
International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

1.INTRODUCTION

Design patterns are functionally-proven
general solution proposals developed to solve
similar problems frequently encountered dur-
ing software design [1].

Model-view-controller (MVC) is a de-
sign pattern used in software engineering [2].
It is based on model and view abstraction in
complex applications where large amounts of
data are presented to users. So model and view
can be organized without affecting each other.
Model-view-controller solves this using a me-
diator called controller by isolating the data
access and business logic from data display
and user interaction.

Model View Presenter (MVP) basically
divides the application into three parts as mod-
el, view and presenter [3].

The difference in performance between
the software written using MVC and the soft-
ware written using MVP will be analyzed. In
the second part, architecture and benefits of
the MVC is discussed. In the third part, archi-
tecture and benefits of the MVP is discussed.
In the fourth part, statistical data of the soft-
ware written using MVC and the software writ-
ten using MVP is compared. Fifth part includes
the results.

2. WHAT MVC IS AND ITS
ARCHITECTURE

Model View Controller is an architec-
tural pattern that Norwegian scientist Trygve
Reenskaug introduced while visiting Xerox
labs in the 1970s [4]. It is shortly called MVC.
The model refers to the data displayed by the
view. For example, like on/off state of a check-

The Performance Analysis of Applications Written Using
MVP and MVC

Coşkun Aygun, Computer Engineering Department,
Turgut Ozal University Gazze cad. Etlik-Keçiören, Ankara, TURKEY

E-mail: caygun@turgutozal.edu.tr

Emre Kazan, Computer Engineering Department,
Turgut Ozal University Gazze cad. Etlik-Keçiören, Ankara, TURKEY

E-mail: ekazan2012@stu.turgutozal.edu.tr

Corresponding Author
Coşkun Aygun, Computer Engineering
Department, Turgut Ozal University Gazze
cad. Etlik-Keçiören,
Ankara, TURKEY
E-mail: caygun@turgutozal.edu.tr

Abstract - Model View Controller (MVC) is an architectural pattern introduced at the end of the 70s. The
aim of MVC is the interaction of components in the view layer among themselves and with the rest of the system as
well as the placements of these components. It is described as the separation of business logic from user interface
code. In this way, if we want to make any changes to the view layer, we can do easily without causing any problems
or changes to business logic. Model View Presenter (MVP) is the structure that retrieves user interface code (flow
between pages, functioning within the user interface, etc.) in view class and carries into a different Presenter class.
Thus, it can be operated and tested independently from the creation and rendering of code user interface related to
the presentation. In the present study, two applications have been written using Model View Presenter (MVP) and
Model View Controller (MVC) with the same requirements. To compare applications written using MVP and MVC,
JMeter and speedy framework monitoring comparing tools and analysis results have been presented. MVP has been
found to be more advantageous than MVC. In addition, during the encoding process by way of mocking the layers
in model class, the necessity of acquisition of model data has been eliminated. The development process has been
maintained without the need for database, network connection, file access, etc. And thanks to the mocking of view
classes, testing of applications during the development and the creation of user interface has been unnecessary.
Changes in the user interface can be made in a much easier and safe manner. After all, the changes to be made here
will not affect the process in any way.

The advantage of MVP over MVC can be summarized as the ease of testability and less code dependency
Keywords – Model View Controller (MVC), Model View Presenter (MVP), Performance analysis.

http://www.ijsrise.com
mailto:caygun%40turgutozal.edu.tr?subject=
mailto:ekazan2012%40stu.turgutozal.edu.tr?subject=
mailto:caygun%40turgutozal.edu.tr?subject=

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

Figure 2. The architecture of MVC

3. WHAT MVP IS AND ITS
ARCHITECTURE

The essence of Model View Presenter
(MVP) is to retrieve user interface code (flow
between pages, functioning within the user
interface, etc.) in view class and carries into
a different Presenter class [6]. Thus, it can be
operated and tested independently from the
creation and rendering of code user interface
related to the presentation. Presenter, by get-
ting user input by the view, transfers the work
to the model layer for the execution of the rel-
evant business logic. As a result of behavior in
model, a number of state changes is very likely
to occur. Presenter is informed of these state
changes by way of events. Presenter reflects
these state changes to view part by using ap-
propriate methods [7]. With MVP “separation
of concerns” goal can be easily realized.

Figure 3. The architecture of MVP

In this way, the behavior of the appli-
cation can also be tested easily independently

box component or text data of a textfield com-
ponent. The View accesses the data it needs
by way of the model and performs the GUI
rendering process by using this data. The con-
troller makes it possible to change the model by
the use of events from user inputs like mouse
clicks, keyboard input etc. The change in the
model is detected by the view by means of no-
tifications and displayed on the screen.

Figure 1. The architecture of MVC
In many current documents MVC’s goal

is described as “the separation of business log-
ic from the GUI code” [5]. In this way, if we
want to make any changes to the view layer,
it is highlighted that we can do it easily with-
out causing any problems or changes to busi-
ness logic. However, the inventor of the MVC,
Reenskaug emphasizes that the essential pur-
pose of MVC, as can be seen in Figure 2 be-
low, is to bridge the gap between human user’s
mental model and digital model that exists in
the computer. With this solution, domain data,
in other words, the model will be accessible,
reviewable and updateable directly by the user.
Changing the application into a modular struc-
ture and separating different tasks into differ-
ent layers was not the first goal of MVC. As
can be seen in Figure 2, model, view and con-
troller parts are in solution, but they are parts
shaped towards the main objective mentioned
above. In original MVC paper “Separation of
Concerns” is not a goal but a result. It is con-
cerned with making adaptations to the MVC
pattern in order to develop application in a
modular way and make layers fulfill their du-
ties independently of other layers. One of the
basic reasons is that presentation in view is
generally interwoven with code and business
logic. There is a need for a structure that will
separate two layers clearly.

http://www.ijsrise.com

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

of view. MVP presents an architectural in-
frastructure that will help multiple groups
working together at the same time develop a
large application by dividing it into functional
groups. It is as shown in Figure 3.

3.1. Passive View

Figure 4. Passive View
The biggest difference of the variation

in Figure 4 from MVC is that it is indepen-
dent and unaware of view model. Presenter or
Controller objects provide the coordination be-
tween model and view [8]. After Presenter car-
ries out the necessary procedures by addressing
the UI events, it is responsible for reflecting the
changes to the view side.

3.2. Supervising Controller

Figure 5. Supervising Controller
In Figure 5, the relationship between

View and model is limited to data binding. The
changes in Model can be reflected to view side

with data binding. More complex behaviors are
realized by way of Presenter [9]. To start with
the Model may cause to focus on parts where
user cannot see in the first place or will not
interact. Bottom-up development is the case.
Model can be developed without fully under-
standing the domain. It might be more useful
if the development of the Model is postponed
until having a broader idea of the functional-
ity of the system by piling user scenarios for
a while. To start with the View is often the
case. As a result, user scenarios describe some
functions; one can start with the view for the
realization of these functions and for the user
to see them in a short time and use them to
provide feedback. However, in the first stage
of the development process, it will lead to a
focus on the user interface. That users focus
on user interface more than enough will cause
the user interface to change frequently and
this will keep the developer team from focus-
ing on the more important parts. Another risk
is the possibility of the accumulation of too
much business logic in the view layer. Also
not being easily testable of the GUI interface
and disrupting the process of TDD is another
disadvantage.

The best starting point is the Presenter
part. Development starts from the implemen-
tation of the Presenter class by selecting any
of the user scenarios. User statements in user
scenarios direct the structure of the method in
Presenter. Therefore, Presenter methods are
created by retaining user statements as much
as possible in the user scenarios. This makes
tracking the functional requirements demand-
ed by users in the code easier.

When you implement Presenter class,
mock objects are created from the interfaces
corresponding to the model and view class re-
quired by Presenter. Thus, behaviors in model
and view interfaces will be shaped as user sce-
narios are implemented. After unit tests corre-
sponding to the scenarios are completed, actual
classes that correspond to the model and view
are implemented and user scenario becomes
fully operational.

3.3. Presenter First

In this way, the development of applica-
tions involving especially GUI is called Pre-
senter First approach. In GUI applications
any application behavior is often triggered by
a user action [10]. Thus, when the save but-
ton is clicked in user scenarios, statements
like “when selected a record from the query

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

results”, “when deleted a record” are the key
statements in this approach. They indicate
what the methods in the present classes should
do and which model and viewer interface they
will interact.

The operations that users perform on
GUI trigger a number of events. These events
are dealt by Presenter and the necessary action
is implemented and as a result some changes
and results in the GUI side are reflected to the
user. These events come out of view classes.
Presenter objects come into play when they
are informed of these events. Communication
from view class to Presenter is always car-
ried out over the events. The resulting changes
when Presenter comes into play is again re-
flected to the GUI through the methods offered
by the view class. There is no connection be-
tween View and Model classes. Any changes
in View are transmitted to Presenter through
events. These changes are reflected to model
by Presenter. Likewise, any changes in Model
are transmitted to Presenter through events.
Necessary changes are reflected to View over
Presenter again.

Necessary behavior for View and model
classes will emerge spontaneously with the
development of Presenter class. These inter-
faces serve as specification for user scenarios.
After View interfaces come out, feedback from
users can be taken by developing views. The
only task of the view classes is to promptly
notify Presenter of any changes [11].

Apart from that, any behavior in View
classes is out of the question. View classes,
therefore, do not have any other functional-
ity other than bringing together and rendering
GUI components.

3.4. Presenter

Figure 6. Presenter structure
Presenter First approach also makes it

much easier to implement the practice of TDD
in developing applications. In this approach,
mock derivatives of view, model and other

needed service components are created and
given to Presenter object. In this way, Pre-
senter can be developed independently of the
view, the model and the service layer.

In TDD practice, in the creation of unit
tests of original object, two approaches are
generally used [12]. These are:

• Interaction-based approach
• State-based approach
In TDD practice, other objects needed

for the actual object exposed to unit test to run
are called secondary objects. In interaction-
based approach, it is checked whether be-
havioral methods tested on secondary mock
objects are called by actual object in appropri-
ate number and way. There might be lots of
reasons of the creation of mock derivatives of
secondary objects.

• Real implementations may not be
ready.

• Even though they are ready, the cre-
ation and operation in test environ-
ment may be difficult or may run
very slowly. It may be related to the
network or file system.

• GUI connection may be the case.
• Due to these and similar reasons,

instead of actual secondary objects
fake ones are used. These are called
“mock” objects.

In the second approach, it is checked
whether primary and secondary objects reflect
the true state values after the related behavior
[13]. In this approach, usually actual objects
themselves are used not fake object deriva-
tives as secondary objects.

3.5. Mediator

Developing a more improved user inter-
face by integrating different view-presenter-
model trio forms is the general logic in devel-
oping GUI-based applications.

Figure 7. Mediator structure

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

At this stage it arises the need for different
components to communicate with each other
[14]. This requirement results in a common ar-
chitectural problem that different components
become dependent on each other. Mediator, in
a sense, can be likened to a communication of
a group of people over messenger. A member
in the group uses mediator to send a message
to other group members. Message is transmit-
ted to other group members via mediator [15].
There is not a direct relation or connection
between group members. Group members are
not aware of the people communicating over
messenger at the same time.

After mediator, communication network
between components change into a structure
as shown in Figure 7. This paves the way that
components are reused in the same application
or different applications.

4. EXPERIMENTAL RESULTS

The general aim of this study is to ana-
lyze the performance difference between the
application developed using Model-View-
Controller and the application developed us-
ing Model-View-Presenter. Steps to be fol-
lowed in the system is as follows:

• Both applications have been written
using Java programming language
according to object- oriented soft-
ware principles [16].

• Creating requirements report for ap-
plications: In this application, one
usecase has been determined. First
of all, steps for usecases have been
identified. [17].

For the second application, Class dia-
grams have been drawn [18].

Figure 8. Class diagram of MVC appli-
cation

Figure 9. Class diagram of MVP appli-
cation

• Applications have been coded con-
sidering class diagrams drawn for
the second application.

• Comparing two applications by the
digital data: Digital data have been
obtained as a result of performance
measurement of applications. The
following tool has been used to ob-
tain digital data.

Comparing the performance of two ap-
plications by digital data, performance mea-
surements of applications have been made and
digital data have been obtained. Jmeter testing
tool has been used to obtain these digital data.
Jmeter is a software which is used to test and
measure performance and to make a graphical
analysis of performance [19].

By using Jmeter, at a specified usecase,
same operation has been done by one, fifty, one
hundred and fifty users and average time val-
ues have been displayed. By obtaining average
time values graphical comparison has been
made as follows. The same scenario has en-
abled us to achieve the following data for dif-
ferent number of users.

Figure 10. The graph of data obtained
by using 1 user

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

Figure 11. The graph of data obtained
by using 50 users

Figure 12. The graph of data obtained
by using 250 users

When we examine the above data, we
reach the conclusion that the application writ-
ten using MVP is easier to test than the ap-
plication written using MVC and the waiting
period is less, when user carry out operations.

Even if we have changed the number
of tests, the number of users or scenarios, the
performance results between two applica-
tions, we have seen few changes and we have
achieved results similar to the above data.

5. CONCLUSION

As a result of data with the same sce-
narios with 1, 50 and 250 users, we have ob-
served that the application written using MVP
is easier to test than the application written
using MVC. MVC pattern separates the sys-
tem functionally from each other. However, it
shows how user interactions are changed into
functional behavior. MVP allows developers
to address functional behaviors and the dis-
play of user interface independently.

Thanks to the MVP approach, develop-
ers focus more on functionality rather than

thinking about GUI components. Developing
a fully testable form of behavior becomes pos-
sible. Developing interface and business logic
can be completely separated from each other
and can be carried out by different teams. It
becomes possible to develop components that
need communication between Mediator and
each other modularly and independently.

Since functionality is under control
with unit tests, problems resulting from any
changes made to the user scenario are detected
early. Changes in the user interface can be per-
formed much more easily and safely. After all,
changes to be made here is known to have no
effect on the function in any way.

6. REFERENCES

[1] Freeman, E., Freeman, E., Bates, B. ve Sierra, K.
(2004). Head First Design Patterns, O’Reilly.
Available: http://www.sws.bfh.ch/~amrhein/
ADP/HeadFirstDesignPatterns.pdf

[2] Reenskaug, T. “The Model-View-Controller (MVC)
Its Past and Present”, 2003, University of Oslo.
Available: https://heim.ifi.uio.no/~trygver/2003/
javazone-jaoo/MVC_pattern.pdf

[3] Potel, M. “MVP: Model-View-Presenter The Taligent
Programming Model for C++ and Java”, 1996,
Taligent. Available: http://www.wildcrest.com/
Potel/Portfolio/mvp.pdf [4] Reenskaug, MVC
XEROX PARC 1978-79 Available: http://heim.ifi.
uio.no/~trygver/themes/mvc/mvc-index.html

[5] Geoffroy Warin, Mastering Spring MVC 4, Packt
Publishing - ebooks Account, 2015

[6]Yang Zhang, Yanjing Luo, “An Architecture and
Implement Model for Model-View-Presenter
Pattern”, Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE
International Conference on, Chengdu, 9-11
July 2010, Volume: 8, pp. 532 - 536

[7] Andy Bower, Blair McGlashan, “Twisting the Triad:
The evolution of the Dolphin Smalltalk MVP
application framework”, European Smalltalk
User Group (ESUG), 2000.

[8] M.Fowler, “Passive View “ Available: http://www.
martinfowler.com/eaaDev/PassiveScreen.html,
1996 [9] M. Fowler, “Supervising Controller”
Available:http://www.martinfowler.com/
eaaDev/SupervisingPresent, 2006

[10]M. Marsiglia,B. Harleton, C. Erickson, “Presenter
First: TDD for Large, Complex Applications
with Graphical User Interfaces”

[11] http://en.wikipedia.org/wiki/Presenter_First,2010
[12]M. Alles,D. Crosby,Presenter First: Organizing

Complex GUI Applications for Test-Driven
Development Available: https://atomicobject.
com/uploadedImages/archive/f i les /PF_
March2005.pdf [13] J Halife, “HOW-TO:
WRITE MVP USING TDD” Available:http://
blogs.southworks.net/jhalife/2006/09/01/how-
to-write-mvp-using-tdd/, 2006 [14] Bevis, T.,
Java Design Pattern Essentials, Ability Firs.
2012.

[15] Freeman, A. Pro Design Patterns in C#, Apress. ,
2015. [16]R. C. Martin, “Design Principles and

http://www.sws.bfh.ch/%7Eamrhein/ADP/HeadFirstDesignPatterns.pdf
http://www.sws.bfh.ch/%7Eamrhein/ADP/HeadFirstDesignPatterns.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://heim.ifi.uio.no/%7Etrygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/mvc/mvc-index.html
http://www.martinfowler.com/eaaDev/PassiveScreen.html%2C 1996
http://www.martinfowler.com/eaaDev/PassiveScreen.html%2C 1996
http://www.martinfowler.com/eaaDev/PassiveScreen.html%2C 1996
http://www.martinfowler.com/eaaDev/SupervisingPresent%2C 2006
http://www.martinfowler.com/eaaDev/SupervisingPresent%2C 2006
http://en.wikipedia.org/wiki/Presenter_First%2C2010
http://blogs.southworks.net/jhalife/2006/09/01/how-to-write-mvp-using-tdd/
http://blogs.southworks.net/jhalife/2006/09/01/how-to-write-mvp-using-tdd/
http://blogs.southworks.net/jhalife/2006/09/01/how-to-write-mvp-using-tdd/

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

Design Patterns”, 2002.
[17]Bennett, S., McRobb, S. ve Farmer, R. “Object-

Oriented Systems Analysis and Design Using
UML, McGraw-Hill.”, 2010.

[18]Lethbridge, Timothy C. ve Laganiere, R. “Object-
Oriented Software Engineering: Practical
Software Development Using UML and Java”,
McGraw-Hill, 2001.

[19] Nevedrov, D. “Using JMeter to Performance Test
Web Services” 2006. Available:http://loadstorm.
com/files/Using-JMeter-to-Performance-Test-
Web-Services.pdf

http://loadstorm.com/files/Using-JMeter-to-Performance-Test-Web-Services.pdf
http://loadstorm.com/files/Using-JMeter-to-Performance-Test-Web-Services.pdf
http://loadstorm.com/files/Using-JMeter-to-Performance-Test-Web-Services.pdf

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

