
International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

1. INTRODUCTION

The needs of the mobile community
continuously change which brings the evolu-
tion of mobile communication technologies.
Mobile phones are widely used; hence mobile
application market grows constantly. Similar
applications populate the app stores and if the
developers wish to stand out of the crowd,
they need to produce flawless applications.

Mobile applications are characteristical-
ly different from desktop applications. They
are written for devices with relatively low
processing power, little memory and smaller
screens. This limits their abilities. Also, there
are fewer widgets in one page when com-
pared to traditional applications (see Figure
1). Many applications rely on ‘sensed data’;
cameras, internet connection, GPS sensor and
so on. Furthermore, there is a huge amount of
diversity between devices. They have differ-
ent screen sizes, they are produced by vari-
ous manufacturers, and even their operating
systems are distinct. Mobile developers need
to consider these facts when writing their ap-

plications, but the amount of possible combi-
nations is colossal. This leads to a large por-
tion of test conditions to be neglected. When
these apps are released without being compre-
hensively tested, undesired behavior such as
crashes may occur, and they receive low rat-
ings in app stores. To avoid commercial loss,
white box testing can be applied, but tests gen-
erated using source codes tend not to reveal
bugs relating to GUI. If there was a tool that
could automatically traverse an application by
interacting with GUI widgets and save the in-
teraction sequence, the testing process would
be able to cover some of the cases discussed
above. This is where GUI testing sets in. GUI
testing is the automatic guided traversal of an
application using GUI elements. It can be per-
formed using an emulator, a device or even
multiple devices. There are three main catego-
ries of GUI testing: random, model based and
model learning testing.

Random tests aim to find crashes by
firing widgets on the screen randomly. They
work fully automatic and are easy to imple-
ment, yet the possibility of running same
tests over and over is high [1]. Moreover,
track of the action sequence that caused a bug
can be lost. One example is Monkey Run-
ner, a test tool integrated into Android SDK.
There are also more directed versions of ran-
dom testing such as Dynodroid [1].

Automated Black-Box GUI Testing for Revealing System
Bugs in Mobile Applications

Özlem Muslu, Department of Information and Communications Technology, Netaş
Istanbul, TURKEY

E-mail: omuslu@netas.com.tr
Yunus Mete, Department of Information and Communications Technology, Netaş

Istanbul, TURKEY
E-mail: yunusm@netas.com.tr

Corresponding Author
Özlem Muslu, Department of Information and
Communications Technology, Netaş
Istanbul, TURKEY
E-mail: omuslu@netas.com.tr

Abstract - As smartphones came to dominate mobile communications, mobile application world have
advanced rapidly to address the mobile user needs, resulting with many applications that target these devices and
filling app stores with an exponential rate. If these applications don’t meet customer needs, i.e. if they are buggy,
slow etc., they are bound to perished due to the intense competition among similar applications. This brings the
need for thorough testing, particularly for graphical user interfaces. This paper aims to inspect how guided GUI
testing is realized; specifically using model-based and model-learning methods. The main focus is to elucidate the
shortcomings of current methods, such as automatically entering text inputs, deciding which action to trigger or
creating test sequences. Such shortcomings are open to interpretation by artificial intelligence and machine learning
techniques. By revealing aforementioned shortcomings this paper plans to raise new research questions in the area
of software testing.

Keywords – black-box testing, GUI testing, mobile testing, model based, model learning

http://www.ijsrise.com
mailto:omuslu%40netas.com.tr?subject=
mailto:yunusm%40netas.com.tr?subject=
mailto:omuslu%40netas.com.tr?subject=

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

[4] will be analyzed. Moreover, random meth-
ods for mobile applications [1], evolutionary
[9] and data-based [10] methods for desktop
applications are also included. This section
presented motivations for GUI testing and in-
troduced different approaches used for GUI
testing. In Section 2, model generation will be
inspected. Two main aspects, model explora-
tion strategies and state equivalence will be
discussed. In Section 3, methods for automati-
cally entering text inputs will be analyzed. In
Section 4, test suite generation methods will
be explained and in Section 5, conclusions
will be drawn.

2. MODEL GENERATION

A model is a connected structure of the
application’s GUI. It constitutes of states and
transitions between those states. State and
transition may carry slightly altered meanings,
but in the most general sense, a state is the ab-
straction of actions and a transition denotes a
shift from one state to another by means of a
fired event. Here, a fired/triggered event or an
action may represent taps, scrolls, or any other
gesture and these terms are used interchange-
ably throughout this paper.

Model generation is traversing an ap-
plication such that the traversal creates a cor-
rect definition of the GUI in form of a model.
There are two main difficulties when generat-
ing the model: How to traverse the application
so that the generated model can converge to
the actual model as fast as possible and how to
decide if two states are equivalent so that the
generated model is a correct representation of
the actual one. This section will seek answers
to above inquiries.

2.1. Model Exploration Strategies

An exploration strategy determines
which state and which action at that state
should the system fire next. Exploration strat-
egies are important for a crawler either to
achieve maximum state/code coverage or to
act as a genuine user so that it can reveal the
crashes app users are most likely to encounter.
Several approaches are proposed including
depth first search, user-statistic based search,
reward based search and so on. This section
will elaborate on particular strategies different
papers use.

MobiGUITAR [5] employs a list for
keeping the unfired widgets and adds new
fireable elements to that ‘task list’. This is es-

Figure 1:Screenshots from Micro-
soft Word (https://products.office.com/en-us/
word). Desktop application has many GUI el-
ements whereas mobile application has only a
few of them. (a): Microsoft Word in Windows
7 platform. (b): Microsoft Word on Android
5.1.1.

Model based tests are a popular test sys-
tem where a correct GUI model of the appli-
cation should be given as an input. Using this
model possible test sequences are generated.
Since the user needs to create a GUI model of
the application, these tools are generally not
considered fully automatic. For the GUI mod-
el finite state machines or event flow graphs
are utilized. [2].

Model learning systems are developed
to automate the model building process so that
users of the automation system wouldn’t have
to create a GUI model manually and update it
every time a change in GUI occurs [2]. Model
learning stage is the most computationally ex-
pensive part of these methods. Moreover, it is
crucial to avoid loops that would cause revisit-
ing a page.

A recent survey on GUI testing [3] con-
ducted an empirical study with different An-
droid GUI testing tools by letting each tool run
an hour per application. They compared six
tools including Android’s Monkey, Dynodroid
[1], A3E [4], MobiGUITAR [5] and Puma [6].
The results on others showed that random tests
produced higher statement coverage and trig-
gered more failures. However, random tests
do not support reproducible bugs, thus they
may not be useful.

This paper will present challenges of
systematic GUI testing. The work it takes
into consideration includes model-based and
model learning mobile testing mostly. Specifi-
cally, Swifthand [2], MobiGUITAR [5], Auto-
BlackTest [7], ICrawler [8] Puma [6] and A3E

http://www.ijsrise.com
https://products.office.com/en-us/word
https://products.office.com/en-us/word

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

sentially an implementation of breadth first
traversal.

A3E [4] has two different strategies:
Targeted and Depth-First. In targeted strategy
static byte code analysis is performed in order
to obtain a primitive model of the application.
Following, the application is run and targeted
exploration is applied on the primitive model
for systematic exploration. In Depth-First ap-
proach, depth first exploration is utilized and
all GUI events are fired.

Swifthand [2] has a list of unexplored
states from which it picks a random state. The
action is also picked randomly. The reasoning
behind picking random states and events are
based on their experiments. They utilized di-
verse heuristics for the task but no heuristic
surpassed others in effectiveness.

Puma [6] picks an event according to
four different strategies which users can spec-
ify using PUMAScript, a Java-based scripting
language created for Puma. These strategies
are sequential exploration, maximizing the
types of elements clicked, imitations of actual
users and using static analyses to reveal com-
mon bugs. The authors use depth first search
to pick the state. In sequential analysis, every
element in every state is fired, starting from
the top of the page, stopping at the bottom.
When maximizing the types of fired elements,
information on the already fired elements’ type
is utilized, e.g. if a button from ButtonClass
was never pressed before, this strategy aims to
press that button. Imitations of actual users are
acquired either by using authors’ insights or
actual traces from users. Detecting an HTTP
request and pressing to the button that would
fire it is given as an example of a utilization of
static analyses.

AutoBlackTest [7] uses a reinforcement
learning technique, Q-Learning to decide on
which action to trigger. Firstly, it selects a
random state from the state space. It assigns
a reward to the action with respect to changes
in GUI. If the action induced many changes
in the GUI, the reward is high; if the contrary
takes place, the reward is low. The authors also
add a heuristic to this immediate reward func-
tion, stating that a low-reward action such as
filling in a text box may bring higher rewards
in the future. Thus, Q-values depend both on
“immediate utility and the utility of functions
that can be executed in the future.”

2.2. Checking for State Equivalence

A critical part of GUI crawling is deter-

mining state equivalence; whether the newly
encountered state was seen before. Establish-
ing state equivalence avoids re-traversing a
previously explored state and forms the fac-
tual GUI model rather than a possibly infinite
model.

Comparing the new page with the states
already existing in the model is an arduous
task. One can use the information in the page,
such as types of widgets, their location etc. An
abstraction of the state is usually established
before comparison because the content of the
screen may change while the state remains the
same. An example is a news application where
news changes every time page is reopened (see
Figure 2). However, such abstraction may still
not be enough to determine if two states are
actually same. A list where one can add new
items can be used as an illustration (see Figure
3). This approach is also troublesome because
two different states with distinct behaviors can
be visually similar. This leads us to methods
that use the behavior of the state as the distinc-
tive factor, i.e. if two states are considered to
be the same but same widgets steer the appli-
cation to different states, those states are dif-
ferent. In this section similarity measures used
by different papers will be explained.

Figure 2: Two screenshots from
Google’s News & Weather (https://play.go-
ogle.com/store/apps/details?id=com.google.
android.apps.genie.geniewidget&hl=en) ap-
plication. (a) and (b) are from the same page,
taken one hour apart. If an abstraction is not
performed and content of the news is included
when comparing states, every update to the
page wouldg bring a new state leading to in-
finite state space and previously seen states
could not be reopened.

In MobiGUITAR [5] ID and type prop-
erties determine the state equivalence. If all
widgets in two states are not equivalent, states

https://play.google.com/store/apps/details?id=com.google.android.apps.genie.geniewidget&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.genie.geniewidget&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.genie.geniewidget&hl=en

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

are not considered equivalent as well.
AutoBlackTest [7] is similar to Mobi-

GUITAR in the sense that it also checks the
occurrence of same widgets with some level of
abstraction. In AutoBlackTest, this abstraction
corresponds to widget type and large number
of properties such as class id, text, if it is en-
abled/editable etc. Furthermore, some modi-
fications in those widgets don’t necessarily
imply the states are not equivalent. They also
debate the problem of treating different states
as equivalent but express that possible differ-
ent behavior of these states are significant only
if these cases are frequent in the model.

Puma [6] bases state equivalence on co-
sine similarity. They encode both states’ wid-
gets as a vector; compute cosine similarity
using this vector and use hard thresholding to
determine if states are equivalent

 In Swifthand [2] bounding boxes and
screen coordinates of enabled user inputs are
considered as the initial similarity metric. If
a state is discovered to be same as one of the
states observed before, they are merged in the
same state. However, if this merger results in
a nondeterministic state machine (i.e. as same
events lead to different states), the model is
relearned using a passive learning algorithm
derived from [11]. The algorithm repeatedly
merges states to generalize the model using a
prefix-tree acceptor. If merging leads to a non-
deterministic model child states of merged
states’ transitions are tried to be merged in a
recursive manner. If that fails due to different
states are tried to be merged, original states are
restored.

Figure 3: Two screenshots from
Google’s Hangouts (https://hangouts.google.
com/) application. In (a) only one message is
seen whereas in (b) two messages are present.
If they are assumed to be same states, one-by-
one comparison of the elements is not viable.
If they are acknowledged as different states,
every new message would bear one more state,
leading to infinite state space.

3. TEXT INPUTS

Text inputs cannot be overlooked since
for some events to be triggered, they need to
be correctly specified (e.g. login screens). The
current approach for such cases is proiding
an interface for the automation tool’s user to
specify such inputs. Puma [6] employs this ap-
proach and if the required inputs are not found,
they stop exploring the app. In addition to ask-
ing for the user to enter text inputs, random
text generation can also be applied. In Dyno-
droid [1], the part of the program that selects
which event to fire is discouraged to select text
boxes, but the part that executes events selec-
tor sent is required to populate all text boxes
in the current UI before it executes the select-
ed non-text event. Swifthand [2] also allows
pre-defined user strings, and if not present,
generates a random string. ICrawler [8] uses
a dummy string based on the keyboard type
(numeric/email address etc). AutoBlackTest
[7] defines some predefined literals to handle
text inputs. They associate a label to available
input widgets and fill in the necessary param-
eters using predefined literals. For example, if
the label is birthday, AutoBlackTest fills in the
necessary date information.

4. TEST SEQUENCE
GENERATION

The purpose of model generation is set-
ting up a model that can later be used to cre-
ate a test sequence. If all test sequences were
generated using this model there would be as-
tronomic number of test sequences to execute.
Hence, the following step in model-based
test systems is to restrict the number of test
sequences by eliminating similar test suites.
There are also alternative approaches other
than using a model to perform GUI testing.
These approaches may simply traverse GUI
as if it was creating a model [12], or use ac-
tual usage profiles to traverse the application
[10], use system events as a way of traversal
[1] or use genetic algorithms to generate the
test suites [9]. This section will explain how
test suites are generated using the previously
generated models and what kind of approach-
es are followed when models are nonexistent.

MobiGUITAR [5] samples the huge
number of possible event sequences using
pair-wise edge coverage criterion: “all pairs
of adjacent edges (events) need to be exer-
cised together. To this end, we create pairs of
all edges in our state machine that are adjacent

https://hangouts.google.com/
https://hangouts.google.com/

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

to a node. And for each pair, we generate a test
case that is a path in the state machine from
the start state to the pair being covered.”

Puma [6] clusters the GUI models and
draws the conclusion that there are relatively
small number of clusters (about 40) when it
comes to different GUI models. It is an open
research question whether these clusters would
share similar sequences for crashes.

In [1], system events are used to guide
the automation program through the GUI of
application under test. This kind of usage al-
lows not only to find bugs related to the GUI,
but also bugs caused by system events such
as crashes due to lost connection to network.
Their algorithm runs on an observe-select-ex-
ecute cycle. Observer is responsible for com-
puting the set of relevant UI, broadcast receiv-
er and system service events. Selector selects
events according to three different strategies:
Frequency, UniformRandom and BiasedRan-
dom. Frequency selects the least frequent-
ly selected event. UniformRandom selects
events uniformly at random. BiasedRandom
keeps the frequency of events selected before
but it also respects the relevancy of an event; it
assigns different scores for UI, system and text
entering events. After Selector is done with
one of the above strategies, Executor executes
commands it receives from both humans and
the selector.

In [9] genetic algorithms are utilized to
imitate novice users. Novice users are defined
as those who don’t have much practice using
apps similar to application under test, so they
follow a slightly different path than experts.
Therefore, usage profiles of novice users are
more likely to reveal bugs that developers
did not discover. Their method is as follows:
First an expert user produces an initial test
sequence. Then, with one or more DEVIATE
commands genetic algorithms are engaged.
Genetic algorithms start with random alleles
and genes survive according to their reward
which is based on window names, i.e. if the
window names of successive events are equiv-
alent, the reward is high.

[10] collects usage profiles of the apps
to detect the bugs in new versions of those
apps, then generates tests using these profiles.
They generate test sequences based on “con-
catenating pairs of events that have the highest
probability of occurring… to determine the ef-
fectiveness of highly probable pairs of events”

5. CONCLUSIONS

This paper presented the difficulties of
automatic testing of graphical user interfaces
from an artificial intelligence perspective. The
Main focus was on model-based and model
learning techniques. Hence, after presenting
the motivations for GUI testing, the paper
started by explaining the challenges of gen-
erating a model. It continued with an impor-
tant aspect for crawling the GUI; text inputs.
Lastly, various methodologies for test suite
generation are discussed. The research shows
that although valuable work has been accom-
plished, improvements can be applied for each
title presented. In model exploration, redun-
dant actions should be avoided while actions
that bring about unexplored states should be
encouraged. Since the resulting state cannot be
known in most cases, this task requires some
kind of future prediction. When checking for
state equivalence, the possibility of overfit-
ting is high due to disparate natures of appli-
cations. Text inputs can be generated using a
dictionary, but the response of the application
is significant, especially in login and register
pages. Generation of test sequences can be
specialized for specific goals and data mining
can be utilized in all of the above cases.

Acknowledgements: This project is
supported by Netaş and TÜBİTAK. We would
also like to thank Devrim Ergel, Ceyda Ülker,
Alper Şen, Yunus Dönmez, Çağdaş Sözer,
Tolga Tanrıverdi, Yavuz Köroğlu, Ercan Se-
merci for valuable discussions and Murat Can
Özdemir for his feedback on our paper.

6. REFERENCES

[1] Aravind Machiry, Rohan Tahiliani, and Mayur
Naik, “Dyrodroid: an input generation system
for Android apps,” in Proceedings of the 2013
9th joint Meeting on Foundations of Software
Engineering, New York, 2013.

[2] Wontae Choi, George Necula, and Koushik Sen,
“Guided GUI Testing of Android Apps with
Minimal Restart and Approximate Learning,”
in ACM SIGPLAN Notices, vol. 48, New York,
2013, pp. 623-640.

[3] Alessandra Gorla, Alessandro Orso Shauvik Roy
Choudhary, “Automated Test Input Generation
for Android: Are We There Yet?,” in 30th IEEE/
ACM International Conference on Automated
Software Engineering (ASE 2015), Lincoln,
Nebraska, USA, 2015.

[4] Iulian Neamtiu Tanzirul Azim, “Targeted and
depth-first exploration for systematic testing
of android apps,” in OOPSLA ‘13 Proceedings
of the 2013 ACM SIGPLAN international
conference on Object oriented programming
systems languages & applications, 2013.

International Journal of Scientific Research in Information Systems and Engineering (IJSRISE)
Volume 1, Issue 2, December-2015. ISSN 2380-8128

IJSRISE © 2015.
http://www.ijsrise.com

[5] AR Fasolino, P Tramontana D Amalfitano,
“MobiGUITAR--A Tool for Automated Model-
Based Testing of Mobile Apps,” Software, IEEE,
vol. 32, no. 5, pp. 53 - 59, April 2014.

[6] Bin Liu,Suman Nath,William G.J.
Halfond,Ramesh Govindan Shuai Hao,
“PUMA: Programmable UI-automation for
large-scale dynamic analysis of mobile apps,”
in Proceedings of the 12th annual international
conference on Mobile systems, applications, and
services, 2014.

[7] Mauro Pezzè, Oliviero Riganelli, Mauro
Santoro Leonardo Mariani, “Automatic testing
of GUI‐based applications,” Software Testing,
Verification and Reliability, vol. 24, no. 5, pp.
341-366, August 2014.

[8] Ali Mesbah Mona Erfani Joorabchi, “Reverse
Engineering iOS Mobile Applications,” in
Reverse Engineering (WCRE), 2012 19th
Working Conference on, Kingston, 2012, pp.
177 - 186.

[9] DJ Kasik and HG George, “Toward automatic
generation of novice user test scripts,” in
Proceedings of the SIGCHI conference on
Human factors in computing systems, 1996.

[10] Penelope A. Brooks and Atif M. Memon,
“Automated GUI testing guided by usage
profiles,” in Proceedings of the twenty-second
IEEE/ACM international conference on
Automated software engineering, New York,
2007.

[11] C. Damas, and P. Dupont B. Lambeau, “State-
merging DFA induction algorithms with
mandatory merge constraints,” ICGI, pp. 139–
153, 2008.

[12] Domenico Amalfitano, Anna Rita Fasolino,
Porfirio Tramontana, Salvatore De Carmine,
and Atif M. Memon, “Using GUI ripping for
automated testing of Android applications,” in
Proceedings of 27th IEEE/ACM International
Conference on Automated Software Engineering,
2012.

[13] Xun Yuan and Atif M. Memon, “Generating
event-sequence-based test cases using GUI
runtime state feedback,” in Software Engineering
IEEE Transactions on, vol. 36, 2010.

