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We study a Dirichlet optimal control problem for a nonlinear elliptic anisotropic p-
Laplace equation with control and state constraints. The matrix-valued coefficients
Asym ∈ L∞(Ω; SNsym) we take as controls and in the linear part of differential operator
we consider coefficients to be unbounded skew-symmetric matrix Askew ∈ Lq(Ω; SNskew).
We show that, in spite of unboundedness of the non-linear differential operator, the
considered Dirichlet problem admits at least one weak solution and the correspon-
ding OCP is well-possed and solvable.
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1. Introduction

In this paper we deal with the following optimal control problem (OCP) for
nonlinear elliptic equation with unbounded coefficients

Minimize I(A, y) = ‖y − yd‖pLp(Ω) + ε

ˆ
Ω
|A

1
2
sym∇y|pRN dx (1.1)

subject to the constraints

−div
(
|(Asym∇y,∇y)|

p−2
2 Asym∇y

)
− div

(
Askew∇y

)
= −div f, (1.2)

Asym ∈ Aad, y ∈W 1,p
0 (Ω) (1.3)

where p satisfies 2 < p < +∞, ε > 0 is a small fixed parameter, the symmetric
matrix of anisotropy Asym ∈ L∞(Ω;RN×N )∩BV (Ω;RN×N ) is taken as a control,
the skew-symmetric matrix Askew ∈ Lq(Ω;RN×N ) is a given matrix of coefficients,
yd ∈ Lp(Ω) and f ∈ Lq(Ω;RN ) are given distributions. Here Aad is a class of
admissible controls, which is a nonempty subset of L∞(Ω;RN×N )∩BV (Ω;RN×N ).
————————————————–
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Thereby, for a ”typical” symmetric control we deal with the Dirichlet boundary
value problem for non-degenerate anisotropic elliptic equation (see [2]). On the
other hand, the unboundedness of skew-symmetric matrix can lead to the existence
of elements y ∈W p

0 (Ω) such that y 6∈ L∞(Ω),
ˆ

Ω

(
∇ϕn, Askew∇ϕn

)
RN dx = 0 ∀n ∈ N, and lim

n→∞

ˆ
Ω

(
∇ϕn, Askew∇y

)
RN dx 6= 0

where C∞0 (Ω) 3 ϕn → y strongly in W p
0 (Ω) [6, 7, 15]. As a result, the existence,

uniqueness, and variational properties of the weak solution to elliptic equation
(1.2) usually are drastically different from the corresponding properties of solutions
to the elliptic equations with coercive L∞-matrices in coefficients (we refer to
[3, 10–13] for the details and other results in this field).

We will prove that considered elliptic Dirichlet problem admits at least one
weak solution in the sense of Minty and the corresponding optimal control problem
(1.1) has a nonempty set of weak solutions (see Theorem 3.1).

2. Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 2) with Lipschitz
boundary ∂Ω. Let χE be the characteristic function of a subset E ⊂ Ω, i.e.
χE(x) = 1 if x ∈ E, and χE(x) = 0 if x 6∈ E.

Let MN be the set of all N×N real matrices. We denote by SNskew the set of all
skew-symmetric matrices C = [cij ]

N
i,j=1. Thus, if C ∈ SNskew then cij = −cji and,

hence, cii = 0. Let SNsym be the set of all N ×N symmetric matrices. By matrix
norm in MN (and for functions with values in SNsym and SNskew as well) we mean
a sub-multiplicative norm ‖A‖ := sup

{
|Aξ|RN : ξ ∈ RN with |ξ|RN = 1

}
. It

is worth to note that, in the case of Euclidean norm | · |RN , the norm ‖A‖ can
be computed as the spectral norm ‖A‖ =

√
λmax(AtA), where λmax(AtA) is the

largest eigenvalue of the positive-semidefinite matrix AtA.
Let p > 2 be given real number and 1 < q < ∞ be its conjugate such that

1
p + 1

q = 1. Let Lq
(
Ω;SNskew

)
be the normed space of measurable integrable with

the power q functions whose values are skew-symmetric matrices.
Let L1(Ω)

N(N+1)
2 = L1

(
Ω;SNsym

)
be the space of integrable functions whose

values are symmetric matrices. ByBV (Ω; SNsym) we denote the space of all matrices
in L1(Ω; SNsym) for which the norm

‖C‖BV (Ω;SNsym) = ‖C‖L1(Ω;SNsym) +

ˆ
Ω
|DC| = ‖C‖L1(Ω;SNsym)

+
∑

1≤i≤j≤N
sup

{ˆ
Ω
cijdivϕdx : ϕ ∈ C1

0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω
}

(2.1)

is finite.
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Remark 2.1. We recall that a sequence {fk}∞k=1 converges weakly∗ to f in BV (Ω)
if and only if two following conditions hold (see [1]): fk → f strongly in L1(Ω) and
Dfk

∗
⇀ Df weakly∗ in the space of Radon measuresM(Ω;RN ). Each uniformly

bounded set in BV (Ω) is compact in L1(Ω) with respect to the strong topology in
this space. Moreover, if {fk}∞k=1 ⊂ BV (Ω) converges strongly to some f in L1(Ω)
and satisfies supk∈N

´
Ω |Dfk| < +∞, then (see, for instance, [1])

(i) f ∈ BV (Ω) and
ˆ

Ω
|Df | ≤ lim inf

k→∞

ˆ
Ω
|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(2.2)

Let ξ1, ξ2 be given elements of L∞(Ω) ∩BV (Ω) satisfying the conditions

0 < α ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, (2.3)

where α is a given positive value. Let yd ∈ Lp(Ω) and f ∈ Lq(Ω;RN ) be given
distributions. We define the class of admissible controls Aad as follows

Aad =

{
A ∈ L∞(Ω; SNsym)

∣∣∣∣∣ ξ
2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω ∀ η ∈ RN ,

A
1
2 ∈ BV (Ω; SNsym),

´
Ω |DA

1
2 | ≤ γ

}
,

(2.4)
where γ > 0 is a given constant. In view of estimates

‖A
1
2 (x)‖ ≤ ξ2(x) a.e. in Ω,ˆ

Ω
‖A‖

p
2 dx ≤

ˆ
Ω
‖A

1
2 ‖p, dx ≤

ˆ
Ω
‖A

1
2 ‖p−1‖A

1
2 ‖ dx

≤ ‖ξ2‖p−1
L∞(Ω)

ˆ
Ω
‖A

1
2 ‖ dx,

it is clear that Aad is a nonempty convex subset of L
p
2 (Ω;SNsym) with empty

topological interior.

Remark 2.2. It is worth to mention, that any sequence of admissible controls
{Ak}k∈N ⊂ Aad possesses the following property: sequence {A

1
2
k }k∈N is compact

with respect to weak-∗ convergence in BV (Ω; SNsym), i.e. there exists an element

A0 ∈ Aad such that within a subsequence A
1
2
k
∗
⇀ A

1
2
0 in BV (Ω; SN ). Indeed,

the above mentioned sequence is weakly-∗ compact in L∞(Ω;SNsym), as far as

‖A
1
2
k ‖L∞(Ω;SNsym) ≤ ‖ξ2‖L∞(Ω), and, hence, it is weakly compact in L1(Ω; SNsym)

and ‖A
1
2
k ‖L1(Ω;SNsym) ≤ |Ω|‖ξ2‖L∞(Ω). This fact together with (2.4) gives uniform

boundedness ‖A
1
2
k ‖BV (Ω;SNsym) ≤ |Ω|‖ξ2‖L∞(Ω)+γ and desirable property immediately

follows with respect to Remark 2.1

The optimal control problem we consider in this paper is to minimize the
discrepancy between the distribution yd ∈ Lp(Ω) and the solutions y ∈ W 1,p

0 (Ω)
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of the boundary value problem (1.2) by choosing an appropriate matrix-valued
function Asym ∈ Aad as control. Here, by ∆p(Asym, ·) : W 1,p

0 (Ω) → W−1,q(Ω) we
denote the so-called anisotropic p-Laplacian which usually can be defined by the
rule (see [2] and references therein)

∆p(Asym, y) = −div
(
|(Asym∇y,∇y)|

p−2
2 Asym∇y

)
,

and Askew ∈ Lq
(
Ω;SNskew

)
is a given matrix, f ∈ Lq(Ω;RN ) is a given distribution.

In view of (2.4) it is easy to see that ∆p(Asym, ·) : W 1,p
0 (Ω) → W−1,q(Ω) is

a bounded operator possessing semicontinuity, coercivity and strict monotonicity
properties. Let V be a reflexive separable Banach space , V ∗ be its dual. We recall,
that operator A : V → V ∗ is called

- monotone if
〈Ay −Av, y − v〉V ∗;V ≥ 0, ∀ y, v ∈ V ; (2.5)

- strictly monotone if (2.5) holds and

〈Ay −Av, y − v〉V ∗;V = 0 =⇒ y = v; (2.6)

- semicontinuous, if

the function R 3 t 7→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V.
(2.7)

- coercive, if
〈Ay, y〉V ∗;V
‖y‖V

→ +∞ as ‖y‖V → +∞. (2.8)

Indeed,

〈∆p(Asym, ϕ), v〉
W−1,q(Ω);W 1,p

0 (Ω)
: =

ˆ
Ω
|(Asym∇ϕ,∇ϕ)|

p−2
2 (Asym∇ϕ,∇v) dx

=

ˆ
Ω
|A

1
2
sym∇ϕ|p−2 (Asym∇ϕ,∇v) dx. (2.9)

Here, the right-hand side of (2.9) is continuous in v ∈ W 1,p
0 (Ω) and, therefore,

represents an element of W−1,q(Ω) because

ˆ
Ω
|A

1
2
sym∇ϕ|p−2 (Asym∇ϕ,∇v) dx

≤
(ˆ

Ω
|A

1
2
sym∇ϕ|p dx

) p−1
p
(ˆ

Ω
|A

1
2
sym∇v|p dx

) 1
p

≤ ‖ξ2‖pL∞(Ω)‖∇ϕ‖
p−1
Lp(Ω)N

‖∇v‖Lp(Ω)N = ‖ξ2‖pL∞(Ω)‖ϕ‖
p−1

W 1,p
0 (Ω)

‖v‖
W 1,p

0 (Ω)
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(we apply here Hölder’s inequality and use the estimate |A
1
2
sym∇ϕ|p ≤ ξp2 |∇ϕ|p

coming from the conditionAsym ∈ Aad). Hence, operator ∆p(Asym, ·) : W 1,p
0 (Ω)→

W−1,q(Ω) is bounded. The coercivity of ∆p(Asym, ·) we get immediately, since

〈∆p(Asym, y), y〉
W−1,q(Ω);W 1,p

0 (Ω)
≥ αp‖y‖p

W 1,p
0 (Ω)

.

As for the proof of strict monotonicity and semicontinuity of operator ∆p(Asym, ·),
we refer for the details to [8, 14]).

In what follows, we associate with Askew ∈ Lq(Ω;SNskew) the bilinear skew-
symmetric form

Φ(y, v) =

ˆ
Ω

(
∇v,Askew∇y

)
RN dx, ∀ y, v ∈W 1,p

0 (Ω). (2.10)

It is easy to see, that the form Φ(y, v) is unbounded on W 1,p
0 (Ω), in general.

However, if we temporary assume that Askew ∈ L∞(Ω; SNskew), then the bilinear
form Φ(·, ·) becomes bounded on W 1,p

0 (Ω). In order to deal with the case Askew 6∈
L∞(Ω; SNskew), we notice that the value Φ(y, ϕ) is always finite provided y ∈
W 1,p

0 (Ω) and ϕ ∈ C∞0 (Ω). Indeed,

|Φ(y, ϕ)| :=
∣∣∣∣ˆ

Ω

(
∇ϕ,Askew∇y

)
RN dx

∣∣∣∣ ≤ ‖ϕ‖C1(Ω)

(ˆ
Ω
|Askew∇y|RN dx

)
≤ ‖ϕ‖C1(Ω)

(ˆ
Ω

∥∥Askew∥∥q dx)1/q (ˆ
Ω
|∇y|pRN dx

)1/p

≤ ‖ϕ‖C1(Ω)‖Askew‖Lq(Ω;SNskew)‖y‖W 1,p
0 (Ω)

< +∞.

Hence, if Askew ∈ Lq
(
Ω;SNskew

)
then the integral

ˆ
Ω

(
∇ϕ,Askew∇y

)
RN dx is

well defined for every y ∈W 1,p
0 (Ω) and ϕ ∈ C∞0 (Ω).

3. Setting of the Optimal Control Problem

Let p ≥ 1 be a given exponent and let f : Ω→ RN be a vector-valued function
such that f ∈ Lq(Ω;RN ). The optimal control problem (1.1)–(1.3) we consider
in this paper is to minimize the discrepancy (tracking error) between a given
distribution yd ∈ Lp(Ω) and a solution y of the Dirichlet boundary value problem
(1.2)–(1.3) by choosing an appropriate matrix-valued control Asym(x) ∈ Aad.

Definition 3.1. We say that a function y = y(Asym, Askew, f) is a weak solution
(in the sense of Minty) to boundary value problem (1.2),(2.3),(2.4) for a fixed
control Asym ∈ Aad, given matrix Askew ∈ Lq(Ω; SNskew) and function f ∈ Lq(Ω)

if y ∈W 1,p
0 (Ω) and

ˆ
Ω
|A1/2

sym∇ϕ|
p−2
RN (Asym∇ϕ,∇ϕ−∇y)RN dx

+

ˆ
Ω

(Askew∇ϕ,∇ϕ−∇y)RN dx ≥
ˆ

Ω
(f,∇ϕ−∇y)RN dx ∀ϕ ∈ C∞0 (Ω). (3.1)
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We note that by the initial assumptions and Hölder’s inequality, this definition
makes a sense because (Askew∇y) ∈ L1(Ω;RN ) for each y ∈W 1,p

0 (Ω).
It is worth to notice that the original boundary value problem (1.2)–(1.3) is

ill-possed, in general. In view of the fact that the skew-symmetric form (2.10) can
be unbounded onW 1,p

0 (Ω), the existence of a weak solution to (1.2),(2.3),(2.4) for
fixed Asym ∈ Aad, Askew ∈ Lq(Ω; SNskew) and f ∈ Lq(Ω;RN ) seems to be an open
question.

On the other hand, the Minty inequality (3.1) does not allow us to derive a
reasonable a priory estimate in ‖ · ‖

W 1,p
0 (Ω)

-norm for the weak Minty solutions.
Thus, in general, the mapping Asym 7→ y(Asym, Askew, f) can be unbounded.

Taking these observations into account, we restrict our analysis to the following
set of admissible solutions for the original optimal control problem. Namely, we
indicate the set

Ξ =
{

(Asym, y)
∣∣∣ Asym ∈ Aad, y ∈W 1,p

0 (Ω), (Asym, y) are related by (1.2)
}
.

(3.2)

We adopt the following hypothesis, which is mainly motivated by the previous
reasonings.

Hypothesis A. The set of admissible solutions Ξ is nonempty.
We say that a pair (A0

sym, y
0) ∈ L∞(Ω; SNsym) ×W 1,p

0 (Ω) is a weak optimal
solution to the problem (1.2),(2.3),(2.4) on the set Ξ, if

(A0
sym, y

0) ∈ Ξ and I(A0
sym, y

0) = inf
(Asym,y)∈Ξ

I(A, y). (3.3)

For our further analysis, we make use of the following results. We begin with
the following property.

Lemma 3.1. Let
{

(Asymk , yk) ∈ Ξ
}
k∈N be a sequence such that A

1
2
symk

∗
⇀ A

1
2
sym

in BV (Ω; SNsym) and yk ⇀ y in W 1,p
0 (Ω). Then

lim
k→∞

ˆ
Ω
|
(
∇ϕ,Asymk∇ϕ

)
|
p−2

2
(
∇yk, Asymk∇ϕ

)
RN dx

=

ˆ
Ω
| (∇ϕ,Asym∇ϕ) |

p−2
2 (∇y,Asym∇ϕ)RN dx, ∀ϕ ∈ C∞0 (Ω). (3.4)

Proof. SinceA
1
2
symk → A

1
2
sym in L1(Ω; SN ) and the sequence {A

1
2
symk}k∈N is bounded

in L∞(Ω;SN ), by Lebesgue’s Theorem we get that A
1
2
symk → A

1
2
sym strongly in

Lr(Ω; SN ) for every 1 ≤ r < +∞. Hence, A
1
2
symk∇ϕ → A

1
2
sym∇ϕ strongly in

Lp(Ω)N for every ϕ ∈ C∞0 (Ω). Therefore, for all ϕ ∈ C∞0 (Ω) we have

|A
1
2
symk∇ϕ|

p−2A
1
2
symk∇ϕ→ |A

1
2
sym∇ϕ|p−2A

1
2
sym∇ϕ in Lq(Ω)N . (3.5)
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Moreover, since A
1
2
symk∇ψ → A

1
2
sym∇ψ strongly in Lq(Ω)N for every ψ ∈

C∞0 (Ω) and ∇yk ⇀ ∇y in Lp(Ω)N , it follows that
ˆ

Ω

(
A

1
2
symk∇yk,∇ψ

)
dx =

ˆ
Ω

(
∇yk, A

1
2
symk∇ψ

)
dx

→
ˆ

Ω

(
∇y,A

1
2
sym∇ψ

)
dx =

ˆ
Ω

(
A

1
2
sym∇y,∇ψ

)
dx, ∀ψ ∈ C∞0 (Ω), (3.6)

as a product of weakly and strongly convergent sequences in Lp(Ω)N and Lq(Ω)N ,
respectively. Using the fact that

sup
k∈N
‖A

1
2
symk∇yk‖Lp(Ω)N ≤ ‖ξ2‖L∞(Ω) sup

k∈N
‖∇yk‖Lp(Ω)N < +∞,

we finally get from (3.6)

A
1
2
symk∇yk ⇀ A

1
2
sym∇y in Lp(Ω;RN ). (3.7)

Thus, to complete the proof it remains to note that

ˆ
Ω
|
(
∇ϕ,Asymk∇ϕ

)
|
p−2

2
(
∇yk, Asymk∇ϕ

)
dx

=

ˆ
Ω

(
|A

1
2
symk∇ϕ|

p−2A
1
2
symk∇ϕ,A

1
2
symk∇yk

)
dx

and apply properties (3.5) and (3.7).

The following result deals with closedness of the set of admissible solutions Ξ
with respect to a suitable topology.

Lemma 3.2. Suppose Hypothesis A holds. Let
{

(Asymk , yk)
}
k∈N ⊂ Ξ be a sequence

of admissible pair such that

A
1
2
symk

∗
⇀ A

1
2
sym0

in BV (Ω;SNsym), (3.8)

yk ⇀ y in W 1,p
0 (Ω), (3.9)

Then Asym0
∈ Aad, (Asym0

, y) ∈ Ξ.

Proof. Since Asymk ∈ Aad for every k ∈ N then, in view of Remark 2.2, we
immediately get Asym0

∈ Aad. Moreover, it follows that the Minty inequality

ˆ
Ω
|A1/2

symk
∇ϕ|p−2

RN (Asymk∇ϕ,∇ϕ−∇yk)RN dx

+

ˆ
Ω

(Askew∇ϕ,∇ϕ−∇yk)RN dx ≥
ˆ

Ω
(f,∇ϕ−∇yk)RN dx (3.10)
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holds true for all ϕ ∈ C∞0 (Ω). In order to pass to the limit in (3.10), it is enough
to use Lemma 3.1. Taking this fact into account as well as weak convergence
∇yk ⇀ ∇y in Lp(Ω;RN ) we have
ˆ

Ω
|A1/2

sym0
∇ϕ|p−2

RN (Asym0
∇ϕ,∇ϕ−∇y)RN dx

+

ˆ
Ω

(Askew∇ϕ,∇ϕ−∇y)RN dx ≥
ˆ

Ω
(f,∇ϕ−∇y)RN dx.

Therefore (Asym0
, y) ∈ Ξ.

We are now in a position to establish the main result of this section.

Theorem 3.1. Assume that Hypothesis A is valid. Then the optimal control
problem (1.1)–(1.3) admits at least one solution for all distributions Askew ∈
Lq(Ω; SNskew), f ∈ Lq(Ω;RN ) and yd ∈ Lp(Ω).

Proof. Since the original problem is regular and the cost functional for the given
problem is bounded below on Ξ, it follows that there exists a minimizing sequence{

(Asymk , yk)
}
k∈N ⊂ Ξ such that

I(Asymk , yk) −−−→k→∞
Imin ≡ inf

(Asym,y)∈Ξ
I(Asym, y) ≥ 0.

Hence, supk∈N I(Asymk , yk) ≤ C, where the constant C is independent of k. Since
|a+ b|p ≤ 2p−1(|a|p + |b|p), we have

sup
k∈N
‖yk‖pW 1,p

0 (Ω)
=

ˆ
Ω

(
ypk + |∇yk|pRN

)
dx

≤ max
{

1, (εαp)−1
} ˆ

Ω

(
ypk + ε|A

1
2
symk∇yk|

p
RN
)
dx

≤ 2p−1 max
{

1, (εαp)−1
}(

sup
k∈N

I(Ak, yk) + ‖yd‖pLp(Ω)

)
≤ 2p−1 max

{
1, (εαp)−1

}(
C + ‖yd‖pLp(Ω)

)
. (3.11)

Therefore, passing to a subsequence if necessary and taking into account Remark
2.2, we may assume the existence of a pair (Asym0

, y0) ∈ Aad×W 1,p
0 (Ω) such that

A
1
2
symk

∗
⇀ A

1
2
sym0

in BV (Ω; SNsym), (3.12)

yk ⇀ y0 in Lp(Ω), (3.13)

∇yk ⇀ ∇y0 in Lp(Ω,RN dx), (3.14)
I(Asym0

, y0) < +∞. (3.15)

In remains to show that (A0, y0) is an optimal pair. Using conditions (3.13)–
(3.15) and the property of lower semicontinuity of the norms ‖ · ‖Lp(Ω;RN ) and
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‖ · ‖Lp(Ω) with respect to the weak topologies of Lp(Ω;RN dx) and Lp(Ω), as well
as properties (2.2), we get

lim inf
k→∞

‖yk − yd‖pLp(Ω) ≥ ‖y0 − yd‖pLp(Ω) ,

lim inf
k→∞

ˆ
Ω

(
∇yk, Asymk∇yk

)p/2
RN dx ≥

ˆ
Ω

(
∇y0, Asym0

∇y0

)p/2
RN dx.

Indeed, to prove last relation, it is enough to show weak convergence of the
sequence {A

1
2
symk∇yk}k∈N ⊂ Lp(Ω;RN ) to element A

1
2
sym0∇y0 ∈ Lp(Ω;RN ) and

use lower semi-continuity property of the norm in Lp(Ω;RN ) as follows

lim inf
k→∞

ˆ
Ω

(
∇yk, Asymk∇yk

)p/2
RN dx = lim inf

k→∞

ˆ
Ω
|A

1
2
symk∇yk|

p
RNdx

= lim inf
k→∞

‖A
1
2
symk∇yk‖

p
Lp(Ω;RN )

≥ ‖A
1
2
sym0∇y0‖pLp(Ω;RN )

=

ˆ
Ω

(
∇y0, Asym0

∇y0

)p/2
RN dx.

Mentioned weak convergence A
1
2
symk∇yk ⇀ A

1
2
sym0∇y0 in Lp(Ω;RN ) comes from

the argumentation of Lemma 3.1, see (3.6)–(3.7).
Thus,

I(A0, y0) ≥ inf
(A,y)∈Ξ

I(A, y) = lim
k→∞

I(Ak, yk) ≥ lim inf
k→∞

I(Ak, yk)

≥ ‖y0 − yd‖pLp(Ω) + ε

ˆ
Ω

(∇y0, A
sym
0 ∇y0)

p/2

RN dx = I(A0, y0),

and, hence, the pair (A0, y0) is optimal for problem (1.1)–(1.3). The proof is
complete.

In what follows we prove that Hypothesis A takes place, i.e. there exists at least
one admissible pair (Asym, y) ∈ Ξ. With that in mind we consider the sequence
Askewk ∈ L∞(Ω; SNskew), such that Askewk → Askew strongly in Lq(Ω;SNskew) as
k →∞ (existence of such sequence is a well-known fact of functional analysis as
well as methods of its construction). Now we fix any matrix Asym ∈ Aad, and with
it and matrix Askew we associate the corresponding sequence of boundary value
problems

−div
(
|(Asym∇y,∇y)|

p−2
2 Asym∇y

)
− div

(
Askewk∇y

)
= −div f, (3.16)

y ∈W 1,p
0 (Ω). (3.17)

It is easy to see that the differential operator in the left-hand of (3.16) possesses
strict monotonicity, coercivity and semi-continuity properties on W 1,p

0 (Ω), and,
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hence (see, for instance, [4,5]), boundary value problem (3.16)–(3.17) has a unique
weak solution, i.e. for each k ∈ N there exists a unique yk ∈W 1,p

0 (Ω) such that
ˆ

Ω
|A1/2

sym∇yk|
p−2
RN (Asym∇yk,∇ϕ)RN dx+

ˆ
Ω

(Askewk∇yk,∇ϕ)RN dx

=

ˆ
Ω

(f,∇ϕ)RN dx ∀ϕ ∈ C∞0 (Ω). (3.18)

Remark 3.1. In fact, as far as Askewk ∈ L∞(Ω;SNskew), the bilinear formˆ
Ω

(Askewk∇y,∇v) dx

is bounded on W 1,p
0 (Ω) and, hence, the integral identity (3.18) takes place if and

only if yk is a weak Minty solution of (3.16)–(3.17) (see Definition 3.1). Indeed,
following S.E. Pastukhova [9] this fact can be proved, using argumentation called
the Minty trick. First, starting from Minty inequality
ˆ

Ω
|A1/2

sym∇ϕ|
p−2
RN (Asym∇ϕ,∇ϕ−∇yk)RN dx

+

ˆ
Ω

(Askewk∇ϕ,∇ϕ−∇yk)RN dx ≥
ˆ

Ω
(f,∇ϕ−∇yk)RN dx, (3.19)

we obtain the integral identity (3.18). Indeed, since C∞0 (Ω) is dense in W 1,p
0 (Ω),

as test functions in (3.19) we can take ϕ = yk ± tv, where t ∈ RN , v ∈ W 1,p
0 (Ω).

After passing to the limit, taking into account semi-continuity of ∆p(Asym, ·), we
have

±
(ˆ

Ω
|A1/2

sym∇y|
p−2
RN (Asym∇yk,∇v)RN dx+

ˆ
Ω

(Askewk∇yk,∇v)RN dx

)
≥ ±
ˆ

Ω
(f,∇v)RN dx, ∀ v ∈W

1,p
0 (Ω),

which yields (3.18). Now, the other way round, we start from the identity (3.18).
Using it and monotonicity property of considered differential operator, for any
v ∈ C∞0 (Ω) we have

0 ≤
ˆ

Ω

(
|A

1
2
sym∇v|p−2Asym∇v − |A

1
2
sym∇yk|p−2Asym∇yk,∇ϕ

)
RN

dx

+

ˆ
Ω

(Askewk(∇v −∇yk),∇ϕ)RN dx =

ˆ
Ω

(
|A

1
2
sym∇v|p−2Asym∇v,∇ϕ

)
RN

dx+

ˆ
Ω

(Askewk∇v,∇ϕ)RN dx

−
ˆ

Ω

(
|A

1
2
sym∇yk|p−2Asym∇yk,∇ϕ

)
RN

dx−
ˆ

Ω
(Askewk∇yk,∇ϕ)RN dx

= 〈∆p(Asym, v), ϕ〉
W−1,q(Ω);W 1,p

0 (Ω)
−
ˆ

Ω
(f,∇ϕ)RNdx, for ϕ = v − yk.
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We have thus established the desired relation

〈∆p(Asym, v), v − yk〉W−1,q(Ω);W 1,p
0 (Ω)

+

ˆ
Ω

(Askewk∇v,∇v −∇yk)RN dx

≥
ˆ

Ω
(f,∇v −∇yk)RNdx, ∀ v ∈ C∞0 (Ω).

Together with integral identity (3.18) for each element yk we get the energy
equality
ˆ

Ω
|A

1
2
sym∇yk|pRN dx+

ˆ
Ω

(Askewk∇yk,∇yk)RN dx =

ˆ
Ω

(f,∇yk)RN dx. (3.20)

However, taking into account the skew-symmetric property of Askewk , i.e.

(Askewk∇y,∇v)RN = −(∇v,Askewk∇y)RN ,

which yields (Askewk∇yk,∇yk)RN = 0, we obtain the following a priory estimate:
‖yk‖p−1

W 1,p
0 (Ω)

≤ α−p‖f‖q
Lq(Ω;RN )

, for all k ∈ N. Therefore, there exists an element

y∗ ∈W 1,p
0 (Ω) such that up to a subsequence yk ⇀ y∗ in W 1,p

0 (Ω). Next, we show
that y∗ is a weak Minty solution of the initial boundary value problem (1.2),
corresponding to the fixed control matrix Asym ∈ Aad. It is enough to pass to the
limit in (3.19) as k →∞, taking into account strong convergence Askewk → Askew
in Lq(Ω;SNskew) and weak convergence ∇yk ⇀ ∇y∗ in Lp(Ω;RN ). Obviously, we
get
ˆ

Ω
|A1/2

sym∇ϕ|
p−2
RN (Asym∇ϕ,∇ϕ−∇y∗)RN dx

+

ˆ
Ω

(Askew∇ϕ,∇ϕ−∇y∗)RN dx ≥
ˆ

Ω
(f,∇ϕ−∇y∗)RN dx,

and, therefore, (Asym, y
∗) ∈ Ξ.
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