ISSN (print) 2312-4547, ISSN (on-line) 2415-7325.
BICHHUK JIHY. Cepist "MogemoBanust". 2016. Bum. 8, Ne 8. C. 71-92
DOI 10.15421/141605

MpobnemMn mMaTeMaTNHHOrO MOAENIOBAHHS
Ta Teopil AndrepeHuiaNbHUX PIBHSAHb

VIK 517.977.57

ON OPTIMAL CONTROL PROBLEMS FOR NONLINEAR
ELLIPTIC EQUATIONS WITH VARIABLE
P(X)-LAPLACIAN

P. I. Kogut*, P. I. Tkachenko**

* Dnipropetrovsk National University, Department of Differential Equations,
Gagarin av., 72, 49010, Dnipropetrovsk, Ukraine. E-mail: p.kogut@i.ua

** Dnapropetrovsk National University, Department of Differential Equations,
Gagarin av., 72, 49010, Dnipropetrovsk, Ukraine. E-mail: cool.phenom@muail.ru

Communicated by Prof. G. Leugering

An optimal control problem for the Dirichlet boundary value problem for the
nonlinear elliptic equation with p(z)-Laplacian is considered. It is shown that this
problem has at least one solution with respect to certain set of admissible pairs.

The corresponding theoretic framework regarding Sobolev — Orlicz spaces is given.

Keywords: nonlinear elliptic equation, optimal control problem, p(z)-Laplacian, Lavrientiev

phenomenon, existence theorem.

1. Setting of Optimal Control Problem

Let © be a bounded open connected subset of RY, N > 2, with sufficiently
smooth boundary 0€2. Let p : £ — R be a measured real-valued scalar function
such that 1 < a < p(z) < B < +oo for almost all = € Q. Let f € L®(Q)V,
pq € L%(Q), and y4 € L) be given distributions. We consider the following
optimal control problem (OCP):

Minimize {J(p,y) :/ ly(z) — ya(z)|® d:c—i—'y/ |Vy(ﬂs)]p($) dr
Q Q

+ [ 1nto) = puto) o} (11)

subject to the constraints

—div <\Vy!p(“)_2 Vy) — _divf, zeQ, (1.2)
y=0 on 09,
pEPug= {p € LQ(Q) s l<a<p(x)<p, ae. in Q}, (1.4)
where | - | stands for the Euclidean norm in R,
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To the best of the authors’ knowledge, the existence of solutions for the optimal
control problem (1.1)—(1.4) remains an open question. Only very few articles deal
with distributed or boundary optimal control problems for the systems of similar
type (see, for instance, [6,7] and the references therein). There are several reasons
for this:

e it is unknown whether the set of admissible solutions to the problem (1.1)—
(1.4) is weakly closed in the corresponding functional space;

e we have no a priori estimates for the weak solutions (in the sense of Minty)
to the boundary value problem (1.2)—(1.3);

e the asymptotic behaviour of a minimizing sequence to the cost functional
(1.1) is unclear in general.

To see these and other characteristic features of the optimization problem (1.1)-
(1.4) more clearly, we introduce the well-known notions of solutions for nonlinear
elliptic problems with variable exponent and discuss how the equation (1.2) can
be interpreted.

To begin with, we note that if the exponent p is constant, then the Dirichlet
boundary value problem (1.2)-(1.3) is well-posed in the classical Sobolev space
VVO1 P(Q2). For the variable measurable exponent, we look for the solution of this
problem in the Sobolev-Orlicz space (see [4,15])

WO (Q) = {u e Wyl (Q) : / |VuP®) dz < —I—oo} (1.5)
Q
equipped with the norm
lullyyr0) @) = IVull Loy @

Here, LP()(Q)Y stands for the set of all measurable vector-valued functions f :
Q — RY such that

ool f) = /Q £ (@)P@ da < +o0, (1.6)

and LPO)(Q)N is endowed with the so-called Luxemburg norm (see [3,4] for the
details)
11l o @n =nf {A> 0+ pp(AT1f) <1}
It is well-known that, unlike classical Sobolev spaces, smooth functions are

not necessarily dense in W = I/VO1 P (')(Q). Hence, with variable exponent p = p(x)
(1 < a <p<p)it can be associated another Sobolev space,

H= Hé’p(')(ﬂ) as the closure of the set C§°(£2) in Wol’p(')(Q)-norm.

Since the identity W = H is not always valid, it makes sense to say that an
exponent p(x) is regular if C§°(2) is dense in Wol’p(')(Q).
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Definition 1.1. A function y € Wol’p(')(Q) is said to be a weak solution to the
boundary value problem (1.2)-(1.3), if the integral identity

/ VP2 (Vy, V) do = / (f, V) du (1.7)
Q Q

holds true for all ¢ € C§°(€2).

Here, (-,-) stands for the scalar product in RY.

Since we can lose the density of the set C§°(€2) in Wol’p(') () for some (irregular)
variable exponents p(x), it follows that a weak solution to the problem (1.2)-
(1.3) is not unique, in general. Moreover, as it was shown in [16], the set of all
weak solutions in not necessary convex in spite of the fact that the operator

A: Wol’p(’)(Q) — (Wol’p(')(Q))*, given by the equality

(Au,v) = /Q (|Vu\p($)_2Vu,V<p> dx, Yve Wol’p(')(Q), (1.8)

is strictly monotone. The question as to whether this set is weakly closed in
VVO1 P (')(Q) remains open. At the same time, the following result is well-known.

Theorem 1.1 ( [15],p.472). If the domain Q C RY is sufficiently smooth and the
constant B in (1.4) is such that

a(N —1)

B<N—1—a

for a<N—1, and B < +4oco, for a> N —1,

then the Dirichlet problem (1.2)—(1.3) has a weak solutiony € Wol’p(')(Q) satisfying
the energy inequality

/ VP dr < / (f. V) da (1.9)
Q Q

Remark 1.1. The main idea of the proof of Theorem 1.1 is based on the fact that
some weak solutions to the Dirichlet problem (1.2)—(1.3) can be attained through
C'-regularization of the exponent p = p(x) or through some approximation of
operator A using its perturbation by eAg-Laplacian. Here, by attainability of a

weak solution y € VVO1 P (')(Q), we mean the existence of a sequence {y.}..,, where
ye are the solutions of 'more regular’ boundary value problems, such that y. — y
in some appropriate topology as e tends to zero. However, because of the fact that
the energy inequality (1.9) can be strict for some irregular variable exponents p(x),
it is unknown whether each weak solution to the Dirichlet problem (1.2)—(1.3) can
be attained in such way.

Let p(x) be an irregular exponent and let V' be an arbitrary intermediate space
between H and W,ie. HCV CW.
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Definition 1.2. A function y € V' is a V-solution of the problem (1.2)-(1.3), or
its variational solution, if the integral identity (1.7) holds for any test function
peV.

Using the strict monotonicity of the nonlinear operator A : I/VO1 P (')(Q) —
(Wol’p(')(Q)> (see (1.8)), it is easy to show that a V-solution exists and it is

unique. Moreover, since in the case of V-solutions, the test function ¢ in (1.7) can
be taken equal to the solution, it leads us to the energy equality

[ vulr @ do = [ (7.9 do (1.10)
Q Q

Theorem 1.2. Let V be an arbitrary intermediate space between H and W. Then
for any f € L¥(Q)N there exists a unique V-solution to the boundary value
problem (1.2)—(1.3) and it satisfies the energy equality (1.10).

The converse statement is also true.

Proposition 1.1. A weak solution in the sense of Definition 1.1 is variational if
and only if the energy equality (1.10) holds.

Indeed, in this case we can take V as the smallest closed subspace containing
C5°(£2) and the solution itself. For V' = H, we speak of H-solutions.

Another definition of a weak solution to (1.2)—(1.3) can be stated as follows.

Definition 1.3. A function y € Wol’p(’)(Q) is said to be a weak solution in the
sense of Minty to the boundary value problem (1.2)—(1.3), if the integral inequality

/ V@2 (Yo, Vo — V) de > / (f.Ve—Vyde (111
Q 0

holds true for all ¢ € C§°(Q).

It follows from this definition that the set of weak solutions in the sense of
Minty is convex and closed. However, the relations between Definitions 1.1 and
1.3 are very intricate for a general exponent p(-) € Pyq. At least we can not assert
that each of the Minty’s weak solutions satisfies the integral identity (1.7) or vise
versa. In Section 3 we describe the case where the three concepts of the weak
solutions are given before coincide.

As a result, the variational formulation of the optimal control problem (1.1)—
(1.4) can be stated in different forms and this depends on the choice of the
corresponding set of solutions. In view of this, we indicate the following sets of
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admissible pairs to the problem (1.1)—(1.4):

- 1,p(-) y and p are related by integral

v {(p, y) € Paa x Wy () identity (1.7) for all p € C§°(Q?) |~ (1.12)

d an intermediate space V such that
HyPO (@) < v e wyt(@)

and y and p are related by integral
identity (1.7) for all p € V

(py) € Pag x V . (1.13)

(1]
<
I

y and p are related by Minty
M =1 (p,y) € Pag x Wi () inequality (1.11) (1.14)
for all ¢ € C§°(Q)

[1]

However, because of the Lavrentieff effect, it may happen that the corresponding
minimization problems

(e ao). e s (e s

(PY)EEW (p,y)EEV P,Y)EEM

are essentially different, in general. In particular, it means that optimal pairs to
the problems (1.15) can be different as well.

Thus, the main question we are going to answer in this paper is about solvability
of optimal control problem (1.1)—(1.4) with respect to the different choice of the
set of admissible solutions. To the best knowledge of the authors, the existence of
optimal pairs to the problems (1.15) has not been studied in the literature.

2. Preliminaries On Orlicz and Sobolev — Orlicz Spaces

To begin with, we note that class LP()(Q)V is a reflexive separable Banach
space with respect to both the Luxemburg norm

1Fll oo @yy = inf {A> 0 pp(AT1f) < 1} (2.1)

and the Orlicz norm
1fllorer @)y = sup{/Q (f,9) dx : /Qg‘p/(x) dz < 1}, (2.2)

where p/(z) = % is the conjugate exponent. In view of (1.4), it is clear that

«
1< L <p(z) < a.e.in Q.
g—1 a—1
\,_/ v
B’ o

As for the infimum in (2.1), we have the following result (for reader’s convenience,
we furnish it with the proof).
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Proposition 2.1. The infimum in (2.1) is attained if p,(f) > 0. Moreover

if A= fll oy gy >0, then pp(AS1f) = 1. (2.3)

Proof. Indeed, as follows from (2.1), || f|[»()(@yv = 0 if and only if f(z) =0 a.e.
in Q, i.e. pp(f) = 0. Assume that p,(f) > 0. We define a function # : [0,00) = R
as

0= 31 = [ sf@)p)
Since ¥(0) = 0, lims_00 ¥(s) = +00, and
d
06 = [ p@sr @) do >

it follows that 1) = () is a monotonically increasing function. Hence, there exists
a positive value A, > 0 such that

-1 -1 f(z) P
YA, )=1 and YA\ )= ~ dr <1 VXE [\, +00).
Q
Therefore,
1 f(z) P
inf {fA>0: p(A) <1} =X\ and / S dr = 1. (2.4)
Q *

As a result, we deduce from (2.4) and (2.1) that Ax = || f[| o) (- O

Taking this result and condition 1 < o < p(x) < 8 into account, we see that

1 p(z)
5 [ a< [\ ar< S [ e

1 / - / !
x der <1< z)[P®) dy

Hence,

1@ < [ 1E@P e < 1y i Iy > 1,

(2.5)
1oy < [ 1 @PD do < 11500y 1 1oy <1
As a result, we arrive at the estimates
1@y =1 < [ W @PD o < 11y +1. VF € PO@Y. (20)

The next result gives us the analog of the Holder inequality.
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Proposition 2.2. If f € LPO(Q)N and g € L O(Q)V, then (f, g) € L'(Q) and

| (1.9 do <20l oy gl v (27)
Proof. To begin with, we note that the following inequality holds
1 1
1l oo v < 1 llore @y < P 7 I llro @y < 20l @n- (2:8)
x)—2
Indeed, setting A := || f||7»¢) 0y~ and g(x) = 1) [P @, we see that
Lr)(Q) A A
/ f p(@) / by (2.4)
g|P'®) = . and / [P @ dz =7 1. (2.9)
* Q
Hence,
by (2.2) f p(z)
ooy = [ (Fgydo=x [ |1 s
Q Q | A
by (2.9)

A = [fll ooy -

Thus, the left hand side of (2.8) is proven. To prove the rest part of this inequality,
we make use of the Young inequality

p(x) V() p(x) V()
| f lg| < | /] n 91 ‘
p(z)  P(x) o B

Let A = || f{[zrt) (@) - Then

(f,9) <

_ by (2.2 _ !z
I Fllowor gy & )sup{/g(k*lf,g) dx /nglp( )dﬂcsl}

1 p(@) 1 : ,
Ssup{oé/Q da:+5//ﬂg\p(x)da: : /Q|g|p(x)dx§1}

by(<2.4) 1 1
< ot

I
Ax

As a result, we obtain

1 1 1 1
[fllorer @y < (a + ﬁ’) As = <a + 5,) A1 o> v -

Thus, the inequality (2.8) holds true. In order to establish the Holder inequality
(2.7), it is sufficient to set t = HgHLp/(.)(Q)N and observe that

J

p'(x)

9@ g 21 (2.10)

t
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As a result, we finally arrive at the following relation

_1 by (2.2) by (2.2) and (2.10)
L a < Mlowogy = 2l
which immediately implies the inequality (2.7). O

Proposition 2.3. The following estimates
Ifllzo@y < A+ 12DV £l oo oyns ¥ F € LPE@Y, (2.11)

' B
[flper @y < (1 + ()R IfllLsy, B =

B N
o Verr@Y. 1)

are valid.

Proof. We note that

by (2.3)
[t [ (NP 1) de "< g0,
Q Q

with A = [ fll o) (v for each f € LPO(Q)N. Hence,

/Qlflad:c < 22(1+19))

and this estimate immediately implies (2.11). In order to establish the estimate
(2.12), we use the inequality (2.8). Since

|l ooy < ||f||om(sz>N=sup{ |t [ g0 d:cgl}

and
, by (2.11) , , ,
/ ol de 2 (14 V8 / 9P @ de < (1 + QP (2.13)
Q Q

for [, lg|P"®) do < 1, it follows from (2.13) that

1 llzec @ ésup{ /Q (f.9) do /Q Iglﬂ'dxs(ulm)l/ﬁ’}.

It remains to apply the classical Holder inequality to [, (f, g) da with f € LA(Q)N.
O

For our further analysis, we make use of the following results.

Lemma 2.1 ( [15], p.536). If a sequence {fi}rcy is bounded in LPO(Q)N and
fo — f in LN as k — oo, then f € LPOQ)N and fr — f in LPOQ)N, d.e.
x)

Jm [ (fig)de = /Q<fk,so> dz, Yo e LPO@QN with pf(z) = p(ig—l
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Lemma 2.2 ( [8], p.428). Let f,fr € LPO(QN for k = 1,2,... Then the
following statements are equivalent to each other:

(i) klin;o | fx — f”LP(')(Q)N = 0;
(i7) lim / \fe — FIP9) da = 0;
k—oo Q
(7i1) fr — f in Q in measure and lim / |fk|p(m) da::/ |f|p(m) dz.
k—oo Q Q

To end of this subsection, we discuss a couple of results that will be useful
later on.

Proposition 2.4. Let p(:) € Pyy and y(+) € Wol’p(x)(Q) be a given distributions.
Let F' = F(p), where

F(p) = [Vel"™ % (Vo, Vi — V).
Then ¢ Z F(y) is the mapping Wol’p(m)(ﬂ) = L1(Q).
Proof. Let ¢ € I/VO1 P (m)(Q) be a fixed distribution. We have to show that
1Py = [ 96l [T,V = Vi)l do < +oc.
With that in mind, it is enough to make use of the following estimates
[ IVl (T, Vi - V)l do < [ [Tl Vo - Ty do
Q Q
<[9P dot [ VPt 9y do
Q Q
by the Young inequalit; 1 1
Y < y/ V[P dw+/ VlP@ d:1:+/ —— |Vy[P™ da
Q Q Q

p'(z) p(x)
by the properties of P
T % 2/ V[P da:+/ IVy[P@ da
Q Q

by (2.6)
%617,
0

B

,P(ﬂc)(ﬂ o (Q)
O
Proposition 2.5. F : Wol’p(x)(Q) + LY(Q) is a continuous mapping.
Proof. Let ¢ € Wol’p(g&)(Q) and {pp 125 C Wol’p(x)(ﬂ) be such that
YK — ¢ in Wol’p(x)(Q) as k tends to 4o0. (2.14)

Our aim is to establish the equality

lim / |F'(o) — F(p)| dz = 0. (2.15)
Q

k—o0
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In view of the property (iii) of Lemma 2.2, we can suppose that, up to a subsequence,

Ver(z) = Ve(z) ae. in 2, and

(2.16)
hm/|V<pk]p$)d1:—/]V<p|p($)dx

Then

lim [ F(py)dz = lim / Veor P92 (Ver, Vi — Vy) da

k—00 Q

hm / Vo P da — hm / Vo P72 (Vy, Vy) da

by (1.11)2 /leo’”’ dz — lim / Vor P72 (Vipy, Vy) . (2.17)
0 k—oo J

Hence, to conclude the proof, it remains to show that
lim [ [V (Ve V) do = [ 96O (Ve V) de (218)
With that in mind, we note that (1.11) implies the pointwise convergence
V(@) 72 (Vn(a), Vy(x)
— V()P 2 (Vp(z), Vy(z)) ac. in Q. (2.19)
Let us show that the set
@ = {vn = VP (Ver, V) }

is uniformly integrable, i.e. for each € > 0 there exists a § > 0 such that

z)dzr| <e whenever fe€® and EF CQ with |E| <.
Since
by (2.
Vo2 VoS o S 1+ v
by (2.6

”VSOkHip(»(Q)N +2

—~~

B
b, .14
< <SHP”901<:| 100 (g )> +2 YW o i (220

00 /
it follows that the sequence {|chk]px )-2 chk} is bounded in LP'C)(Q)N.

Then, for every E C €2, we have

by (2.7) )
ey < 201VeRD 72 Vool oo v IVl oo iy

<2/ [Veer "2 Vool Lo v V8l oo (myv
by

—~

2.20) by (2.5) ¢
<2Vl S 2o ([Ivi@an) o
E
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where
(=a ! if IVYll o) (gyy > 1, and ¢ = gt it IVl oo gy < 1.

Let us show that for an arbitrary € > 0 there exists a 6 > 0 such that if the
Lebesgue measure of E is less than §, the integral of me(x) over F is less than

(%)B . Indeed, by the Lebesgue dominated theorem, we have

lim Vy|P®) dz = 0.

This fact follows easily since

X{wyorsay [yl < [y e L1(Q)

and
X{|wyp@ >} — 0 as A — 400

since |Vy[P(®)| being integrable, is finite almost everywhere. Then, for a given ¢,
there exists A > 0 such that

1/ en\B
VylP@de < = (=) .
/{|vy|p(z)>)\}| yl . 2(20)

Choosing § < % (%)/8 and taking any measurable set E' C € such that |E| < 4,
we get

/ VY de = / Yy de + / Yy do
E En{|VylP®>x} {En|vylr(®) <A}

(Vy|P®) da + / Ndz = 1) + I.
{En|Vy|P=) <A}

<

/{|Vylp<z>>x}

As a result, we obtain

R (R C

In view of the estimates (2.5), it is plausible to suppose that [Vy| rpc) gy <1
for e small enough. Hence, ¢ = 87! in (2.21), and, therefore,

¢
el Ly gyn = H|V<Pk!p(x)_2 (V(pk,Vy)HLl(E) <20 (/E |Vy|P®) dm)

<20 ((;C)B> . e (2.22)

Since the choice of § > 0 in estimate (2.22) does not depend on ¥, it follows that
the set ® is uniformly integrable [14].
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To conclude the proof, it remains to apply the Vitali convergence theorem [12]
which asserts that if the sequence {1 }r-; is uniformly integrable and ¢y, — ¢ :=

IV [P@=2 (Vy, Vi) almost everywhere in Q as k — 0o (see (2.19)), then
Y e LYQ) and 1y, — 1 in LY(Q). (2.23)

Taking into account that

/ Vi P2 (Vy, Vy) da — / V[P =2 (Y, Vy) d
Q Q

§/|wk¢]dxﬁo as k — oo
Q

and combining this fact with (2.23) and (2.17), we arrive at the equality (2.15).
The proof is complete. O

3. Some Auxiliary Results and Properties of the Sets of
Admissible Solutions

Due to the well-know results (see, for instance, [17]), there can be indicated an
admissible control p € P4 such that the corresponding boundary value problem
(1.2)—(1.3) admits infinitely many weak solutions. Hence, it is plausible to expect
that the sets of admissible solutions =, =y, and Zj;, which are defined in (1.12)—
(1.14), possess drastically different properties in general.

We begin this section with the case when the sets =,,, =y, and =j,; describe
the same collection of admissible pairs to the OCP (1.1)—(1.4).

Proposition 3.1. Assume that the set of admissible controls P,y is specified as
follows: p € Pyq if and only if the following conditions

Ip(z) —p(y)| < w(lz—y|), Vz,y,€ Q, |z —y| <1/2,

w(t) =ko/In([t|™!), 1 <a < p(x) <Bin Q (3.1)

hold true with a given constant kg > 0. Then the sets =,,, =y, and Zj; coincide.

Proof. First of all, we note that if p = p(z) is an admissible exponent, then
p = p(r) is a continuous function in € with the same logarithmic modulus of
continuity w(t) = m(k% As a result we have: the set C§°(12) is dense in Wol’p(')(Q)
for each p € Pyq (see |15, Theorem 13.10]).

We divide the proof into three steps. Step 1. Let us show that =, C Zy.
Let (p,y) € E, be an arbitrary pair. It is worth to notice that such choice is
always possible because Z,, is a nonempty set. Indeed, if we set p(z) = 3, then
the boundary value problem

_ div (\Vy|5‘2 Vy) — _divf, ze®, (3.2)
y=0 on 0N (3.3)
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is well-posed and it admits a unique weak solution yg € I/VO1 B (Q) satisfying the
integral identity (1.7) for all ¢ € C5°(2) (see [10]). Hence, (8,y3) € =, and
Zw # 0 follows.

By definition of the set =Z,, and the arguments of the density, the validity of
the integral identity (1.7), which is written down for the chosen pair (p,y), can

be extended to the test functions ¢ € Wol’p(')(Q). Then, putting ¢ = y in (1.7),
we immediately arrive at the energy equality (1.10). Hence, (p,y) € Zy and,
therefore, Z,, C Zy.

Step 2. At this step we show that Zy C Zj;. Let (p,y) € Zy be an arbitrary
pair. Let V' be the smallest closed subspace of T/VO1 P (‘)(Q) containing C5°(§2) and
the solution ¥ itself. By density of C3°(€2) in Wol’ﬁ(')(Q), it follows that V =
Wolﬁ(')(Q). As a result, (1.13) implies that

/ VP2 (Vg, V) dr = / (f,Ve)dz, YWy (Q). (3.4)
Q Q

*

Using the strict monotonicity of operator A : Wol P (')(Q) — (Wol 20) (Q)) , given
by the equality (1.8), we have

0< / (|w|ﬁ<$>—2w — |VyP®)=2vy, Vo — vgj) dz
Q
_ / Vo[f®2 (Vo Vo — V§) da / VGIP®-2 (V5, Vo — V§) da
Q Q

e / [VolPt)=2 (Vo, Vo — V5) da — / (f, Vo = V) de, (3:5)
Q Q

where ¢ = v — 7 and v is an arbitrary element of WO1 3 (')(Q). Hence,
/ !Vv|l7(w)—2 (VU, Vv — Vg?) dx > /(f7 Vv — V?//\) dx, Vwve Wol’ﬁ() (Q)
£ Q

and we arrive at the Minty relation (1.11). Thus, (p,y) € Ex.
Step 3. It remains to show that =y, C Z,,. Let (p,y) € Ep be a fixed pair. In
view of Propositions 2.4 and 2.5, we can apply the so-called Minty trick. Namely,

we can take any ¢ € Wol’ﬁ(')(Q) as a test function in the Minty inequality

/Q V@2 (g, Vo — V) do > /Q (f. Ve — V) da, (3.6)

and, after taking ¢ = y £ v with v € C§°(2) and ¢ > 0 in (3.6), we can pass to
the limit in this relation as ¢ — 0. This yields

i/ Vi + tVo[P@) =2 (Vg + tVv, Vv) do > i/(f, Vo)dz, Vt>0 (3.7)
Q Q
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and, therefore, after the limit passage as t — 0, we finally obtain
/ VP2 (V5 Vo) da = / (f,Vo)dz, Vv e CE(Q).
Q Q

Thus, (p,y) € Ew, and this concludes the proof. d

As follows from this result, the sets =, =y, and Zj; coincide under rather
restrictive assumptions on the class of admissible exponents which exclude the
appearance of the Lavrentieff effect.

Definition 3.1. We say that the Lavrentieff phenomenon is inherent in the OCP
(1.1)—(1.4) if there is a gap between two constrained minimization problems

< inf J(p,y)> and < inf J(p,y)>, (3.8)

(PY)EEw (p,y)EEY

namely, there exist two pairs (p°,7°) € Z, and (p?,7°) € ZEy such that

J (% 5% = inf J(py)< inf J(p,y) =J("7°). (3.9)
(p,y)EEwW (py)EEY

It is interesting to note that solutions of the problems (3.8), in general, are
different in the sense of smoothness provided Lavrentieff effect takes a place. In
particular, the optimal state 7% cannot belong to the space V and, hence, to
HO1 P (')(Q). In view of this, we can indicate a few characteristic properties of the
sets =, Zy, and =) that will be useful later on.

Proposition 3.2. For a given set of admissible controls P, the following statements

hold:
(i) the inclusions Zy C =, and Ey C =)y are valid;
(i

(iii

the sets =, 2y, and =)7 are nonempty;

2 is a convex set with respect to y;

)
)
)
(iv) the set Zps is sequentially closed in the following sense:

if {(Pr,Yr)}ren C Enm is a sequence of pairs such that

pr(x) = p(z) ae. in Q, y,—y in Wol’a(Q) as k — oo,

. (3.10)
and y € I/Vol’p()(Q)7

then (p,y) € ZEp.

Proof. The validity of assertions (i)—(ii) can be easily established following the
similar arguments as in the proof of Proposition 3.1 Let us show that =Z;; is a
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convex set with respect to y. Let (p,y1) and (p,y2) be arbitrary pairs of Zj;.
Then, for each A € [0, 1] and ¢ € C§°(Q2), we have

[ (P2 V0,96 = (Vi + (1= ) T)) s
Q

3 [ (1P Ve, 9 = Vi) do (1= [ (16926, Vio - Vi) da
Q Q

by (1.11)
> A/ (f. Vo — Vi) da + (1—A>/ (f. Vo — V) da
0 Q

- /Q (.9 — (W1 + (1 — \) V) de.

Hence, (p, \y1 + (1 — N)y2) € Enr, ie. Ayr + (1 — A)yz is a weak solution in the
sense of Minty of the boundary value problem (1.2)—(1.3).

It remains to show that Zj; is a closed set in the sense of convergence (3.10).
Let {(pk,¥r)}reny be @ sequence such that (pg,yx) € En for all k¥ € N and

properties (3.10) hold with some distributions p € P,y and y € Wol P (')(Q). Our
aim is to show that (p,y) € Zj,. With that in mind, we note that, in view of the
estimate

, 1/a , 1/a
/|Vyk|da:§]E\1/a </ |Vyk|°‘dx> < |E|M </ ]Vyk|°‘dx>
E E Q

, by (3.10) ,
< B[V sup [yl 1.0 < ClgVe
keN WO (Q)

where E # () is an arbitrary measurable subset of €, the sequence {Vyy}, oy is
equi-integrable, i.e. for every € > 0 there exists a d > 0 such that

/ |Vye|dx < e
B

holds for all £ € N and all Borel sets B C Q2 with |B| < §. Let ¢ € C§°(f2) be a
test function. Then, setting up

= Vo2 Ve and ¢ = Vo2 Ve =4,
we see that 1, — 9 almost everywhere in €2 as k — oo and

il = Ve @™t < flpllf g +1=C" aeim @ VkeN.
Therefore, 1, — v in L'(Q) by Lebesgue dominated theorem and
[ (12 90,90 - Vi) do = [ (0.9 - Vi) da

+/<wk—w,w—m>da::h+f2,
Q
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where, by definition of the weak convergence in L*(Q)", we have

lim I; = klim (Y, Vo — Vyi)dx = /(w, Ve — Vy)dx,
) Q

k—o0

and
B < [ | = .9~ V)| do
-/ (W — &, Vi — V)| da
{IVo—Vyr|>n}
+ (W — 6, Vi — V)| da
{IVp—Vyi|<n}
<ocr [ Vo~ Vol don [ fn— vl do
{IVo—Vyr|>n} Q
for any fixed n € R,;. Hence, for a given £ > 0 there exist indices kg € N and

ng € N such that for all k£ > kg and n > ng we have

3

/ |V — Vyi| do < —- by equi-integrability of {Vo — Vyi} o,
{IVo— Vi >n} AC

/ |t — | doe < % by the strong convergence 1, — v in L*(Q).

Q

Thus, I> < € for k large enough. Hence,
im [ (6P Ve, V= Vi) do = [ (1oF2 Vi, Vg - V) do.
k—oco J Q

N

)

Taking into account this fact and the weak convergence Vyi — Vy in LY(Q)
we can pass to the limit in the integral inequality

/Q V[P =2 (T, Vi — Vi) da > /Q (f, Voo — Vi) dz

as k tends to co. As a result, we get the following: the limit pair (p,y) belongs to

the set Pyq X Wol’p(')(Q) and satisfies the inequality (1.11). Hence, (p,y) € Zp.
The proof is complete. O

Proposition 3.3. Assume that the set P4 is given as in (1.4). Then
0+£=Zy CEy and Ep \Ey # 0. (3.11)

Proof. Let p € P,q be an arbitrary admissible exponent. Then we can come
across with two different situations: either Hé’p(’)(Q) = Wol’p(')(Q) or Hé’p(')(Q) C
VVO1 P (’)(Q). In the first case, as Proposition 3.1 indicates, there is a unique weak
solution y = y(p) to the boundary value problem (1.1)-(1.3) such that this
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solutions satisfies both Definitions 1.2 and 1.3. Hence, (p,y) € Zu, (p,y) € Zv,
and, therefore, Zy # ().

As for the second case, we have a more delicate situation. Indeed, in this case,
for any intermediate space V, H C V C W, the following assertions are well-
known: V is a reflexive separable Banach space [8] and the operator A : V — V*,
given by the equality

(Au,v) = /Q (\Vu|p(‘”)*2Vu, V@) dr, VveV,

is bounded, semicontinuous, coercive, and strictly monotone [16|. Hence, the
equation Ay = f is uniquely solvable for each f € V* [11]. In other words,
there exists a unique distribution yy € V such that (p,yy) € Zy and, therefore,
(p,yv) € En by property (i) of Proposition 3.2. Since Hé’p(’)(Q) # Wol’p(')(Q), it
follows that there exist at least two subspaces V; and V3 of WO1 P (')(Q) such that
the corresponding variational solutions yy, and yy, do not coincide. Hence,

—_ — 1 by Proposition 3.2 _
(pa yvl) €y, (p’ yVQ) € oy, b, 5 (?JV1 + yV2) € =M, (312)
and .
<p7 5 (yV1 + yV2)> ¢ E'V' (313)

Since the inclusions (3.12) are obvious, we focus on the proof of (3.13). To do so,
it is enough to show that we loss the energy equality for the pair (p, % (yv, + yV2))
and have the energy inequality instead. Indeed, by the energy equalities for (p, yv; )
and (p,yy,), we obtain

1
(e e 1 (552))
o2 Q 2

However, in view of the Clarkson’s inequalities (see [2])

-1 o+
2 2

1 - o =[P\ 0+
(3000 +10m) ™ = (|2520)7 + (|2

and the fact that yy, # yy,, it is easy to derive the relation

1 p
/ : (|V’yV1 p(@) 4 |Vyv2]”(m)> de > / v <yv1+yv2>‘ dx.
Q2 Q

2
Thus, the pair (p, % (yv, + yvz)) satisfies the strict energy inequality

p
(e s ()
Q 2 Q 2

and, therefore, (p, % (yv, + yv2)) ¢ Zy. To conclude the proof, it is enough to
recall that (p, 1 (yv; + y1s)) € En by Proposition 3.2. Hence, Zp7 \ Ey # 0. O

p
+

p

p>2

) Y

3 o+ 1417) 2

P\ -1
> , 1<p<2,
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At the end of this section, it is worth to notice that the relationship between
=w, 2v, and Zjy is very intricate problem, in general. In particular, it is unknown
whether Z);, C =, or vice versa. We even can not assert that if (p,y) € Zp
and this pair is related by the energy equality (1.10), then (p,y) € Zy. It also
remains an open question about the standard topological properties of =, such as
compactness, closedness and etc. Moreover, as was shown in [16, pp.107-112], the
set =, is not convex, in general. Thus, in contrast to the standard situation, where
non-uniqueness is possible in classical monotone problems, it usually comes from
the missing of strict convexity of the corresponding operator, whereas the solution
set is convex and closed. In the case of boundary value problem (1.2)—(1.3), the

=~ P *
corresponding operator A : Wol’p(')(Q) — (Wol’p(')(ﬂ)) is strictly monotone. So,
non-uniqueness and non-convexity are of completely different nature.

4. On Solvability of Optimal Control Problem

In what follows, we discuss the following optimal control problem

Minimize { (p,y) /|y z)|* dx+7/|Vy |p$) dx

+/Q\p(fv) — pa(x)|? da:+/Q|Dp!} (4.1)

subject to the constraints

— div (|vy\p(x)*2 vy) — _divf, zeQ, (4.2)
y=0 on 09, (4.3)
pE ]/I\”ad ={peBV(Q) : 1<a<p(z)<p, ae in Q}, (4.4)

where by BV () we denote the space of all functions in L!(£2) for which the norm
Ipllavie) = Pl + | D2l = Ioloxo)

—|—sup{/pdivgpda: Do € CHORY), |o()] glfoerQ}
Q

is finite.
We introduce the set of admissible solutions to the OCP (4.1)—(4.4) as follows:

N

~ (.
D € Pua, (TS WO o )(Q)7 (4.5)
(p,y) is related by Minty inequality (1.10).

Ev = {(p, Y)

It is clear that J(p,y) < +oo for all (p,y) € E.
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Remark 4.1. We recall that a sequence {p;}72; converges weakly* to p in BV (Q)
if and only if the two following conditions hold (see [1]): pr — p strongly in
LY(Q) and Dp, = Dp weakly* in the space of Radon measures M(Q;RN).
Moreover, if {p;}2°, C BV(Q) converges strongly to some p in L!(£2) and satisfies
supgen Jo [Dpi| < 400, then (see, for instance, [1] and [9])

(1) pe BV() and / |Dp| < liminf/ | Dpg|;
Q k—oo Jq

(i) pr, —p in BV(Q).

(4.6)

We say that (p°,4°) € BV () x Wol’po(')(Q) is a Minty optimal solution to the
problem (4.1)—(4.4) if
0

(0°,¢°) € Ey and J(°4°) = inf  J(p,y).
(py)EEM

Our main intention in this section is to show that the set of Minty optimal
pairs is nonempty for the problem (4.1)-(4.4). With that in mind we make use of
the direct method of Calculus of Variations. R

To begin with, we note that the set of admissible controls P,q4, given by
(4.4), is nonempty, convex, it has an empty topological interior, and satisfies
the inclusion P,q C L%(€2). Hence, all results of Section 3, concerning topological
and algebraic properties of the sets =, Zy, and Zj, remain valid. Moreover, it is
worth to emphasize that P4 is a sequentially closed set with respect to the weak®
convergence in BV (Q).

In what follows, we make use of a couple of auxiliary results which are crucial
for our further analysis.

Lemma 4.1. Let {pi} ey C P,y and {yk € Wol’p"'(')(Q)}k N be sequences such
€
that pr, = p in BV(Q), and y, — y in Wol’a(Q). Then

lim inf / Vi [P@) d > / IVy[P®) da. (4.7)
k—oco Jq O

Proof. By the definition of the weak* convergence in BV (Q2), we have: p — p
strongly in L!(Q). Hence, within a subsequence, we may suppose that py(z) —
p(z) almost everywhere in Q. As a result, for any ¢ € RV, the following pointwise
convergence holds:

lim [£[P*®) = [£P®) ae in Q, (4.8)
k—o0
i @) (p) = (|ep@)” |
tim (1g@) () = () () ae.in @ (4.9)
where (|£|p’€(x))* (n) = (px(z) — 1) pki(x) Pl is the conjugate function, i.e.
(1) () = sup ((&,m) — |el@) . (4.10)
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As follows from (4.10), for each z € L>®(Q)N = (Ll(Q)N)*, we have the Young-
Fenchel inequality

/]Vyk]pk(x) de/(z,Vyk) dx—/f;(a:,z(a:))dx,
Q Q Q

where it has been denoted f}(x,n) = (\§|pk($))* (n).
Then, using (4.9) and the continuity of the embedding L*(Q)Y «— LY(Q)V,
we obtain Vy;, — Vy in L}(Q)" and, therefore,

liminf/ |V [P @) de/(z,Vy) dx—/f*(x,z(x))dx.
k—oo JQ QO Q

Since this relation holds for each z € L*°(Q)¥, it follows that
liminf/ IVyr[P*® de > sup [/ (2, Vy) dw—/f*(x,z(m))dx] :
k—oo Jo zeLee ()N LJQ Q

To conclude the proof, it remains to apply the following well-known result on
conjugate functionals [5, Chapter IX, Section 2.1]:

Let f be an integrant such that [£]* < f(x,&) < [£]°, and let f* be
its conjugate integrant. Then for any v € L' ()

/Qf(x,v(a:)) dr = heLS:jFQ)N [/ﬂ (h,v) dx — /Qf*(a:, h(z)) da:}

- [/Q (h, ) d:p/ﬂf*(x,h(a:))dm].

Lemma 4.2. Let {(p, yi) bhen C 2 be a sequence such that
sup [’pkHBV(Q) +/ |V [P+ @) dx] < +o0. (4.11)
keN Q

Then, there is a pair (p,y) € éM such that, up to a subsequence, p, — p in
BV (Q), pr(z) — p(x) almost everywhere in Q, and yr, — y in Wol’a(Q).

Proof. Taking into account condition (4.11) and estimate (2.6), we see that the
sequence {y}ren is uniformly bounded in VVO1 *(€2). Hence, by Remark 4.1 and
compactness properties of BV () x I/VO1 “(Q), there exists a subsequence of the
sequence {(pk,yr)}ken, still denoted by the same indices, and functions p €
BV (Q) and y € W,*(Q) such that

pr=pin BV(Q), yr—y in Wy*(Q), (4.12)
and pi(x) — p(x) a.e. in Q. (4.13)
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Then by Lemma 4.1, we have

+00 > Sup/ |Vyk|p’“(x) dr > lim inf/ ]Vyﬂpk(x) dx

> [ 1wyp@ e 2 e |
> [ 9P e 2 )~ 1

This estimate implies that y € VVO1 P (')(Q). To conclude the proof, i.e. to show
that the limit pair is related by the Minty inequality (1.11), it remains to use the
property (iv) of Proposition 3.2. O

We are now in a position to give the existence result for optimal pairs to the
OCP (4.1)-(4.4).

Theorem 4.1. Let pg € L?(Q), yq € L*(Q), and f € L¥(Q)N be given functions.
Then the optimal control problem (4.1)—(4.4) admits at least one solution in the
sense of Minty.

Proof. Since the set = M is nonempty and the cost functional is bounded from
below on =y, it follows that there exists a minimizing sequence {(px, yx)}ren C
En to the problem (4.1)—(4.4), i.e.

inf J(p,y) = lim [/Q () — ya(x)|* da:+v/Q\Vyk(g;)|Pk(r) dae

(py)E=EM

+ [ 1) = pato)? ao+ [ 1Dp] < o0

Hence, in view of estimate (2.6) and definition of the set @ad, the sequence
{(pk, y) }ren is bounded in BV () x Wy *(€). From Lemma 4.2 we deduce
the existence of a subsequence, which is denoted in the same way, and a pair
(p*,y*) € Epr such that p, — p* in BV(Q), pr(z) — p*(x) almost everywhere
in Q, and y, — y* in VVO1 (). From these convergences and Sobolev embedding
theorem, we infer that

lim / Yk — yal* da = / y" — yal” du
k—o0 O QO
(by compactness of the embedding Wol’a(Q) — LO‘(Q)) ,
imint [ 1Dpil > [ D] by (16),
k—oo Jq Q

lim inf/ Vye(2)P*@) dz > / IVy* ()P @ da by (4.7), and
k—oo Jq QO

lim/\pk—pdlzd:ﬂ:/p*—pd\de,
k—oo Q Q
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where the last assertion is a direct consequence of the strong convergence pp — p*
in L'(2) and boundedness of this sequence in L°°(2). So,

Jp*,y*) < inf  J(p,y)

and, consequently, (p*,y*) is a Minty optimal solution of the OCP (4.1)—(4.4). O
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