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BOUNDARY ELEMENT METHOD APPLICATION TO HEAT AND 

MASS TRANSFER DURING GROWTH OF BIOLOGICAL TISSUE 

Growth of biological tissue is considered in the present paper. A mathematical model based on 

metabolism intensity conception is proposed. The proposed mathematical model gives an opportunity 

to consider multicomponent environmental media and to analyze an influence of every component on 

the growth process, based on its influence on metabolism process, known from some experimental 

research. As a result, the growth process is described as parabolic initial-boundary-value problem in 

domain with moving boundary. Since the growth process is, generally speaking, enough slow, the 

special methods, developed for slow phase transition calculation and based on small parameter method 

are applied to the problem. Using mentioned approach it is managed to build analytical solutions in 

one-dimensional (in space) case and numerical solutions are obtained in two- and in three-dimensional 

cases with additional application of boundary element method. 

Key words: biological tissue growth, metabolism, heat and mass transfer, small parameter method, 

boundary element method. 

Рассмотрены процессы роста биологических тканей. Предложена математическая модель 

на основе концепции интенсивности метаболизма, дающая возможность рассматривать 

многокомпонентную окружающую среду и анализировать влияние каждого из компонентов на 

процессы роста. Процессы роста описаны при помощи параболической краевой задачи в 

области с подвижной границей. Для решения данной задачи применен специальный метод, 

ранее разработанный для задач о медленном фазовом переходе и основанный на методе малого 

параметра. С помощью такого подхода возможно строить аналитические решения для 

одномерных по пространству случаев и получать численные решения с использованием метода 

граничных элементов для двумерных и трехмерных случаев. 

Ключевые слова: рост биологической ткани, метаболизм, тепломассообмен, метод малого 

параметра, метод граничных элементов. 

Розглянуто процеси росту біологічних тканин. Запропоновано математичну модель на 

основі концепції інтенсивності метаболізму, що дає змогу розглядати багатокомпонентне 

навколишнє середовище й аналізувати вплив кожного з компонентів на процеси росту. Процеси 

росту описано за допомогою параболічної крайової задачі в області з рухомою межею. Для 

розв’язання даної задачі застосовано спеціальний метод, раніше розроблений для задач про 

повільний фазовий перехід та заснований на методі малого параметра. Такий підхід 

уможливлює аналітичні розв’язки для одновимірних за простором випадків та отримувати 

числові розв’язки із застосуванням методу граничних елементів для двовимірних і тривимірних 

випадків. 

Ключові слова: ріст біологічної тканини, метаболізм, тепломасообмін, метод малого параметра, 

метод граничних елементів. 

Introduction. Problem of biological tissue growth [8] became very actual at the 

present stage of biological science development, because a lot of processes used in 

agriculture and biotechnology are determined by growth of biological tissue. Beside of 

that, problem of tumor growth is one of the most important in medicine [5; 8]. Two kinds 

of circumstances determine the growth process, the first one is genetic properties of tissue 

and the second one is environmental conditions, for example, nutrition, temperature and 

so on. The genetic mechanism is an object of very intensive investigations at the present 

stage, including mathematical modeling of genetics, and there are a lot of successes. 

However, the level of investigation is very far from complete description of biological  
_____________________ 
 Ю. В. Бразалук, А. И. Губин, Д. В. Евдокимов, 2015 



ISSN 2312 - 2897. Вісник Дніпропетровського університету. Серія:Механіка. 2015. Т.23. №5. Вип.19.  
 

 97 

tissue growth on the base of genetic approach. As a result, most of investigations 

concerning a biological growth are based on phenomenological approach, considering 

biological tissues as a “black box” with experimentally determined properties. The 

growth is one of such properties of biological tissue. Nevertheless similar approaches 

have a lot of difficulties and disadvantages, in fact, they are only tool for solution of 

many problems and base for mathematical modeling on non-cellular level. Nevertheless 

the hard genetic determination of life cycle of any biological tissue, there is strong 

dependence of the tissue life functions on environmental conditions. This dependency has 

been known from an antiquity, and a lot of attempts were made to establish its general 

quantitative description, but their results were restricted by multiple of particular 

observations, conclusions and laws. The next step in this direction was mathematical 

modelling of the biological processes. Full review of mathematical modeling in biological 

sciences requires a separate investigations, which must be sufficiently more than the 

present paper. Since the growth of biological tissue is the object of the present work, 

consider specific features of the mathematical models of the given processes. General 

simplifying assumptions must be made to formulate a mathematical model. 

Any biological tissue consists of cells. Process of cell reproduction is caution of 

multicellular tissue growth. The growth process consists of two parts: growth of 

individual cells and fission of cells, that is the growth process has evidently discrete 

behavior. Since cells are very small and number of them is very large, consideration of 

each individual cell is impossible and therefore some averaging is necessary. As a rule 

averaging process used in biology is similar to well-known continuos mechanics 

approach. According to this approach a multicellular biological tissue is assumed as 

continues media with distributed sources and some diffusive properties. In fact, cells 

create a porous media, but pressure difference enough for filtration flow is very seldom 

presence in the biological tissues, therefore transport phenomena in filtration flow can be 

neglected and diffusive properties of biological tissue are provided by some other specific 

mechanisms. Real transport phenomena in biological structures are very complex and 

difficult for simulation therefore the only way to build a mathematical model is to assume 

that transport phenomena has diffusive behavior and to use experimentally determined 

diffusive properties of media. 

First attempts to describe biological processes by chemical reactions took place in 

first half of XIX century. As a result of almost two hundred years of science 

development, the chemical mechanisms of life are quite clear for understanding at the 

moment, but correspondent theory is very complex and sophisticated. Details of this 

theory are not concerned the object of the present work. Note only, that there isn’t single 

quantitative measure of metabolism, because a lot of chemical reactions mutually interact. 

However the simplest way to formulate a mathematical model for metabolism process is 

to introduce some numerical value called metabolism intensity and to assume, that any 

chemical reaction and consequently heat and mass transfer process rate is determined by 

(in the simplest case it is proportional to) metabolism intensity. As a rule, metabolism 

intensity is connected by linear relation with velocity of tissue growth. This rule is almost 

always right for simplest organisms, but metabolism of highest animals is more complex. 

All mathematical models, which will be developed in the present paper below, will be 

based on the assumption that there exist single value, described the metabolism intensity. 

Of course, it is phenomenological approach and relation function connecting metabolism 

intensity and consuming of nutrient substances (excrement production) must be 

determined experimentally. An evident advantage of such mathematical models (so-



ISSN 2312 - 2897. Вісник Дніпропетровського університету. Серія:Механіка. 2015. Т.23. №5. Вип.19.  
 

 98 

called one-parametrical models) is their flexibility and opportunity to take into account 

different number of concentration fields on different level of consideration. 

There are two possible mechanisms of biological tissue growth. The first one is the 

surface growth and the second one is the volume growth. The kind of growth depends of 

kinds of tissue. The intensive cell fission takes place in relatively thin layer near the tissue 

surface in the case of surface growth. Cells situated inside the tissue have stable 

metabolism without intensive fission in this case, then their total volume remains 

constant. Reproduction of all cells takes place in the case of volume growth, although the 

most intensive fission, as a rule, takes place near the surface. 

All considered above mathematical models are reduced to initial-boundary-value 

problems for system of diffusion equations with non-linear sources in moving boundary 

domain. Motion of the domain boundary is caused by tissue growth. 

Phase transitions are well known from ancient times, because they are very 

widespread as in nature, as in many technologies. Physical theory of phase 

transformations on microscopic and macroscopic levels were developed and, as a result, 

there are not sufficient unsolved questions, what can arise during solution of most of 

applied heat and mass transfer problems including phase transition [11]. However, there 

is not so good situation from the point of view of computational mathematics, because 

phase transition problems contain specific kind of non-linearity connected with motion of 

phase transition boundary, because the solution for the field, caused the phase 

transformation, depends on the domain shape, but the domain shape depends on the 

solution (as the boundary shape depends on it). And more than that it depends on history 

of the field development. Since the considered non-linearity cannot be represented as 

some function (excluding the simplest cases), different implicit linearizations are used for 

solution of such problems. As a rule, time-stepping algorithms are used for numerical 

solution of phase transition problems and the domain shape is fixed on the time step, that 

is, there is an implicit splitting of the process by the field evolution and interphase 

boundary motion. Thus such algorithms provide  «jumping» domain shape and time step 

must be enough small to guarantee small domain shape  «jump»  and high accuracy of the 

field calculation. Both given requirements may be used as criteria of time step choosing 

in dependence on particular problem. In any case, beside of additional time step 

restriction, there is an additional error source, concerning the domain boundary motion. 

Any full review of numerical methods of Stefan problem solution requires a special 

investigation and cannot be included in restricted length of the present paper. However 

the following general conclusion can be made: all mentioned numerical algorithms of 

Stefan problem solution, based on finite element or finite difference approaches, are 

rather directed to fast phase transformations, because under restricted time step they 

require a lot of time steps for slow phase transformations. Then they are found non-

effective in the case of slow phase transformations. 

The described situation in numerical method of Stefan problem solution is quite 

natural, because fast phase transformations are base of most technological processes, 

including phase transformations and attract serious interests in industrial designs. Slow 

phase transitions often occur in natural processes. The quasi-stationary approximation 

(called Leybenzon approximation in Russian literature) is used to apply for numerical 

calculation of such processes [11]. However, number of similar works were very 

restricted and they mostly were devoted to engineering design, nevertheless this approach 

become popular in problems of freezing (meeting) of soil, for investigation of phase 

transitions in solid body, in some evaporation (condensation) problems. The situation in 
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numerical modelling of slow phase transition was sharply changed in connection with 

three new problems. The first problem was simple attempt to build more accurate 

mathematical models for environment processes, for example, in meteorology or soil 

investigations. The second problem is phase transition in microgravity condition, which 

became important with starting of intensive space exploration. And finally the third 

problem was connected with attempts to obtain a material with minimal residual stresses, 

what was important in material sciences. An experience of application of traditional finite 

difference and finite element approach to the mentioned problems was rather 

unsuccessful, nevertheless a lot of problems were solved, because their numerical 

solution required huge computer resources and therefore their research opportunities were 

strongly restricted. Beside of that, the traditional methods often could not provide 

necessary accuracy of the numerical solution. On the other hand the quasi-stationary 

approximation had difficulties too, because it is related to asymptotically slaw processes 

and doesn’t take into account initial conditions. Beside of that, elliptical boundary-value 

problems, which must be numerically solved at every time step of quasi-stationary 

problem solution, are rather inconvenient for finite difference method. In addition, grid 

rebuilding is necessary for quasi-stationary approximation at the every time step, as for 

other time-stepping algorithms for full Stefan problems. As a result, using of quasi-

stationary approximation was very restricted last decades. 

After the first original works of Y. P. Chuang and J. Szekely [6; 7] a lot of papers 

were devoted to boundary element method application to Stefan problem. And certain 

success had been achieved in this field, because there isn’t so strong restriction on time 

step, connected with differential operator, and boundary element method more precisely 

approximates the phase transition boundary and gives an opportunity to realise more 

exact time integration algorithm. However general effectiveness of boundary element 

method for parabolic problems is less than similar effectiveness of finite difference 

method, what was shown in many paper, see, for example, [9]. Of course, using of some 

special boundary element method algorithms can improve the situation, but any time-

stepping numerical method cannot completely solve the problem of slow phase transition. 

Let explain the conclusion made above. First of all, it is necessary to determine the 

term «slow phase transition». As it will be shown below, velocity of phase transition is 

described by dimensionless parameter called Stefan number. Usually the Stefan number 

is interpreted as relation of thermal energy, spent in heating (cooling) of some phase, to 

energy spent in phase transformation process, correspondingly. Authors of the present 

work propose another treatment according to which the Stefan number is relation of two 

times characterising heating (cooling) and phase transition, correspondingly. Nevertheless 

the Stefan number is determined by the same formula, the last treatment is better, because 

it clear explains several phenomena difficult for understanding, such as phase transition in 

small drop surface, a phase transition near a state of phase equilibrium. The term «slow» 

means that the Stefan number is small and therefore there are two different time scales in 

the problem. The «fast» time is connected with the temperature field, and the «slow» time 

describes the phase transformation process. Traditional methods based on field 

discretization and time-stepping algorithm cannot overcome this difficulty because they 

require a stepping of «fast» time, as a result, too many steps of «fast» time in necessary to 

consider a process in «slow» time. More than that, even algorithms, based on different 

transformation in time domain (such as integral transformation with respect to time, are 

serial expansions) cannot provide desirable effectiveness. Only analytical or approximate 

analytical approaches, which present a temperature field solution in explicit form, are 
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suitable here, but an area of such method application is very restricted and, in fact, they 

can be used only for some one-dimensional (in space) problems. Thus to create an 

effective algorithm for the considered problem is necessary to move the «fast» time from 

solution procedure. Asymptotic approaches give an opportunity to build a mathematical 

model with required properties. The first work in this direction was paper [10], where the 

small parameter method was applied to Stefan problem. However the proposed algorithm 

had not become popular, by almost the same reasons, what quasi-stationary 

approximation had not become popular. Beside of that, nevertheless the requirement of 

Stefan number smallness took place in the paper [10], slow phase transitions were not 

determined as a field of effective application of the developed method. 

Boundary element method [1;4] has become powerful tool for numerical solution of 

boundary-value problems. It is especially effective in comparison with traditional finite 

difference method and finite element method for elliptical problems in domain of 

complex geometrical shape. The main idea of the present paper, concerning the numerical 

approach, is using of boundary element method for solution of elliptical boundary-value 

problems, which arise for every approximation on every time step. As a result, an 

effective computational algorithm is developed, because of well-known advantages of 

boundary element method such as discretization only boundary alone and high accuracy 

of computations. 

Nevertheless there are a lot of problems, concerning a taking into account of the 

initial conditions, infinite and semi-infinite domains, in the proposed method. However 

high computational effectiveness for considered kind of problems makes it practically the 

best for computational solution of given problems. 

Governing equations. Let consider 1D  filled by some biological structures (in the 

simplest case by homogeneous or non-differentiated cellular mass). Let restrict the 

following consideration by the case of homogeneous cellular structures. The tissue in the 

domain 1D  is porous media where cells form a frame and intercellular space is porosity. 

Let assume that pores are filled by same liquid, which is complex solution of nutrient 

substances and excrements of cells. There is an intensive heat and mass transfer between 

the frame and the liquid in pores, what is very important specific feature of the described 

structure. Let the domain 1D  is partially or completely surrounded by the domain 2D , 

filled by the same solution completely. In general case there may be a convective transfer 

in the domain 2D  and filtration flow in the domain 1D . Thus a general mathematical 

model of heat and mass transfer processes is considered system is following: 

  ,
1111

1
Tf qTaTV

T





                                         (1) 

  ,1111
1

iiiif
i qCdCV
C





     ,N,i 1                      (2) 

  ,TaTV
T

C 222
2 



                                             (3) 

  ,CdCV
C

iiiC
i

222
2 



      .N,i 1                         (4) 

where 1T  is temperature in the domain 1D  (the one-temperature model, assuming the 

temperatures of frame and solution in pores are equal, is used here), fV  is filtration 
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velocity, 1a  is thermal diffusivity of porous media, 
1T

q  is heat source, concerning the 

metabolism of cells, 1iC  is concentration of the i-th component in porous media, 1id  is 

diffusion coefficient of i-th component in the porous media, 1iq  is sourse (sink) of the     

i-th component in porous media, concerning the metabolism of cells, 2T  is temperature in 

the domain 22 V,D  is flow velocity in the domain 22 a,D  is thermal diffusivity of 

solution, 2iC  is concentration of i-th component in the domain 2D , 2id  is diffusion 

coefficient of i-th component in the domain 2D , 2iN  number of components, 

participating of heat and mass transfer process,   is time,  is Laplas operator. 

Restrict the following consideration by the case: 

,V f 0
                                                            (5) 

,0CV                                                             (6) 

what corresponds to conventional multicellular structure, formed by independent cells, 

that is simple colony of one-cellular organisms in immovable fluid. Then 
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If the condition (6) is not realised, it could be better to not consider the system (3), 

(4), but to take into acount a convective transfer using boundary conditions for equations 

(7), (8). This assumption is quite proved, since the system (7), (8) describes enough slow 

prosesses. 

Let prescribe boundary conditions for the systems (7), (8) and (9), (10). Note the 

common boundary of the domain 1D  and 2D  as   and reminder part as 1  and 2  

correspondingly. The first kind boundary conditions can be presribed on the boundaries 

1  and 2 : 
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or the second kind boundary condition  
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or the third boundary condition 
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where eieeieeieeie g,g,g,g,C,T,C,T 22112211  are known functions, all coefficients in 

boundary conditions (11) – (22) are understood in conventional sense. Let consider 

boundary conditions on the boundary  . It is evident, that 
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It is possible to formulate the second condition as a forth kind boundary condition. 
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Conditions (25), (26) correspond to the case of cell fission in whole domain 1D . 

However, it is possible the situation, when the fission of cells takes place only on the 

boundary  , then condition (25) is saved, but condition (26) must be replaced by 

following condition: 
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here 


n
 is velocity of the boundary   propagation (velocity of biological structure 

growth), i  is “expenditure” coefficient of the i-th component during growth of 

biological structure. Note that the condition (27) is not conventional Stefan condition 

(nevertheless its form coincides with Stefan condition), because right hand part of the 

condition (27) is determined by fission process, that is by parameters determining the 

fission process such as the temperature, concentrations and possibly the histories, 

therefore right hand part of the condition (27) is prescribed. It means that the given 

problem is similar to phase transition problem under prescribed velocity of phase 
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boundary motion. The moving boundary velocity is determined in the considered problem 

as a function of metabolism intensity. 

The case, when cellular mass growth takes place in whole domain 1D  is more 

complex then previous one. Consider a function describing metabolism intensity. As it is 

noted earlier, metabolism intensity is assumed proportional to a cellular mass growth 

(nevertheless the cell fission is very complex process with possibly enough large delay 

time that is with sufficient influence of previous history of the process). Let metabolism 

intensity function  11, iCT  is defined, then correspondent source terms are following: 

,q ii 1                                                          (28) 

.
1

 q                                                         (29) 

The function   is determined experimentally. The following fig. 1 – 10 show 

possible dependencies of the function   on temperature, concentrations of nutrient 

substances and excrements: 
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T
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where i  is function of influence of the i-th parameter on the metabolism velocity 

function. It is evident, that  
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The cases, presented on the fig. 1 – 4, correspond to existence of clear optimum of 

metabolism intensity. The cases 9 and 10 concern excrement concentration influence. As 

it is noted earlier the growth of cellular mass is proportional to metabolism intensity 

00 ssq .                                                   (31) 

Terms indicated by «0» in last relationship correspond to regular metabolism, which 

is specific for tissues of highest animals. 

Let consider a problem about motion of the boundary   again, in particular, let 

consider the case, when local volume change is determined by relation (31). The velocity 

(deformation) field depends on mechanical links between cells. If cells are «free» in 

intercellular solution the model of distributed sources in incompressible fluid can be 

applied, according to which the velocity of the boundary   is determined as  

      ,dxx,xxq
n
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sn 000

1


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where ix  is arbitrary point of the curveline  . 

If the cells are linked mechanically between themselves, to determine the motion of 

the boundary   it is necessary to solve an elasto-plastic problem, as a rule, under large 

strains. Consideration of such problems requires especial investigation and will not be 

made in the present work.  
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However, the another case is possible in biological structures, a biological structure 

grows saving its shape in this case. Thus change of the structure volume can be referred 

to the boundary   uniformly: 

  .dxxq

D

sD 

1

1
                                                  (33) 

The replacement of the boundary   is determined by the following relation: 

,
S

D1


                                                        (34) 

here S  is square of surface   (length of curveline   in the plane case). 

Dependencies, presented on fig. 1 – 10, and formalism, defined by the relationship 

(30), have universal nature and can be applied to any biological systems. However, more 

sophisticated metabolism processes are intrinsic for tissues of highest animals. If for 

simplest organisms linear dependence of growth velocity on metabolism intensity defined 

by relationship (31) is intrinsic, a tissue existence during an enough long time without 

growth, but under non-zero metabolism intensity, restricted by some limits, is possible for 

more complex multicellular organisms. 

Other specific feature of metabolism processes in multicellular organisms is 

possibility of death of part of cells, without metabolism stopping. A death of cells of the 

simplest organisms is possible too, however there is possible practically stopping of 

metabolism without death of cells in the simplest organisms, what is completely 

impossible for multicellular one. Cell death in the case of multicellular organisms can be 

determined by several criteria: 

1) metabolism intensity is less than the first critical level (but more than the second 

one) during enough long time (a cell doesn’t perish due to starvation, but stops fission 

and dies as a result of old age); 

2) metabolism intensity is less than the second critical level (a cell dies due to 

starvation); 

3) concentration of some nutrient substance is less than the first critical level (but 

more than the second one) during enough long time (see fig. 5); 

4) concentration of some nutrient substance is less than the second critical level; 

5) excrement concentration is more than the first critical level (but is less than the 

second one) during enough long time (see fig. 10); 

6) excrement concentration is more than the second critical level (see fig. 9); 

7) presence of some poison, concentration of which is more than the first critical 

level (but is less than the second one) during enough long time; 

8) pressure of some poison, concentration of which is more than the second critical 

level (mortal concentration) (see fig. 9); 

9) external attack (mechanical, electrical, and radioactive); 

10) death of cells due to action of immune system of the organism. 
One-dimensional case. Consider a one-dimensional case. The governing equations 

in this case are 

,q
x

T
a

T
T12

1
2

1
1 









                                                (35) 
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,12
1

2

1
1

i
i

i
i q

x

C
d

C










  ,N,i 1                                (36) 

,
x

T
a

T
2
2

2

2
2









                                                    (37) 

,
2
2

2
2

x

C
d

C i
i

i









  .N,i 1                                    (38) 

Let prescribe boundary conditions. As earlier, one from three main boundary 

conditions can be prescribe, for example, the first kind boundary condition: 

,11
1

exx
TT 


                                                      (39) 

,11
1

eixxi
CC 


 

,22
2

exx
TT 


                                                     (40) 

,22
2

eixxi CC 


 

or the second kind boundary condition: 

,q
x

T
e

xx
1

1
1

1









                                                  (41) 

,1
1

1

1

ei
xx

i
i q

x

C
d 







 

,q
x

T
e

xx
2

2
2

2









                                                 (42) 

,2
2

2

2

ei
xx

i
i q

x

C
d 







 

or the third kind boundary condition: 

,TT
x

T
exx

xx

0111
1

1
1

1






 









                                     (43) 

,0111
1

1
1

1






 







eixxii

xx

i
i СС

x

C
d  

,TT
x

T
exx

xx

0222
2

2
2

2






 









                                  (44) 

.0222
2

2
2

2






 







eixxii

xx

i
i СC

x

C
d  

Let consider boundary conditions on the growth boundary yx  : 

,TT
yxyx 

 01                                                   (45) 

.21 yxiyxi
CС


  
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The following conditions correspond to case cell fission in whole domain 1D : 

,
x

T

x

T

yxyx  







 2

2
1

1                                           (46) 

.2
2

1
1

yx

i
i

yx

i
i

x

C
d

x

C
d

 







                                        (47) 

The last condition must be replaced by following condition for the case, when cell 

fission takes place only on the tissue boundary: 

.2
2

1
1

















x

x

C
d

x

C
d i

i
i

i
i                                       (48) 

Let consider as the simplest example one-dimensional (in space) one phase Stefan 

problem, which is described by the following equation: 

,q
x

C
d

C










2

2

                                                  (49) 

with the boundary conditions: 

,CC e


                                                       (50) 

,..
..

tpСC
tp



                                                    (51) 

,q
x

С
e







                                                       (52) 

,
y

x

C
d












                                                   (53) 

where .t.p  is the boundary of phase transformation, y  is its coordinate. 

Let transform the problem into dimensionless form. Let 
kn

k

CC

CC
C




  is the 

dimensionless concentration, 
l

x
X   is dimensionless coordinate, 

2l

d
F


  is the some 

dimensionless number similar to number of Fourier in the theory of a thermal conduction. 

Then the dimensionless form of the initial equation is 

,q
X

C

F

C












2

                                                 (54) 

and dimensionless form of boundary conditions 

,CC e


                                                      (55) 

,..
..

tpCC
tp




                                                  (56) 

  ,q
X

C
CC

l

d
ekn 









                                         (57) 

,
Y

X

C

st






 




                                                 (58) 
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where 
 

2l

CCd kn
st




  is dimensionless time, concerning motion of the boundary, 

F
St st  is Stefan number. 

Then the initial equation can be written as 

.q
X

C
St

C

st










2

2

                                             (59) 

As a rule, growth of biological tissue is rather slowly, therefore it is expedient to try 

to apply solution method, developed for slow phase transition calculation, to the 

considered problem. The mentioned approach is based on small parameter method, 

according to which the problem solution will be searched in form of series: 







1

0

k

kk ).,x(CSt),x(C),x(C                                  (60) 

Let's substitute representations (60) in initial formulation of the problem (49) – (53), 

we shall receive: 

,q
X

CSt

X

C
CStSt

C
St

k

k

k

kk 













































 2

1

2

2

02

1

0

                   (61) 

,q
X

C
St

X

CC
St

C
St

k
k

kk

k
k 































 2

2

1
2

02

1

1
0

                     (62) 

,q

X

C
0

2

02








                                                    (63) 











0

2

12 C

X

C
, .

C

X

C ii








 



1

2

2

                                      (64) 

The general solution of the equation (63) is 

,bxaC 11                                                      (65) 

,bxaqdxC 22    (if 0)( xq ).                                   (67) 

Let 1x  is the coordinate of the left-hand edge, 2x  is the coordinate of the right edge, 

and y  is the coordinate of moving phase transition boundary. Let boundary-values of the 

functions are known: 

  ,fxC 11   

  ,fxC 22   

  ,fxC 22   
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,V
dx

dC
d

dx

dC
d  2

2
1

1                                                 (68) 

where  CVV   is velocity of phase transition boundary propagation, which one depends 

on function of a metabolism. The function of a metabolism is determined through 

concentrations of nutrient substances. 

Let's consider the elementary case, if the velocity of promoting of boundary of linear 

growth of a cell is by a stationary value: 

 .CVV                                                         (69) 

Then we shall write a set of equations: 

,fbxa 1111   

  ,fxQbxa 22222   

 ,yQbyabya  2211                                             (70) 

.V
dx

dQ
dadad

yx




22211  

Let h
dx

dQ
d

yx




2 , then having decided (solved) a system (70), we can find 

coefficients 2121 b,b,a,a : 

      

 
,

xyx
d

d
y

d
xyhdVxQyQff

a

21
1

2

1
12221

2

1





                        (71) 

      

 
,

xyx
d

d
y

d
xyhdVxQyQff

hdV
d

a











































21
1

2

1
12221

2
1

1

1

1
            (72) 

      

 
,

xyx
d

d
y

d
xyhdVxQyQff

hdV
d

x
fb











































21
1

2

1
12221

2
1

1
11

1

       (73) 

 
      

 
.

xyx
d

d
y

d
xyhdVxQyQff

xxQfb

21
1

2

1
12221

2222

1





             (74) 
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Let's consider a case, if the velocity of promoting of boundary of linear growth 

(increase) linearly depends on concentration: 

.kCV                                                            (75) 

Then we shall note a set of equations: 

,fbxa 1111   

  ,fxQbxa 22222   

 ,yQbyabya  2211                                             (76) 

 .byak
dx

dQ
dadad

yx
1122211 



 

Having decided (solved) this system, we shall discover coefficients 2211 b,a,b,a : 

   

 
 

,

xy

dyx
xykd

xy

yQxQff

dX

dQ

da

2

21
11

2

221

21











                                   (77) 

 
   

 
 

,
dX

dQ

d

kf

xy

dyx
xykd

yQxQff
dX

dQ

kxkyda 









2

1

2

21
11

221

112                 (78) 

   

 
 

,

xy

dyx
xykd

yQxQff
dX

dQ

dxfb

2

21
11

221

2111








                             (79) 

 
   

 
 

.
dX

dQ
z

d

kf

xy

dyx
xykd

yQxQff
dX

dQ

kxkydzxfb





























2

1

2

21
11

221

11222      (80) 

Boundary element method application. The above-developed algorithm cannot be 

directly applied to the two-dimensional and three-dimensional problems because 

boundary-value problems for partial differential equations arise in the mentioned cases 

instead boundary-value problems for ordinary differential equations as above. Thus two- 

and three-dimensional cases require some numerical method for solution of elliptic 

boundary-value problems in moving boundary domain. The most powerful tool for such 

problems is boundary element method [6; 8], which requires a reformulation of the 

considered problems as boundary integral equations. 

Let consider the initial boundary value problem (7) – (27). Small parameter method 

application to this problem is, generally speaking, similar to above one-dimensional case 

application (see, for example, [2; 3]). Restrict the following consideration by plane case 
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and by zero approximation of small parameter method, what corresponds to very small 

value of the Stefan number analog. Thus 

,
1

0
1

1

a

q
T

T
                                                      (81) 

,
d

q
C

i

i
i

1

10
1        ,N,i 1                                   (82) 

,T 00
2                                                              (83) 

,Ci 00
2        .N,i 1                                         (84) 

Boundary conditions for the system (81) – (84) coincide with boundary conditions 

for the initial system. Let apply methods of potential theory to the system (81) – (84). 

     
 

  ,dxdy
a

q
x,xds

n

x,x
Tds

n

T
x,xxTx

D

T
 











 1
00

000
1

0
1

000
0

10
1

11

    (85) 

     
 

  ,dxdy
d

q
x,xds

n

x,x
Cds

n

C
x,xxCx

D i

i
i

i
i  











 1

1
00

000
1

0
1

000
0
10

11

    (86) 

     
 

,ds
n

x,x
Tds

n

T
x,xxTx 












22

000
2

0
2

000
0
20                  (87) 

     
 

.ds
n

x,x
Cds

n

C
x,xxCx i

i
i 












22

000
2

0
2

000
0
20                  (88) 

Here the function )x,x( 00  is well-known fundamental solution of Laplace equation, 

which is in plane case 

 
    



















2
0

2
0

00
1

ln
2

1
,

yyxx

xx , 

and function   is determined by the observation point position: 

   
 

 

















.,1

,21

,,0

0

0

00

0 )(

D

D

x

x

xx

x  

The system (85) – (88) can be easy solved by conventional boundary element 

method. A specific feature of the problem is boundary condition on the boundary 

21  , that is boundary of growth. If the forth kind boundary conditions are 

prescribe on the   (volume growth), then correspondent integral equations are simply 

coupled on the curve-line  . If correspondent fluxes on the curve-line   are 

discontinuous, then the gap value on previous time step is used. 
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A quite natural problem of calculation of last domain integrals in equations (85), (86) 

arise during the numerical solution. As a rule, it leads to serious computational 

difficulties, however since the time scale of growth process is enough large and the 

source terms in the initial equations (81), (82) are understood as averaged in time, the 

considered source terms are often constant with respect to space variables. The case of 

constant source is considered in the present work. The domain integrals can be easy 

transformed in this case 








111

1
100 graddiv),( ds

n
qdxdyqqdxdyxx

DD

,                      (89) 

where 01  , that is )1ln(
8

2

1 


 r
r

. 

The results of numerical calculations of model problems of growth of one-cell 

organism colony are shown in fig. 11, 12 and in tab. 1, 2. 

Table 1 

Mass of growing biological structure shown in fig. 11 

Time (h) Mass of biological structure 

0 0,28378030 

1 0,28792960 

2 0,29541710 

3 0,30700770 

4 0,32328381 

5 0,34431560 

6 0,37013320 

7 0,40161840 

 

 

 

Fig. 11. Growth of biological structure, nitritions are going into the domain  

from above and from below 
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Table 2 

Mass of growing biological structure shown in fig. 12 

Time (h) Mass of biological structure 

0 0,28751980 

1 0,30294060 

2 0,32969960 

3 0,36981910 

4 0,42709790 

5 0,50863440 

6 0,63095590 

 

Growth in direction of maximum concentration of nutrition is evident in both cases. 

Note only that the structure shown in fig. 11 and 12 initially were the same structure and 

only nutrition concentrations were different. 

 

 

Fig. 12. Growth of biological structure, nitritions are going into the domain  

from left and from below 

Conclusions. The main idea of the present paper is to develop a computational 

method for the problem of biological structure growth, based on the fact that biological 

growth is relatively very slow process. Considered circumstance leads to asymptotic 

analysis based on smallness of relation of correspondent time scales. Nevertheless the 

problem was formulated in quite general form, as a result of asymptotic analysis by small 

parameter method it is managed to build an analytical solution in one-dimensional case 

and to propose effective boundary element algorithm for numerical solution. 

Calculations of specific biological structures did not concern the aim of the present 

work. However the examples of calculations of special model problems show workability 

and effectiveness of the proposed method. 

The next stage of investigation concerning applications of the developed approach to 

the specific biological problems will be object of following papers, however it will 
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require an improvement of dependencies, presented in fig. 1 – 10. The following 

development of the model which can lead to taking into account of filtration flow inside 

the biological structure, convective effects in surrounding fluids, complex source fields, 

will require only some computational changes, but will not change the algorithm in 

general. 

There is a quite natural question about applicability of the algorithm to the very 

important problem of tumor growth. The answer remains unclear at the moment, because 

it is unclear can the used metabolism model describe a tumor growth process or not. 

However there is not any mathematical insuperable hindrance, but only biological. 
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