 99.1%-100.2% and 97.5%-100.5%, however inter-day accuracy for LP and ST were 98.1%-99.7% and 95.7%-99.2% respectively. These values are within the acceptable range, so the method was accurate, reliable, and reproducible.

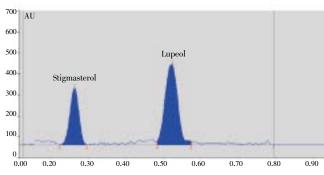


Figure 2. Chromatogram of LP and ST simultaneously determined in H. auriculata (K. Schum) Heine methanolic extract by using toluenemethanol-formic acid (7.0: 2.7: 0.3 v/v/v) as solvent system scanned at 530 nm [LP (0.52) and ST (0.28)].

3.4.2. Robustness

The SD and % RSD was calculated for LP and ST. The low value of SD and % RSD obtained after introducing small deliberate changes in the method indicated that the method was robust (Table 4).

3.4.3. Sensitivity

LOD values for LP and ST were 45 and 18 ng/band respectively: however LOO values were 135 and 54 ng/ band respectively (Table 2), indicating adequate assay sensitivity. The LOD and LOQ were determined from the slope of the lowest part of the calibration plot. This indicated that the proposed method exhibits a good sensitivity for the quantification of above compounds.

3.4.4. Recovery studies

Good recoveries were obtained by the fortification of the sample at three QC levels for LP and ST. It is evident from the results that the percent recoveries for both markers after sample processing and applying were in the range of 98.2%-99.7% (LP) and 97.2%-99.6% (ST) for as shown in Table 5.

The content of LP and ST was estimated in the HA methanolic extract by the proposed method and the results obtained are summarized in Table 6. The percentage of LP and ST obtained in the extract were 0.19 and 0.47 respectively with RSD. It is for the first time, a simple, accurate and rapid HPTLC method has been developed for the simultaneous quantification of bioactive compounds in HA.

4. Discussion

The presented study clearly gave evidence of the simultaneous bioactive quantitative of LP and ST in HA extracts. The developed hyphenated HPTLC method for the simultaneous quantification of above marker compounds is simple, precise, specific, sensitive, and accurate. Further, this method can be effectively used for routine quality control of herbal materials as well as formulations containing any or both of these compounds.

Conflict of interest

We declare that we have no conflict of interest.

Acknowledgement

The author and co-authors would like to acknowledge our Honorable Vice Chancellor, Integral Universitry, Lucknow, for providing necessary facilities in university premises for this research. Author, is also thankful to Dr. K.F.H. Nazeer Ahamed, Assistant Professor, Deptt. of Pharmacology, Vel's college of Pharmacy, Chennai, for his unprecedented support and encouragement. We also would like to extent our sincere thanks to Mr. Md. Zaheen Hassan Ansari Research Scholars at Faculty of Pharmacy, Jamia Hamdard, New Delhi, for critically reading the manuscript and providing the valuable suggestions.

Reference

- [1] Kitty C. A complete guide to maintaining health and treating illness with plants. London: Leopard Book, Random House; 1988, p. 9–12.
- [2] Nadkarni AK. Indian material medica. Bombay: Popular prakashan private limited; 1978, p. 667–669.
- [3] Chopra RN, Naver SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: C.S.I.R Publication; 1956, p. 330-332.
- [4] Jain SK. Dictionary of Indian folk medicine and ethnobotany. New Delhi: Deep Publications; 1991, p. 105–106.

- [5] Bairaj P, Nagarajan S. Apigenin 7-O-glucuronide from flowers of Asteracantha longifolia Nees. Indian Drug 19: 150-152.
- [6] Parashar VV, Harikishan S. Investigation of Astercan longifolia Nees. Indian J Pharmacol 1965; 27: 109–113.
- [7] Misra TN, Singh RS, Pandey HS, Pandey BK. Constitut Asteracantha lonngifolia Nees. Fitoterapia 2001; 72: 194-1
- [8] Choudhary BK, Bandyopdhyay. Important of mineral cor and medicinal properties of Moringa oleifera and Hygrog auriculata. Sachitra Ayurved 1980; 50: 543-549.
- [9] Quasim C, Dutta NL. Reported the prescence of stigmas in the root of Asteracantha longifolia Nees. J Indian Ca Soc 1967; 44: 82-83.
- [10] Govindachari TR, Nagarajan K, Pai BR. Isolation of lu from the root of Asteracantha longifolia Nees. J Indian Res 1957; 16: 72.
- [11] Shanmugasundaram P, Venkatraman S. Anti-nocicep activity of Hygrophila auriculata (schum) Heine. Afri J CAM 2005; 2: 62–69.
- [12] Mazumdar UK, Gupta M, Maiti S, Mukherjee D. Anti-tur activity of Hygrophila spinosa in Ehrlich ascites carcin and Sarcoma-180 induced mice. Indian J Exp Biol 1997 473-477
- [13] Ahmed S, Rahman A, Mathur M, Sultana S. Anti-tu promoting activity of Asteracantha longifolia against experimental hepatocarcinogenesis in rats. J Food Chem Toxicol 2001; 39: 19-28.
- [29] Kpoviessi DSS, Gbaguidia F, Gbe'noua J, Accrombessia G, [14] Boily YL, Vnpuyvelde. Screening of medicinal plant of Moudachiroua M, Rozetd E, et al. Validation of a method Rawanda for antimicrobial activity. J Ethanopharmacol 1986; for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas **16**: 1–13. [15] Valientic AJ, Vanhoof L, Totte J, Lasure A, Vanden Berghe chromatography. J Pharm Biomed Anal 2008; 48: 1127-1135.

19: 185–191.

- D, Rwangaboo PC, et al. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J *Ethanopharmacol* 1995; **46**: 31–47.
- [16] Sunil Kumar, Klausmuller KC. Medicinal plants from Nepal; II. Evalution of inhibitors of lipid preoxidation in biological membranes. J Ethanopharmacol 1999; 64: 135-139.
- [17] Hussain MS, Nazeer Ahamed KFH, Ravichandiran V, Ansari MZH. Evaluation of in vitro free radical scavenging potential of different fractions of Hygrophila auriculata (K.Schum) Heine. Asian J Trad Med 2009; 5: 51-59.
- [18] Singh A, Handa SS. Hepatoprotective activity of Apium graveolens ana Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J Ethanopharmacol 1995: **49**: 119–126.
- [19] Hewawasam RP, Jayatilaka K, Pathirana C, Mudduwa LKB. Protective effect of Asteracantha longifolia extract in mouse liver injury induced by carbon tetra chloride and paracetamol. J Pharm Pharmacol 2003; 55: 1413-1418.
- [20] Shanmugasundaram P, Venkatraman S. Hepatoprotective effect of Hygrophila auriculata (K.Schum) Heine root extract. J Ethanopharmacol 2006; 104: 124–128.
- [21] Fernando MR, Nalinie Wickramasinghe, Thabrew SMD, [35] Sorenson WR, Sullivan D. Determination of campesterol, Ariyananda MI, Karunamayake PL. Effect of Artrocarpus stigmasterol, and beta-sitosterol in saw palmetto raw Heterophyllus and Asteracantha logifolia on glucose tolorence materials and dietary supplements by gas chromatography: in normal human subject and in maturity onset diabetic single-laboratory validation. J AOAC Int 2006; 89: 22-34. patients. J Ethanopharmacol 1991; 31: 277-282.
- [22] Gomes A, Das M, Dasgupta SC. Haematinic effect of Hygrophila spinosa. T Andersonon experimental rodents.

the	Indian J Exp Biol 2001; 39: 381-382.
1982;	[23] Hussain MS, Nazeer Ahamed KFH, Ansari MZH. Preliminary
	studies on diuretic effect of Hygrophila auriculata (K. Schum)
n tha	Heine in rats. Inter J Health Res 2009; 2: 59-64.
	[24] Jayatilak PG, Pardanani DS, Murty BD, Seth AR. Effect of
ents	an indigenous drug (specimen) on accessory reproductive
96.	functions of mice. Int J Exp Bio 1976; 42: 170-173.
ntent	[25] Faiyazuddin Md, Baboota S, Ali J, Ahuja A, Ahmad S, Akhtar
ohila	J. Validated HPTLC method for simultaneous quantitation of
	bioactive citral isomers in lemongrass oil encapsulated solid
terol	lipid nanoparticle formulation. Int J Essential Oil Therap
hem	2009; 3 : 142–146.
	[26] Faiyazuddin Md, Ahmad N, Baboota S, Ali J, Ahmad S,
peol	Akhtar J. Chromatographic analysis of trans and cis-citral
a Sci	in lemongrass oil and in a topical phytonanocosmeceutical
	formulation, and validation of the method. J Planar
otive	Chromatogr 2010; 23: 233–236.
Trad	[27] Faiyazuddin Md, Ahmad S, Iqbal Z, Talegaonkar S, Ahmad
	FJ, Bhatnagar A, et al. Stability indicating HPTLC method
nour	for determination of terbutaline sulfate in bulk and from
oma	submicronized dry powder inhalers. Anal Sci 2010; 26: 1–5.
; 35:	[28] Faiyazuddin Md, Rauf A, Ahmad N, Ahmad S, Iqbal Z,
	Talegaonkar S, et al. A validated HPTLC method for
mor	determination of terbutaline sulfate in biological samples:
inst	Application to pharmacokinetic study. Saudi Pharm J 2011;

- [30] Halinski P, Szafranek J, Szafranek BM, Golebiowski M, Stepnowski P. Chromatographic fractionation and analysis of the main components of eggplant (Solanum melongena L.) leaf cuticular waxes. Acta Chromatographica 2009; 21: 127-137
- [31] Shrishallappa B, Gupta MK, Noble M, Meyyanathan SN, Bhojraj S, David B. HPTLC Determination of ursolic acid in Alstonia scholaris R. Br. J Planar Chromatogr 2002; 15: 183-186
- [32] Anandjiwala S, Srinivasa H, Rajani M. Isolation and TLC densitometric quantification of gallicin, gallic acid, lupeol and β -situaterol from Bergia suffruticosa, a hitherto unexplored plant. Chromatographia 2007; 66: 725-734.
- [33] Padashetty SA, Mishra SH. An HPTLC method for the evaluation of two medicinal plants commercially available in the Indian market under the common trade name brahmadandi. Chromatographia 2007; 66: 447-449.
- [34] Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery JJ. Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. Lipid *Res* 2005; **46**: 21–26.