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1. Introduction

   Liver is the principal organ which actively involves in metabolic 
functions. Liver performs an important function that detoxifies those 
hepatotoxicants, which can cause hepatic injury during metabolic 
reaction. Oxidative stress is considered as the imbalance between 
reactive oxygen species production and antioxidant protective 
mechanism. It is principal cause of the development of various 
hepatic disorders[1]. The reactive oxygen species plays an important 

role in both the initiation and progression of lipid peroxidation by 
inducing oxidative stress. Lipid peroxidation is the metabolism of 
lipids through pathways involving intermediate formation of lipid 
peroxides, hydroperoxides and endoperoxides. Lipid peroxidation, 
a type of oxidative degeneration of polyunsaturated lipids, has 
been implicated in a variety of pathogenic processes. It has been 
showed that lipid peroxidation is involved in the mechanisms of 
various disorders and diseases such as cardiovascular diseases, 
cancer, neurodegenerative diseases, and even aging[2]. CCl4, 
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Objective: To investigate the protective potential of ethanolic extracts of Tetracera scandens L. 
(T. scandens) against CCl4 induced oxidative stress in liver tissues.
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yield a dry residue. Rats were administered with 100 mg/kg of ethanolic extracts orally once 
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(carbonyl protein group), tumor necrosis factor alpha, catalase, superoxide dismutase, and 
glutathione peroxidase, were used to assess damage caused by CCl4 and the protective effects 
of the ethanol extract on liver tissues. 
Results: Hepatotoxicity induced by CCl4 was evidenced by a significant increase in serum 
aspartate aminotransferase and alanine aminotransferase level, lipid peroxidation, protein 
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CCl4 induced hepatotoxicity in rat, which may be due to its antioxidant properties.
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a well-known hepatotoxin, has been widely used as a model to 
evaluate hepatotoxicity[3]. CCl4 induces hepatotoxicity by increased 
oxidative stress, and a connection between oxidative stress and 
lipid peroxidation has been reported[4]. Firstly, CCl4 is metabolized 
by action of cytochrome P450 oxygenase system to convert the 
trichloromethyl free radical, CCl3

.
[4]. Secondly, CCl3

. radical 
reacts with some biological molecular such as proteins, nucleic 
acids and lipids. Furthermore, the CCl3

. radical is converted into 
the trichloromethyl peroxy radical (CCl3OO.) when it reacts with 
oxygen. This radical is still more reactive and is capable to initiate 
the process of lipid peroxidation[4]. CCl4 induces liver injury 
progressing from steatosis to centrilobular necrosis, and develops 
fibrosis and cirrhosis[5].
   Tetracera scandens L. (Dilleniaceae) (T. scandens) is an evergreen 
woody climbers and found widely in India, China, Indonesia, 
Myanmar, Philippines, Thailand, Malaysia and Vietnam. Different 
parts of T. scandens have been used in traditional medicine for 
lowering hypertension, lowering blood pressure, the treatment of 
rheumatism, inflammatory diseases, internal pains, urinary disorders, 
gout and hepatitis. In Vietnam, root and stem are used in treatment 
of hepatitis, gout and inflammation[6]. Some isoflavonoids have 
been isolated from the leaves of T. scandens and showed capacity 
to inhibit xanthine oxidase activity in a concentration-dependent 
manner in vitro[7]. Also genistein derivatives from T. scandens have 
been shown to exert significant glucose uptake effect in basal and 
insulin-stimulated L6 myotubes in vitro, suggesting its great potential 
in the management of diabetes[8]. The extract from leaves of T. 

scandens has also potential anti-diabetic efficacy in alloxan (2,4,5,6-
pyrimidinetetrone) induced diabetic rats[9]. However, no scientific 
report of this plant in vivo has ever been recorded or mentioned in 
the literature showing the hepatoprotective efficacy. Therefore, the 
aim of the present study was to examine the effects of extract from T. 

scandens on CCl4-induced acute hepatic injury in rats.

2. Materials and methods

2.1. Plant material 

   The leaves of T. scandens were collected in October 2013 from 
Nha Trang Province, Vietnam and authenticated by Prof. Nguyen 
Thanh Hai (School of Medicine and Pharmacy, Vietnam National 
University, Hanoi). A voucher specimen (No. SMP-2013-0012) was 
deposited at the Herbarium of School of Medicine and Pharmacy, 
Vietnam National University.

2.2. Ethanol extract of the leaves of T. scandens

   The leaves of T. scandens (2.5 kg) were extracted with ethanol 
(10 L×3 times) at room temperature for a week. The combined 
ethanol extract was filtered then concentrated to yield a dry residue 
(251 g). 

2.3. Animals 

   Adult male Wistar rats with body weights of 180-220 g were 
used in the study. The animals were maintained under standard 
environmental conditions (22-25 °C, 12 h/12 h light/dark cycle) and 

had free access to standard rodent pellet diet and water ad libitum. 
The animals were acclimatized in the laboratory conditions for a 
week before begin of the study. 

2.4. Hepatotoxicity and treated groups

   Animals were divided into three groups (n=10): Group I was 
control group; Group II rats were injected intraperitoneally with a 
single dose of CCl4 in corn oil (1 mL/kg body weight); Group III 
rats were preadministered with 100 mg/kg of ethanolic extracts 
orally by gastric tube, in the form of aqueous suspension once daily 
for one week. The animals were then simultaneously administered 
with a single intraperitoneal injection dose of CCl4 (1 mL/kg body 
weight). The animals were sacrificed 24 h after the last treatment 
by decapitation. The collected serum samples were utilized for 
the estimation of aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) markers. 

2.5. Tissue homogenization

   Liver samples were dissected out and washed immediately 
with ice-cold saline to remove as much blood as possible. Liver 
homogenates (5% w/v) were prepared in cold 50 mmol/L potassium 
phosphate buffer (pH 7.4) using glass homogenizer in ice. The cell 
debris was removed by centrifugation at 5 000 r/min for 15 min 
at 4 °C using refrigerated centrifuge. The supernatant was used for 
the estimation of malondialdehyde (MDA), protein carbonyl groups, 
tumor necrosis factor alpha (TNF-α) levels and catalase (CAT), 
superoxide dismutase (SOD), glutathione peroxidase (GPx) activities. 
Protein concentration was determined by Bradford’s method[10].

2.6. Hepatotoxicity study 

   Serum levels of ALT and AST as markers of hepatic function, 
were measured by using a ALT Activity Assay Kit and AST Activity 

Assay Kit (Sigma-Aldrich, Vietnam ) according to the manufacturer’s 
instructions.

2.7. Lipid peroxidation assay 

   Measurement of MDA has frequently been used to measure 
lipid peroxidation. Lipid peroxidation assay was performed by 
determining the reaction of malonaldehyde with two molecules of 
1-methyl-2-phenylindole at 45 °C[11]. The reaction mixture consisted 
of 0.64 mL of 10.3 mmol/L 1-methyl-2-phenylindole, 0.2 mL of 
sample and 10 µL of 2 µg/mL butylated hydroxytoluene. After 
mixing by vortex, 0.15 mL of 37% v/v HCl was added. Mixture 
was incubated at 45 °C for 45 min and centrifuged at 6 500 r/min for 
10 min. Cleared supernatant absorbance was determined at 586 nm. 
A calibration curve prepared from 1,1,3,3-tetramethoxypropane 
(Sigma-Aldrich, Singapore) was used for calculation. Peroxidized 
lipids are shown as nmol MDA equivalents/mg protein. 

2.8. Detection of protein carbonyl groups by slot blotting

   Protein carbonylation was performed as indicated by Robinon[12], 
based on a combination of 2,4-dinitrophenylhydrazine (DNPH) 
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derivatization. Blanks were prepared by treatment with 20 mmol/

L NaBH4 and incubation at 37 °C for 90 min. Then samples and 

corresponding blanks were prepared at final concentration at 

0.5 mg/mL by diluting in 70% trifluoroacetic acid. About 1 µL 

protein samples were slot-blotted onto a polyvinylidene difluoride 

membrane. Polyvinylidene difluoride membrane was incubated 

with 50 mL of 0.1 mg/mL DNPH in acetic acid for 15 min, then 

washed extensively in acetic acid (3×5 min) and immersed in a 

solution of 7% acetic acid and 10% methanol for 15 min at room 

temperature. Membrane was washed with deionized water four 

times for 5 min each. Then the membrane was incubated in SYPRO 

Ruby blot stain reagent for 15 min to determine protein loading. 

After washing with deionized water (3×1 min) fluorescence was 

monitored for quantification of the total protein loading. After that, 

membrane was blocked with 5% skim milk dissolved in 0.5 mmol/

L Tris–HCl (pH 7.5), 150 mmol/L NaCl, and 0.1% Tween-20 for 1 

h at room temperature. Further, it was incubated with the primary 

antibody anti-DNPH (Sigma-Aldrich, Singapore) at a 1:5 000 dilution 

overnight at 4 °C. After three washes with Tris-buffered saline 

with 0.1% Tween-20, it was incubated with secondary horseradish 

peroxidase conjugated goat anti-rabbit antibody (Sigma-Aldrich, 

Singapore) in Tris buffered saline with Tween with 5% skim 

milk at a 1:10 000 dilution for 1 h at room temperature. Slot blot 

detection was developed using an enhanced chemiluminescence 

detection substrate Immobilon TMWestern Chemiluminescent HRP 

Substrate (Millipore). Carbonylated proteins were visualized by the 

ChemiDoc™ XRS+ System and compiled with Image Lab™ 4.0.1 

Software (Bio-Rad Laboratories) for quantification.

2.9. Measurement of TNF-α

   Liver’s TNF-α was determined with commercially available 

ELISA (Thermo Fisher Scientific, Pierce, USA) kits according to 

the manufacturers’ instructions. Analysis of TNF-α were performed 

using a sandwich ELISA method. Briefly, 96-well plates were coated 

overnight at 4 °C with 100 µL of monoclonal antibody against 

TNF-α (1 µg/mL) in phosphate buffer solution (PBS) 1× (pH 7.2). 

The plate was then washed four times with wash buffer (PBS 1× 
+0.05% Tween-20), blotted dry, and then incubated with blocking 

solution (PBS 1× +1% bovine serum albumin) for 1 h. The plate was 

then washed and 100 µL of each homogenate sample or standard 

was added. Then the plate was incubated at room temperature for 

2 h, followed by washing, and addition of 100 µL of detection 

antibody TNF-α (0.25 µg/mL). The antibody was incubated at room 

temperature for 2 h. Following additional washing, 100 µL of avidin 

conjugated with horseradish peroxidase (1:2 000) was added to each 

well, followed by a 30 min incubation. After thorough washing, 

plate development was performed using ABTS (2,2’-Azinobis 

[3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) liquid 

substrate solution. Then the plate was incubated at room temperature 

for color development and the color was monitored using a 

microplate reader at 405 nm with wavelength correction set at 

650 nm. The standard curve for the ELISA was established by using 

murine standard TNF-α diluted in PBS 1× buffer. All standard curves 

obtained an r2 value between 0.98 and 1. Results were normalized to 

total protein content in the liver samples, determined by Bradford’s 

method[10]. Data were reported as pg TNF-α per mg protein. TNF-α 

standard curves were prepared in ELISA buffer, and samples from 

the tissue homogenates were calculated from these standard curves.

2.10. CAT activity determination 

   CAT activity was measured in triplicate according to the method 

of Aebi by monitoring the disappearance of H2O2 at 240 nm. A 

total of 30 µL homogenate was suspended in 2.5 mL of 50 mmol/L 

phosphate buffer (pH 7.0)[13]. Assay started by adding 0.5 mL of 0.1 

mol/L hydrogen peroxide solution and absorbance at 240 nm was 

recorded every 10 seconds during 2 min and used to calculate CAT 

activity. Hydrogen peroxide solution was substituted by phosphate 

buffer in the negative control. CAT activity was determined by using 

the molar extinction coefficient 39.4 M-1 cm-1 for H2O2 and was 

expressed as nmol of hydrogen peroxide converted per min per mg 

total protein where 1 IU activity=1 µmoL H2O2 converted to H2O per 

min.

2.11. SOD activity determination 

   Total SOD activity in tissue homogenates was determined 

following the procedure of Marklund and Marklund with some 

modifications[14]. The method is based on the ability of SOD to 

inhibit the autoxidation of pyrogallol. In 970 µL of buffer (100 

mmol/L Tris-HCl, 1 mmol/L EDTA, pH 8.2), 10 µL of homogenates 

and 20 µL pyrogallol 13 mmol/L were mixed. Assay was performed 

in thermostated cuvettes at 25 °C and changes of absorption were 

recorded by a spectrophotometer (EVO 210, Thermo-Fisher) in 

triplicate at 420 nm. One unit of SOD activity was defined as the 

amount of enzyme can inhibit the auto-oxidation of 50% the total 

pyrogallol in the reaction. 

2.12. GPx activity determination 

   GPx activity was measured with a coupled enzyme assay[15]. 

The 1 mL assay mixture contained 770 µL of 50 mmol/L sodium 

phosphate (pH 7.0), 100 µL of 10 mmol/L GSH, 100 µL of 2 mmol/

L nicotinamide adenine dinucleotide phosphate (NADPH), 10 µL of 

1.125 mol/L sodium azide, 10 µL 100 IU/mL glutathione reductase 

and 10 µL homogenate. The mixture was allowed to equilibrate 

for 10 min. The reaction was started by adding 50 µL of 5 mmol/

L H2O2 to the mixture and NADPH oxidation was measured during 

5 min at 340 nm. One unit of glutathione peroxidase was defined as 

the amount of enzyme able to produce 1 µmol NADP+ from NADPH 

per min. GPx activity was determined using the molar extinction 

coefficient 6 220 M-1 cm-1 for NADPH at 340 nm and reported as IU 

per mg total protein.

2.13. Statistical analysis

   All results are expressed as mean±SEM. Serial measurements 

were analyzed by using Two-way ANOVA with Tukey’s post hoc 

test using SigmaStat 3.5 program and figures were performed by 
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using SigmaPlot 10.0 program (Systat Software Inc). The critical 

significance level α was 0.050 and, then, statistical significance was 

defined as P<0.05.

3. Results

3.1. Damages in liver by CCl4 administration

3.1.1. Hepatotoxicity
   Serum ALT and AST activities were increased significantly in CCl4-

treated group (Group II) as compared with control group (Table 1). 

In Group III, ALT and AST activities were significantly decreased as 

compared to the CCl4-treated group.

Table 1 
Serum ALT and AST activities were changed significantly in mice receiving 

CCl4. 

Parameters Group I Group II Group III
ALT  (IU/L) 25.8±3.8 305.6±21.7* 45.4±24.6#

AST (IU/L) 19.4±4.2 289.3±23.2* 39.8±27.5#

*: Significantly different from control mice (P<0.05);  #: Significantly 

different from CCl4-treated mice (P<0.05).

3.1.2. Lipid peroxidation
   Lipid peroxidation of biomembranes is one of the principal 

degenerative effects of free radicals. Figure 1 shows the amount of 

lipid peroxidation in the three groups of animals. 
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Figure 1. Effects of T. scandens extract on CCl4-induced hepatic lipid 
peroxidation. 
The bars represent the mean±SEM (n=10). *: Significantly different from 
control mice (P<0.05); #: Significantly different from CCl4-treated mice 

(P<0.05).

   There was a significant increase in the levels of MDA in CCl4-

treated rats. Treatment with extract significantly decreased the 

elevated levels of MDA in CCl4-treated rats.

3.1.3. Protein oxidation: carbonyl group
   Formation of carbonyl groups produces conformational and 

functional alterations in proteins, which can lead to a loss of 

enzymatic activity and to an enhanced susceptibility to proteolytic 

digestion[16]. Similar to the case of lipid peroxidation, the content 

of carbonyl groups was increased significantly by treatment of CCl4 

as showed in Figure 2. However, interestingly, in rats fed with T. 

scandens extract, the level of protein carbonyl group was reduced 

significantly.
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Figure 2. Effects of T. scandens extract on CCl4-induced hepatic protein 
oxidation. 
The bars represent the mean±SEM (n=10). *: Significantly different from 
control mice (P<0.05); #: Significantly different from CCl4-treated mice 
(P<0.05).

3.1.4. TNF-α–marker of inflammation
   TNF–α is considered as a special biomarker that reflects 

inflammatory status. The level of TNF-α was showed in Figure 3. 

CCl4 significantly increased the level of this biomarker in rats liver. 

The treatment with T. scandens extract in Group III significantly 

reduced the levels of TNF-α.
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Figure 3. Effects of T. scandens extract on CCl4-induced hepatic TNF-α. 

The bars represent the mean±SEM (n=10). *: Significantly different from 

control mice (P<0.05); #: Significantly different from CCl4-treated mice 

(P<0.05).

3.2. Antioxidant enzymes

   Antioxidant enzymes are thought to be the first line of cellular 

defense that protects cellular components from oxidative damage. 

Among them SOD, CAT and GPx are important enzymes in the 

elimination of reactive oxygen species. Then, we measured SOD, 

CAT and GPx activities as an index of antioxidant status of liver 

tissues. 
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3.2.1. CAT activity
   The CAT activity was showed in Figure 4. It was significantly 

decreased in CCl4-treated rats compared to that in normal controls. 

However, activity of this enzyme was a near normal in rats treated 

with CCl4 and extract. 
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Figure 4. Effects of T. scandens extract on CCl4-induced hepatic CAT 

activity. 

The bars represent the mean±SEM (n=10). *: Significantly different from 

control mice (P<0.05); #: Significantly different from CCl4-treated mice 

(P<0.05).

3.2.2. SOD activity
   Total SOD activity was also decreased by CCl4 as shown in Figure 

5. Significantly lower activities of liver SOD were observed in CCl4-

treated group as compared to the normal control group. There were 

significant increases in SOD activity in the extract-treated groups 

compared to the CCl4-treated group (P<0.05). 

   Control                  CCl4              CCl4+extract
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Figure 5. Effects of T. scandens extract on CCl4-induced hepatic SOD 

activity. 

The bars represent the mean±SEM (n=10). *: Significantly different from 

control mice (P<0.05); #: Significantly different from CCl4-treated mice 

(P<0.05).
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3.2.3. GPx activity
   GPx is a group of important antioxidant enzymes that converts 

hydrogen peroxide and lipid peroxides to their corresponding 

alcohols whereas glutathione is oxidized to glutathione disulfide. 

Enzymatic activity of GPx showed a significant drop by CCl4 as 

showed in Figure 6. This activity was also increased significantly by 

treatment with T. scandens extract.

   Control              CCl4              CCl4+extract

#

*

Figure 6. Effects of T. scandens extract on CCl4-induced hepatic GPx 

activity. 

The bars represent the mean±SEM (n=10). *: Significantly different from 

control mice (P<0.05). #: Significantly different from CCl4-treated mice 

(P<0.05).
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4. Discussion

   The hepatotoxicity of CC14 is extensively investigated and it results 

in generation of damaging free radicals during the oxidation of this 

compound by hepatic enzyme. CC14 induced lipid peroxidation 

leading to changes of structures of the endoplasmic reticulum and 

other membranes, loss of metabolic enzyme activation and reduction 

of protein synthesis results in liver damage[17]. CCl4 induced hepatic 

damage by generation of lipid peroxidation, decreasing activities of 

antioxidant enzymes and increasing the levels of free radicals[18]. 

Cytochrome P450 is the enzyme responsible for the conversion 

of CCl4 to CC13 radical. Then, the toxic metabolite CC13 radical 

reacts with oxygen to give the chloromethyl peroxy radical. Those 

radicals bind covalently to macromolecules and cause peroxidative 

degradation of lipid membrane of hepatocytes. In the present study, 

we assessed the liver damage by measurement of serum ALT and 

AST level as markers of liver injury, level of MDA as an indicator of 

lipid peroxidation, carbonyl protein group as an indicator of protein 

oxidation and TNF-α levels as an indicator of inflammation. 

   First, in our study, CCl4 developed significant hepatic damage in 

rats as presented by a significant increase in activities of AST and 

ALT. AST and ALT are markers of hepatocyte damage and reflect the 

severity of liver injury. Extract protects the rats from CCl4-induced 

acute liver injury in vivo. After CCl4 administration, serum ALT and 

AST levels in rats were dramatically higher than those in control 

group, and extract can reduce those levels. These results indicate 

that extract protects hepatocytes from damage induced by CCl4 

administration in vivo.

   Second, lipid peroxidation products are formed when reactive 

oxygen species attack polyunsaturated fatty acids, leading to 

membrane structural and/or functional damage[2]. Lipid peroxidation 

conducts to the formation of highly reactive aldehydes which are 
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extremely diffusible and attack or form covalent links with farther 

cellular components. Markers of lipid peroxidation have been found 

to be elevated in liver fibrosis induced by CCl4[19]. Among the many 

secondary products during lipid peroxidation, MDA is a commonly 

used biomarker for the assessment of lipid peroxidation[11]. MDA is 

a very highly reactive and toxic aldehyde formed as a consequence 

of peroxidation of polyunsaturated fatty acids. MDA can alter the 

membrane permeability as well as impair fluidity of the membrane 

lipid bilayer[11]. MDA is also the most mutagenic product of lipid 

peroxidation[20]. In this study, we have showed that the level of 

MDA, a marker of lipid peroxidation, was increased significantly in 

rats by administration of CCl4, and in rats treated with the extract it 

can be decreased to nearly normal level.

   Third, the level of carbonyl protein group is useful for measuring 

oxidative damage to proteins. The oxidative inactivation of enzymes 

by free radicals and the intracellular accumulation of oxidized 

proteins may play a critical role in the alteration of cellular function 

and cell death[21]. However, the damage effects of CCl4 on cell 

proteins have not been studied well. Our data have showed that the 

administration of CCl4 in rats increased the level of carbonyl protein 

group, and the level in animals treated with the extract can be nearly 

decreased to that in control group. 

   Fourth, CCl4 induced liver injury is also associated with increased 

cytokine levels including TNF-α[22]. We evaluated the effects of 

extract treatment on the liver TNF-α level. TNF-α is one of the pro-

inflammatory cytokines, which are early mediators of tissue damage 

and repair. The release of TNF-α is linked to cytotoxicity induced 

by CCl4. Kupffer cells in liver produce TNF-α in rapid response to 

tissue injury[23]. We have demonstrated that the administration of 

CCl4 in rats increased the levels of TNF-α and rats fed with extract 

can inverse significantly this level to that in control group.

   CCl4 increased damages in liver by raising the level of MDA, 

TNF-α and carbonyl group. Our data are in line with many previous 

reports[3,17,19,23]. Our finding showing that the T. scandens extract 

can protect against the oxidative stress led us to assess the possible 

antioxidant defense mechanism against oxidative hepatic damage. 

   The cells have an effective mechanism (the antioxidant system, 

such as SOD, CAT and GPx) to prevent and neutralize the free 

radical-induced damage. The lost of balance between reactive 

oxygen species production and antioxidant defense results in 

oxidative stress, leading to deregulation of the cellular functions. 

SOD, CAT and GPx are the main endogenous enzymatic defense 

systems against reactive oxygen species. SOD is the main 

antioxidant enzyme that catalyzes the conversion of superoxide 

anion (O2
•- to H2O2) and protects cells and tissues from the reactive 

oxygen species generated from endogenous and exogenous sources. 

CAT is heme-containing enzyme that converts H2O2 to water and 

O2, and it is largely localized in subcellular organelles such as 

peroxisomes, thus protecting the cell from oxidative damage by 

H2O2 and OH.. GPx belongs to a class of enzymes that catalyze the 

reduction of H2O2, phospholipid-hydroperoxide and other organic 

hydroperoxides. GPx removes H2O2 by coupling its reduction with 

the oxidation of reduced glutathione. GPx can also reduce other 

peroxides, such as fatty acid hydroperoxides. Our data have showed 

the decline in the activities of these enzymes in CCl4-treated 

animals and their reversal to near normalcy in rats treated with CCl4 

and extract.

   The nuclear factor erythroid 2–related factor 2 (Nrf2) is an 

important regulator of cellular resistance to oxidants. Nrf2 

controls the activation of antioxidants enzymes by regulating their 

transcription[24]. Under basal conditions, Nrf2 is sequestered in 

the cytoplasm in association with the actin cytoskeleton, by Kelch-

like ECH-associated protein-1. Upon oxidation, Nrf2 dissociates 

from Kelch-like ECH-associated protein-1, translocates to the 

nucleus and binds to antioxidant response elements, promotes 

the expression of Nrf2 target genes, and increases the effect of 

antioxidative enzymes, such as CAT, SOD and GPx[25]. Recent 

study demonstrated that glycyrrhetinic acid has hepatoprotective 

action upon CCl4-induced chronic liver fibrosis due to its ability 

to promote Nrf2 nuclear transcription and enhance the Nrf2 target 

genes’ expression, leading to decrease in the MDA content and 

increase in antioxidant SOD, CAT, GPx activities[26]. So, we suggest 

that T. scandens extract may have the similar mechanism; it is able 

to increase the activity of Nrf2 in tissues where it is dysregulated. 

Mechanisms involved in this effect need to be study in deep.

   In summary, this study demonstrates that T. scandens extract had 

a protective effect against CCl4-induced acute hepatic damage in 

rats. The hepatoprotective effect of T. scandens extract is likely due 

to its ability to scavenge free radicals and in combination with the 

ability to reduce inflammatory responses.
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Comments 

Background
   Liver is the key organ which metabolises most of the drugs and 

chemicals, and it plays important role in the detoxification of 

chemicals and drugs. T. scandens have been used in traditional 

medicine for the treatment of hepatitis. It is important to investigate 

whether this natural plant can protect liver in toxic-regent-induced 

acute hepatitis. 

  

Research frontiers
   The present research work depicts hepatoprotective activity 

of T. scandens extract against CCl4-induced hepatic injury and 

assesses by estimating different biochemical paradigms and in vivo 

antioxidant parameters. 

Related reports
   CCl4 is reported to cause hepatic necrosis due to formation of free 

radicals. This model is a classic animal model of acute hepatitis. 
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The traditional medicine has evidence of effectiveness of herbs in 

treating various liver disorders.

Innovations and breakthroughs
   T. scandens extract is a medicinal plant used in various diseases. 

In the present study, authors have demonstrated the hepatoprotective 

activity of T. scandens extract in CCl4-induced acute hepatitis in rat 

models.

  
Applications
   From the literature survey, it has been found that T. scandens 

extract is safe to humans and good for oral administration. This 

scientific study supports and suggests the use of this plant as an 

drug along with commonly used hepatoprotective agent.

Peer review
   This is a valuable research work in which authors have 

demonstrated the hepatoprotective activity of T. scandens extract 

in CCl4-induced liver damage in rats. The activity was assessed 

based on biochemical parameters, antioxidant enzyme levels in 

liver homogenate. This traditional plant is found to be a promising 

hepatoprotective agent in CCl4-indcued hepatitis in rat models. 
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