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1. Setting of Optimal Control Problem

Let Ω be a bounded open connected subset of RN , N ≥ 2, with sufficiently
smooth boundary ∂Ω. Let p : Ω → R be a measured real-valued scalar function
such that 1 < α ≤ p(x) ≤ β < +∞ for almost all x ∈ Ω. Let f ∈ L∞(Ω)N ,
pd ∈ L2(Ω), and yd ∈ Lα(Ω) be given distributions. We consider the following
optimal control problem (OCP):

Minimize
{
J(p, y) =

ˆ
Ω
|y(x)− yd(x)|α dx+ γ

ˆ
Ω
|∇y(x)|p(x) dx

+

ˆ
Ω
|p(x)− pd(x)|2 dx

}
(1.1)

subject to the constraints

−div
(
|∇y|p(x)−2∇y

)
= −div f, x ∈ Ω, (1.2)

y = 0 on ∂Ω, (1.3)

p ∈ Pad =
{
p ∈ L2(Ω) : 1 < α ≤ p(x) ≤ β, a.e. in Ω

}
, (1.4)

where | · | stands for the Euclidean norm in RN .
————————————————–
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To the best of the authors’ knowledge, the existence of solutions for the optimal
control problem (1.1)–(1.4) remains an open question. Only very few articles deal
with distributed or boundary optimal control problems for the systems of similar
type (see, for instance, [6,7] and the references therein). There are several reasons
for this:

• it is unknown whether the set of admissible solutions to the problem (1.1)–
(1.4) is weakly closed in the corresponding functional space;

• we have no a priori estimates for the weak solutions (in the sense of Minty)
to the boundary value problem (1.2)–(1.3);

• the asymptotic behaviour of a minimizing sequence to the cost functional
(1.1) is unclear in general.

To see these and other characteristic features of the optimization problem (1.1)–
(1.4) more clearly, we introduce the well-known notions of solutions for nonlinear
elliptic problems with variable exponent and discuss how the equation (1.2) can
be interpreted.

To begin with, we note that if the exponent p is constant, then the Dirichlet
boundary value problem (1.2)–(1.3) is well-posed in the classical Sobolev space
W 1,p

0 (Ω). For the variable measurable exponent, we look for the solution of this
problem in the Sobolev-Orlicz space (see [4, 15])

W
1,p(·)
0 (Ω) :=

{
u ∈W 1,1

0 (Ω) :

ˆ
Ω
|∇u|p(x) dx < +∞

}
(1.5)

equipped with the norm

‖u‖
W

1,p(·)
0 (Ω)

= ‖∇u‖Lp(·)(Ω)N .

Here, Lp(·)(Ω)N stands for the set of all measurable vector-valued functions f :
Ω→ RN such that

ρp(f) :=

ˆ
Ω
|f(x)|p(x) dx < +∞, (1.6)

and Lp(·)(Ω)N is endowed with the so-called Luxemburg norm (see [3, 4] for the
details)

‖f‖Lp(·)(Ω)N = inf
{
λ > 0 : ρp(λ

−1f) ≤ 1
}
.

It is well-known that, unlike classical Sobolev spaces, smooth functions are
not necessarily dense in W = W

1,p(·)
0 (Ω). Hence, with variable exponent p = p(x)

(1 < α ≤ p ≤ β) it can be associated another Sobolev space,

H = H
1,p(·)
0 (Ω) as the closure of the set C∞0 (Ω) in W 1,p(·)

0 (Ω)-norm.

Since the identity W = H is not always valid, it makes sense to say that an
exponent p(x) is regular if C∞0 (Ω) is dense in W 1,p(·)

0 (Ω).
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Definition 1.1. A function y ∈ W 1,p(·)
0 (Ω) is said to be a weak solution to the

boundary value problem (1.2)–(1.3), if the integral identity
ˆ

Ω
|∇y|p(x)−2 (∇y,∇ϕ) dx =

ˆ
Ω

(f,∇ϕ) dx (1.7)

holds true for all ϕ ∈ C∞0 (Ω).

Here, (·, ·) stands for the scalar product in RN .
Since we can lose the density of the set C∞0 (Ω) inW 1,p(·)

0 (Ω) for some (irregular)
variable exponents p(x), it follows that a weak solution to the problem (1.2)–
(1.3) is not unique, in general. Moreover, as it was shown in [16], the set of all
weak solutions in not necessary convex in spite of the fact that the operator
A : W

1,p(·)
0 (Ω)→

(
W

1,p(·)
0 (Ω)

)∗
, given by the equality

(Au, v) =

ˆ
Ω

(
|∇u|p(x)−2∇u,∇ϕ

)
dx, ∀ v ∈W 1,p(·)

0 (Ω), (1.8)

is strictly monotone. The question as to whether this set is weakly closed in
W

1,p(·)
0 (Ω) remains open. At the same time, the following result is well-known.

Theorem 1.1 ( [15],p.472). If the domain Ω ⊂ RN is sufficiently smooth and the
constant β in (1.4) is such that

β <
α(N − 1)

N − 1− α
for α < N − 1, and β < +∞, for α ≥ N − 1,

then the Dirichlet problem (1.2)–(1.3) has a weak solution y ∈W 1,p(·)
0 (Ω) satisfying

the energy inequality
ˆ

Ω
|∇y|p(x) dx ≤

ˆ
Ω

(f,∇y)RN dx (1.9)

Remark 1.1. The main idea of the proof of Theorem 1.1 is based on the fact that
some weak solutions to the Dirichlet problem (1.2)–(1.3) can be attained through
C1-regularization of the exponent p = p(x) or through some approximation of
operator A using its perturbation by ε∆β-Laplacian. Here, by attainability of a
weak solution y ∈W 1,p(·)

0 (Ω), we mean the existence of a sequence {yε}ε>0, where
yε are the solutions of ’more regular’ boundary value problems, such that yε → y
in some appropriate topology as ε tends to zero. However, because of the fact that
the energy inequality (1.9) can be strict for some irregular variable exponents p(x),
it is unknown whether each weak solution to the Dirichlet problem (1.2)–(1.3) can
be attained in such way.

Let p(x) be an irregular exponent and let V be an arbitrary intermediate space
between H and W , i.e. H ⊆ V ⊆W .
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Definition 1.2. A function y ∈ V is a V -solution of the problem (1.2)–(1.3), or
its variational solution, if the integral identity (1.7) holds for any test function
ϕ ∈ V .

Using the strict monotonicity of the nonlinear operator A : W
1,p(·)
0 (Ω) →(

W
1,p(·)
0 (Ω)

)∗
(see (1.8)), it is easy to show that a V -solution exists and it is

unique. Moreover, since in the case of V -solutions, the test function ϕ in (1.7) can
be taken equal to the solution, it leads us to the energy equality

ˆ
Ω
|∇y|p(x) dx =

ˆ
Ω

(f,∇y)RN dx. (1.10)

Theorem 1.2. Let V be an arbitrary intermediate space between H and W . Then
for any f ∈ L∞(Ω)N there exists a unique V -solution to the boundary value
problem (1.2)–(1.3) and it satisfies the energy equality (1.10).

The converse statement is also true.

Proposition 1.1. A weak solution in the sense of Definition 1.1 is variational if
and only if the energy equality (1.10) holds.

Indeed, in this case we can take V as the smallest closed subspace containing
C∞0 (Ω) and the solution itself. For V = H, we speak of H-solutions.

Another definition of a weak solution to (1.2)–(1.3) can be stated as follows.

Definition 1.3. A function y ∈ W 1,p(·)
0 (Ω) is said to be a weak solution in the

sense of Minty to the boundary value problem (1.2)–(1.3), if the integral inequality

ˆ
Ω
|∇ϕ|p(x)−2 (∇ϕ,∇ϕ−∇y) dx ≥

ˆ
Ω

(f,∇ϕ−∇y) dx (1.11)

holds true for all ϕ ∈ C∞0 (Ω).

It follows from this definition that the set of weak solutions in the sense of
Minty is convex and closed. However, the relations between Definitions 1.1 and
1.3 are very intricate for a general exponent p(·) ∈ Pad. At least we can not assert
that each of the Minty’s weak solutions satisfies the integral identity (1.7) or vise
versa. In Section 3 we describe the case where the three concepts of the weak
solutions are given before coincide.

As a result, the variational formulation of the optimal control problem (1.1)–
(1.4) can be stated in different forms and this depends on the choice of the
corresponding set of solutions. In view of this, we indicate the following sets of
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admissible pairs to the problem (1.1)–(1.4):

Ξw =

{
(p, y) ∈ Pad ×W

1,p(·)
0 (Ω)

∣∣∣∣ y and p are related by integral
identity (1.7) for all ϕ ∈ C∞0 (Ω)

}
, (1.12)

ΞV =

(p, y) ∈ Pad × V

∣∣∣∣∣∣∣∣
∃ an intermediate space V such that

H
1,p(·)
0 (Ω) ⊆ V ⊆W 1,p(·)

0 (Ω)
and y and p are related by integral

identity (1.7) for all ϕ ∈ V

 , (1.13)

ΞM =

(p, y) ∈ Pad ×W
1,p(·)
0 (Ω)

∣∣∣∣∣∣
y and p are related by Minty

inequality (1.11)
for all ϕ ∈ C∞0 (Ω)

 (1.14)

However, because of the Lavrentieff effect, it may happen that the corresponding
minimization problems〈

inf
(p,y)∈Ξw

J(p, y)

〉
,

〈
inf

(p,y)∈ΞV
J(p, y)

〉
, and

〈
inf

(p,y)∈ΞM
J(p, y)

〉
(1.15)

are essentially different, in general. In particular, it means that optimal pairs to
the problems (1.15) can be different as well.

Thus, the main question we are going to answer in this paper is about solvability
of optimal control problem (1.1)–(1.4) with respect to the different choice of the
set of admissible solutions. To the best knowledge of the authors, the existence of
optimal pairs to the problems (1.15) has not been studied in the literature.

2. Preliminaries On Orlicz and Sobolev – Orlicz Spaces

To begin with, we note that class Lp(·)(Ω)N is a reflexive separable Banach
space with respect to both the Luxemburg norm

‖f‖Lp(·)(Ω)N = inf
{
λ > 0 : ρp(λ

−1f) ≤ 1
}

(2.1)

and the Orlicz norm

‖f‖Op(·)(Ω)N = sup

{ˆ
Ω

(f, g) dx :

ˆ
Ω
|g|p′(x) dx ≤ 1

}
, (2.2)

where p′(x) = p(x)
p(x)−1 is the conjugate exponent. In view of (1.4), it is clear that

1 ≤ β

β − 1︸ ︷︷ ︸
β′

≤ p′(x) ≤ α

α− 1︸ ︷︷ ︸
α′

a.e. in Ω.

As for the infimum in (2.1), we have the following result (for reader’s convenience,
we furnish it with the proof).
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Proposition 2.1. The infimum in (2.1) is attained if ρp(f) > 0. Moreover

if λ∗ := ‖f‖Lp(·)(Ω)N > 0, then ρp(λ
−1
∗ f) = 1. (2.3)

Proof. Indeed, as follows from (2.1), ‖f‖Lp(·)(Ω)N = 0 if and only if f(x) = 0 a.e.
in Ω, i.e. ρp(f) = 0. Assume that ρp(f) > 0. We define a function ψ : [0,∞)→ R
as

ψ(s) := ρp(λ
−1f) =

ˆ
Ω
|sf(x)|p(x) dx.

Since ψ(0) = 0, lims→∞ ψ(s) = +∞, and

d

ds
ψ(s) =

ˆ
Ω
p(x)sp(x)−1|f(x)|p(x) dx > 0,

it follows that ψ = ψ(s) is a monotonically increasing function. Hence, there exists
a positive value λ∗ > 0 such that

ψ(λ−1
∗ ) = 1 and ψ(λ−1) =

ˆ
Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1 ∀λ ∈ [λ∗,+∞).

Therefore,

inf
{
λ > 0 : ψ(λ−1) ≤ 1

}
= λ∗ and

ˆ
Ω

∣∣∣∣f(x)

λ∗

∣∣∣∣p(x)

dx = 1. (2.4)

As a result, we deduce from (2.4) and (2.1) that λ∗ = ‖f‖Lp(·)(Ω)N .

Taking this result and condition 1 < α ≤ p(x) ≤ β into account, we see that

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx ≤

ˆ
Ω

∣∣∣∣f(x)

λ∗

∣∣∣∣p(x)

dx ≤ 1

λα∗

ˆ
Ω
|f(x)|p(x) dx,

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx ≤ 1 ≤ 1

λα∗

ˆ
Ω
|f(x)|p(x) dx.

Hence,

‖f‖α
Lp(·)(Ω)N

≤
ˆ

Ω
|f(x)|p(x) dx ≤ ‖f‖β

Lp(·)(Ω)N
, if ‖f‖Lp(·)(Ω)N > 1,

‖f‖β
Lp(·)(Ω)N

≤
ˆ

Ω
|f(x)|p(x) dx ≤ ‖f‖α

Lp(·)(Ω)N
, if ‖f‖Lp(·)(Ω)N < 1.

(2.5)

As a result, we arrive at the estimates

‖f‖α
Lp(·)(Ω)N

− 1 ≤
ˆ

Ω
|f(x)|p(x) dx ≤ ‖f‖β

Lp(·)(Ω)N
+ 1, ∀ f ∈ Lp(·)(Ω)N . (2.6)

The next result gives us the analog of the Hölder inequality.
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Proposition 2.2. If f ∈ Lp(·)(Ω)N and g ∈ Lp′(·)(Ω)N , then (f, g) ∈ L1(Ω) and
ˆ

Ω
(f, g) dx ≤ 2‖f‖Lp(·)(Ω)N ‖g‖Lp′(·)(Ω)N . (2.7)

Proof. To begin with, we note that the following inequality holds

‖f‖Lp(·)(Ω)N ≤ ‖f‖Op(·)(Ω)N ≤
(

1

α
+

1

β′

)
‖f‖Lp(·)(Ω)N ≤ 2‖f‖Lp(·)(Ω)N . (2.8)

Indeed, setting λ∗ := ‖f‖Lp(·)(Ω)N and g(x) =
∣∣∣f(x)
λ∗

∣∣∣p(x)−2
f(x)
λ∗

, we see that

|g|p′(x) =

∣∣∣∣ fλ∗
∣∣∣∣p(x)

and
ˆ

Ω
|g|p′(x) dx

by (2.4)
= 1. (2.9)

Hence,

‖f‖Op(·)(Ω)N

by (2.2)
≥

ˆ
Ω

(f, g) dx = λ∗

ˆ
Ω

∣∣∣∣ fλ∗
∣∣∣∣p(x)

dx

by (2.9)
= λ∗ = ‖f‖Lp(·)(Ω)N .

Thus, the left hand side of (2.8) is proven. To prove the rest part of this inequality,
we make use of the Young inequality

(f, g) ≤ |f |
p(x)

p(x)
+
|g|p′(x)

p′(x)
≤ |f |

p(x)

α
+
|g|p′(x)

β′
.

Let λ∗ = ‖f‖Lp(·)(Ω)N . Then

‖λ−1
∗ f‖Op(·)(Ω)N

by (2.2)
= sup

{ˆ
Ω

(
λ−1
∗ f, g

)
dx :

ˆ
Ω
|g|p′(x) dx ≤ 1

}
≤ sup

{
1

α

ˆ
Ω

∣∣∣∣ fλ∗
∣∣∣∣p(x)

dx+
1

β′

ˆ
Ω
|g|p′(x) dx :

ˆ
Ω
|g|p′(x) dx ≤ 1

}
by (2.4)
≤ 1

α
+

1

β′
.

As a result, we obtain

‖f‖Op(·)(Ω)N ≤
(

1

α
+

1

β′

)
λ∗ =

(
1

α
+

1

β′

)
‖f‖Lp(·)(Ω)N .

Thus, the inequality (2.8) holds true. In order to establish the Hölder inequality
(2.7), it is sufficient to set t = ‖g‖Lp′(·)(Ω)N and observe that

ˆ
Ω

∣∣∣∣g(x)

t

∣∣∣∣p′(x)

dx = 1. (2.10)
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As a result, we finally arrive at the following relation
ˆ

Ω
t−1 (f, g) dx

by (2.2)
≤ ‖f‖Op(·)(Ω)N

by (2.2) and (2.10)
≤ 2‖f‖Lp(·)(Ω)N

which immediately implies the inequality (2.7).

Proposition 2.3. The following estimates

‖f‖Lα(Ω)N ≤ (1 + |Ω|)1/α ‖f‖Lp(·)(Ω)N , ∀ f ∈ Lp(·)(Ω)N , (2.11)

‖f‖Lp(·)(Ω)N ≤ (1 + |Ω|)1/β′ ‖f‖Lβ(Ω)N , β′ =
β

β − 1
, ∀ f ∈ Lβ(Ω)N . (2.12)

are valid.

Proof. We note that
ˆ

Ω
|λ−1
∗ f |α dx ≤

ˆ
Ω

(
|λ−1
∗ f |p(x) + 1

)
dx

by (2.3)
≤ 1 + |Ω|,

with λ∗ = ‖f‖Lp(·)(Ω)N for each f ∈ Lp(·)(Ω)N . Hence,
ˆ

Ω
|f |α dx ≤ λα∗ (1 + |Ω|)

and this estimate immediately implies (2.11). In order to establish the estimate
(2.12), we use the inequality (2.8). Since

‖f‖Lp(·)(Ω)N ≤ ‖f‖Op(·)(Ω)N = sup

{ˆ
Ω

(f, g) dx :

ˆ
Ω
|g|p′(x) dx ≤ 1

}
and

ˆ
Ω
|g|β′ dx

by (2.11)
≤ (1 + |Ω|)1/β′

ˆ
Ω
|g|p′(x) dx ≤ (1 + |Ω|)1/β′ (2.13)

for
´

Ω |g|
p′(x) dx ≤ 1, it follows from (2.13) that

‖f‖Lp(·)(Ω)N ≤ sup

{ˆ
Ω

(f, g) dx :

ˆ
Ω
|g|β′ dx ≤ (1 + |Ω|)1/β′

}
.

It remains to apply the classical Hölder inequality to
´

Ω (f, g) dx with f ∈ Lβ(Ω)N .

For our further analysis, we make use of the following results.

Lemma 2.1 ( [15], p.536). If a sequence {fk}k∈N is bounded in Lp(·)(Ω)N and
fk ⇀ f in Lα(Ω)N as k →∞, then f ∈ Lp(·)(Ω)N and fk ⇀ f in Lp(·)(Ω)N , i.e.

lim
k→∞

ˆ
Ω

(fk, ϕ) dx =

ˆ
Ω

(fk, ϕ) dx, ∀ϕ ∈ Lp′(·)(Ω)N with p′(x) =
p(x)

p(x)− 1
.
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Lemma 2.2 ( [8], p.428). Let f, fk ∈ Lp(·)(Ω)N for k = 1, 2, . . . Then the
following statements are equivalent to each other:

(i) lim
k→∞

‖fk − f‖Lp(·)(Ω)N = 0;

(ii) lim
k→∞

ˆ
Ω
|fk − f |p(x) dx = 0;

(iii) fk → f in Ω in measure and lim
k→∞

ˆ
Ω
|fk|p(x) dx =

ˆ
Ω
|f |p(x) dx.

To end of this subsection, we discuss a couple of results that will be useful
later on.

Proposition 2.4. Let p(·) ∈ Pad and y(·) ∈W 1,p(x)
0 (Ω) be a given distributions.

Let F = F (ϕ), where

F (ϕ) = |∇ϕ|p(x)−2 (∇ϕ,∇ϕ−∇y).

Then ϕ F :7→ F (ϕ) is the mapping W 1,p(x)
0 (Ω) 7→ L1(Ω).

Proof. Let ϕ ∈W 1,p(x)
0 (Ω) be a fixed distribution. We have to show that

‖F (ϕ)‖L1(Ω) :=

ˆ
Ω
|∇ϕ|p(x)−2 |(∇ϕ,∇ϕ−∇y)| dx < +∞.

With that in mind, it is enough to make use of the following estimatesˆ
Ω
|∇ϕ|p(x)−2 |(∇ϕ,∇ϕ−∇y)| dx ≤

ˆ
Ω
|∇ϕ|p(x)−1 |∇ϕ−∇y| dx

≤
ˆ

Ω
|∇ϕ|p(x) dx+

ˆ
Ω
|∇ϕ|p(x)−1 |∇y| dx

by the Young inequality
≤

ˆ
Ω
|∇ϕ|p(x) dx+

ˆ
Ω

1

p′(x)
|∇ϕ|p(x) dx+

ˆ
Ω

1

p(x)
|∇y|p(x) dx

by the properties of P
≤ 2

ˆ
Ω
|∇ϕ|p(x) dx+

ˆ
Ω
|∇y|p(x) dx

by (2.6)
≤ 2‖ϕ‖β

W
1,p(x)
0 (Ω)

+ ‖y‖β
W

1,p(x)
0 (Ω)

+ 3 < +∞.

Proposition 2.5. F : W
1,p(x)
0 (Ω) 7→ L1(Ω) is a continuous mapping.

Proof. Let ϕ ∈W 1,p(x)
0 (Ω) and {ϕk}+∞k=1 ⊂W

1,p(x)
0 (Ω) be such that

ϕk → ϕ in W 1,p(x)
0 (Ω) as k tends to +∞. (2.14)

Our aim is to establish the equality

lim
k→∞

ˆ
Ω
|F (ϕk)− F (ϕ)| dx = 0. (2.15)
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In view of the property (iii) of Lemma 2.2, we can suppose that, up to a subsequence,

∇ϕk(x)→ ∇ϕ(x) a.e. in Ω, and

lim
k→∞

ˆ
Ω
|∇ϕk|p(x) dx =

ˆ
Ω
|∇ϕ|p(x) dx.

(2.16)

Then

lim
k→∞

ˆ
Ω
F (ϕk) dx = lim

k→∞

ˆ
Ω
|∇ϕk|p(x)−2 (∇ϕk,∇ϕk −∇y) dx

= lim
k→∞

ˆ
Ω
|∇ϕk|p(x) dx− lim

k→∞

ˆ
Ω
|∇ϕk|p(x)−2 (∇ϕk,∇y) dx

by (1.11)2
=

ˆ
Ω
|∇ϕ|p(x) dx− lim

k→∞

ˆ
Ω
|∇ϕk|p(x)−2 (∇ϕk,∇y) dx. (2.17)

Hence, to conclude the proof, it remains to show that

lim
k→∞

ˆ
Ω
|∇ϕk|p(x)−2 (∇ϕk,∇y) dx =

ˆ
Ω
|∇ϕ|p(x)−2 (∇ϕ,∇y) dx. (2.18)

With that in mind, we note that (1.11) implies the pointwise convergence

|∇ϕk(x)|p(x)−2 (∇ϕk(x),∇y(x))

→ |∇ϕ(x)|p(x)−2 (∇ϕ(x),∇y(x)) a.e. in Ω. (2.19)

Let us show that the set

Φ =
{
ψk := |∇ϕk|p(x)−2 (∇ϕk,∇y)

}∞
k=1

is uniformly integrable, i.e. for each ε > 0 there exists a δ > 0 such that∣∣∣∣ˆ
E
f(x) dx

∣∣∣∣ < ε whenever f ∈ Φ and E ⊂ Ω with |E| < δ.

Since

‖ |∇ϕk|p(x)−2∇ϕk‖αLp′(·)(Ω)N

by (2.6)
≤ 1 +

ˆ
Ω
|∇ϕk|p(x) dx

by (2.6)
≤ ‖∇ϕk‖βLp(·)(Ω)N

+ 2

≤
(

sup
k∈N
‖ϕk‖W 1,p(·)

0 (Ω)

)β
+ 2

by (2.14)
= C < +∞, (2.20)

it follows that the sequence
{
|∇ϕk|p(x)−2∇ϕk

}∞
k=1

is bounded in Lp
′(·)(Ω)N .

Then, for every E ⊂ Ω, we have

‖ψk‖L1(E)N

by (2.7)
≤ 2‖ |∇ϕk|p(x)−2∇ϕk‖Lp′(·)(E)N ‖∇y‖Lp(·)(E)N

≤ 2‖ |∇ϕk|p(x)−2∇ϕk‖Lp′(·)(Ω)N ‖∇y‖Lp(·)(E)N

by (2.20)
≤ 2C‖∇y‖Lp(·)(E)N

by (2.5)
≤ 2C

(ˆ
E
|∇y|p(x) dx

)ζ
, (2.21)
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where

ζ = α−1 if ‖∇y‖Lp(·)(E)N > 1, and ζ = β−1 if ‖∇y‖Lp(·)(E)N < 1.

Let us show that for an arbitrary ε > 0 there exists a δ > 0 such that if the
Lebesgue measure of E is less than δ, the integral of |∇y|p(x) over E is less than(
ε

2C

)β . Indeed, by the Lebesgue dominated theorem, we have

lim
λ→+∞

ˆ
{|∇y|p(x)>λ}

|∇y|p(x) dx = 0.

This fact follows easily since

χ{|∇y|p(x)>λ} |∇y|
p(x) ≤ |∇y|p(x) ∈ L1(Ω)

and
χ{|∇y|p(x)>λ} → 0 as λ→ +∞

since |∇y|p(x), being integrable, is finite almost everywhere. Then, for a given ε,
there exists λ > 0 such thatˆ

{|∇y|p(x)>λ}
|∇y|p(x) dx <

1

2

( ε

2C

)β
.

Choosing δ ≤ 1
2λ

(
ε

2C

)β and taking any measurable set E ⊂ Ω such that |E| < δ,
we get
ˆ
E
|∇y|p(x) dx =

ˆ
E∩{|∇y|p(x)>λ}

|∇y|p(x) dx+

ˆ
{E∩|∇y|p(x)≤λ}

|∇y|p(x) dx

≤
ˆ
{|∇y|p(x)>λ}

|∇y|p(x) dx+

ˆ
{E∩|∇y|p(x)≤λ}

λ dx = I1 + I2.

As a result, we obtain
ˆ
E
|∇y|p(x) dx ≤ I1 + I2 ≤

1

2

( ε

2C

)β
+ λδ ≤

( ε

2C

)β
.

In view of the estimates (2.5), it is plausible to suppose that ‖∇y‖Lp(·)(E)N < 1

for ε small enough. Hence, ζ = β−1 in (2.21), and, therefore,

‖ψk‖L1(E)N :=
∥∥∥|∇ϕk|p(x)−2 (∇ϕk,∇y)

∥∥∥
L1(E)

≤ 2C

(ˆ
E
|∇y|p(x) dx

)ζ
≤ 2C

(( ε

2C

)β)β−1

= ε. (2.22)

Since the choice of δ > 0 in estimate (2.22) does not depend on ψk, it follows that
the set Φ is uniformly integrable [14].
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To conclude the proof, it remains to apply the Vitali convergence theorem [12]
which asserts that if the sequence {ψk}∞k=1 is uniformly integrable and ψk → ψ :=

|∇ϕ|p(x)−2 (∇ϕ,∇y) almost everywhere in Ω as k →∞ (see (2.19)), then

ψ ∈ L1(Ω) and ψk → ψ in L1(Ω). (2.23)

Taking into account that∣∣∣∣ˆ
Ω
|∇ϕk|p(x)−2 (∇ϕk,∇y) dx−

ˆ
Ω
|∇ϕ|p(x)−2 (∇ϕ,∇y) dx

∣∣∣∣
≤
ˆ

Ω
|ψk − ψ| dx→ 0 as k →∞

and combining this fact with (2.23) and (2.17), we arrive at the equality (2.15).
The proof is complete.

3. Some Auxiliary Results and Properties of the Sets of
Admissible Solutions

Due to the well-know results (see, for instance, [17]), there can be indicated an
admissible control p ∈ Pad such that the corresponding boundary value problem
(1.2)–(1.3) admits infinitely many weak solutions. Hence, it is plausible to expect
that the sets of admissible solutions Ξw, ΞV , and ΞM , which are defined in (1.12)–
(1.14), possess drastically different properties in general.

We begin this section with the case when the sets Ξw, ΞV , and ΞM describe
the same collection of admissible pairs to the OCP (1.1)–(1.4).

Proposition 3.1. Assume that the set of admissible controls Pad is specified as
follows: p ∈ Pad if and only if the following conditions

|p(x)− p(y)| ≤ ω(|x− y|), ∀x, y,∈ Ω, |x− y| ≤ 1/2,

ω(t) = k0/ ln(|t|−1), 1 < α ≤ p(x) ≤ β in Ω
(3.1)

hold true with a given constant k0 > 0. Then the sets Ξw, ΞV , and ΞM coincide.

Proof. First of all, we note that if p = p(x) is an admissible exponent, then
p = p(x) is a continuous function in Ω with the same logarithmic modulus of
continuity ω(t) = k0

ln(1/t) . As a result we have: the set C∞0 (Ω) is dense inW 1,p(·)
0 (Ω)

for each p ∈ Pad (see [15, Theorem 13.10]).
We divide the proof into three steps. Step 1. Let us show that Ξw ⊆ ΞV .

Let (p, y) ∈ Ξw be an arbitrary pair. It is worth to notice that such choice is
always possible because Ξw is a nonempty set. Indeed, if we set p(x) = β, then
the boundary value problem

− div
(
|∇y|β−2∇y

)
= −div f, x ∈ Ω, (3.2)

y = 0 on ∂Ω (3.3)
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is well-posed and it admits a unique weak solution yβ ∈ W 1,β
0 (Ω) satisfying the

integral identity (1.7) for all ϕ ∈ C∞0 (Ω) (see [10]). Hence, (β, yβ) ∈ Ξw and
Ξw 6= ∅ follows.

By definition of the set Ξw and the arguments of the density, the validity of
the integral identity (1.7), which is written down for the chosen pair (p, y), can
be extended to the test functions ϕ ∈ W 1,p(·)

0 (Ω). Then, putting ϕ = y in (1.7),
we immediately arrive at the energy equality (1.10). Hence, (p, y) ∈ ΞV and,
therefore, Ξw ⊆ ΞV .

Step 2. At this step we show that ΞV ⊆ ΞM . Let (p̂, ŷ) ∈ ΞV be an arbitrary
pair. Let V be the smallest closed subspace of W 1,p̂(·)

0 (Ω) containing C∞0 (Ω) and
the solution ŷ itself. By density of C∞0 (Ω) in W

1,p̂(·)
0 (Ω), it follows that V =

W
1,p̂(·)
0 (Ω). As a result, (1.13) implies that

ˆ
Ω
|∇ŷ|p̂(x)−2 (∇ŷ,∇ϕ) dx =

ˆ
Ω

(f,∇ϕ) dx, ∀ϕ ∈W 1,p̂(·)
0 (Ω). (3.4)

Using the strict monotonicity of operator A : W
1,p̂(·)
0 (Ω) →

(
W

1,p̂(·)
0 (Ω)

)∗
, given

by the equality (1.8), we have

0 ≤
ˆ

Ω

(
|∇v|p̂(x)−2∇v − |∇ŷ|p̂(x)−2∇ŷ,∇v −∇ŷ

)
dx

=

ˆ
Ω
|∇v|p̂(x)−2 (∇v,∇v −∇ŷ) dx−

ˆ
Ω
|∇ŷ|p̂(x)−2 (∇ŷ,∇v −∇ŷ) dx

by (3.4)
=

ˆ
Ω
|∇v|p̂(x)−2 (∇v,∇v −∇ŷ) dx−

ˆ
Ω

(f,∇v −∇ŷ) dx, (3.5)

where ϕ = v − ŷ and v is an arbitrary element of W 1,p̂(·)
0 (Ω). Hence,

ˆ
Ω
|∇v|p̂(x)−2 (∇v,∇v −∇ŷ) dx ≥

ˆ
Ω

(f,∇v −∇ŷ) dx, ∀ v ∈W 1,p̂(·)
0 (Ω)

and we arrive at the Minty relation (1.11). Thus, (p̂, ŷ) ∈ ΞM .
Step 3. It remains to show that ΞM ⊆ Ξw. Let (p̃, ỹ) ∈ ΞM be a fixed pair. In

view of Propositions 2.4 and 2.5, we can apply the so-called Minty trick. Namely,
we can take any ϕ ∈W 1,p̂(·)

0 (Ω) as a test function in the Minty inequality
ˆ

Ω
|∇ϕ|p̃(x)−2 (∇ϕ,∇ϕ−∇ỹ) dx ≥

ˆ
Ω

(f,∇ϕ−∇ỹ) dx, (3.6)

and, after taking ϕ = ỹ ± v with v ∈ C∞0 (Ω) and t > 0 in (3.6), we can pass to
the limit in this relation as t→ 0. This yields

±
ˆ

Ω
|∇ỹ ± t∇v|p̃(x)−2 (∇ỹ ± t∇v,∇v) dx ≥ ±

ˆ
Ω

(f,∇v) dx, ∀ t > 0 (3.7)
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and, therefore, after the limit passage as t→ 0, we finally obtain
ˆ

Ω
|∇ỹ|p̃(x)−2 (∇ỹ,∇v) dx =

ˆ
Ω

(f,∇v) dx, ∀ v ∈ C∞0 (Ω).

Thus, (p̃, ỹ) ∈ Ξw, and this concludes the proof.

As follows from this result, the sets Ξw, ΞV , and ΞM coincide under rather
restrictive assumptions on the class of admissible exponents which exclude the
appearance of the Lavrentieff effect.

Definition 3.1. We say that the Lavrentieff phenomenon is inherent in the OCP
(1.1)–(1.4) if there is a gap between two constrained minimization problems〈

inf
(p,y)∈Ξw

J(p, y)

〉
and

〈
inf

(p,y)∈ΞV
J(p, y)

〉
, (3.8)

namely, there exist two pairs (p̃ 0, ỹ 0) ∈ Ξw and (p̂ 0, ŷ 0) ∈ ΞV such that

J
(
p̃ 0, ỹ 0

)
= inf

(p,y)∈Ξw
J(p, y) < inf

(p,y)∈ΞV
J(p, y) = J

(
p̂ 0, ŷ 0

)
. (3.9)

It is interesting to note that solutions of the problems (3.8), in general, are
different in the sense of smoothness provided Lavrentieff effect takes a place. In
particular, the optimal state ỹ 0 cannot belong to the space V and, hence, to
H

1,p(·)
0 (Ω). In view of this, we can indicate a few characteristic properties of the

sets Ξw, ΞV , and ΞM that will be useful later on.

Proposition 3.2. For a given set of admissible controls Pad the following statements
hold:

(i) the inclusions ΞV ⊂ Ξw and ΞV ⊂ ΞM are valid;

(ii) the sets Ξw, ΞV , and ΞM are nonempty;

(iii) ΞM is a convex set with respect to y;

(iv) the set ΞM is sequentially closed in the following sense:

if {(pk, yk)}k∈N ⊂ ΞM is a sequence of pairs such that

pk(x)→ p(x) a.e. in Ω, yk ⇀ y in W 1,α
0 (Ω) as k →∞,

and y ∈W 1,p(·)
0 (Ω),

(3.10)

then (p, y) ∈ ΞM .

Proof. The validity of assertions (i)–(ii) can be easily established following the
similar arguments as in the proof of Proposition 3.1 Let us show that ΞM is a
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convex set with respect to y. Let (p, y1) and (p, y2) be arbitrary pairs of ΞM .
Then, for each λ ∈ [0, 1] and ϕ ∈ C∞0 (Ω), we have
ˆ

Ω

(
|ϕ|p(x)−2∇ϕ,∇ϕ− (λ∇y1 + (1− λ)∇y2)

)
dx

= λ

ˆ
Ω

(
|ϕ|p(x)−2∇ϕ,∇ϕ−∇y1

)
dx+ (1− λ)

ˆ
Ω

(
|ϕ|p(x)−2∇ϕ,∇ϕ−∇y2

)
dx

by (1.11)
≥ λ

ˆ
Ω

(f,∇ϕ−∇y1) dx+ (1− λ)

ˆ
Ω

(f,∇ϕ−∇y2) dx

=

ˆ
Ω

(f,∇ϕ− (λ∇y1 + (1− λ)∇y2)) dx.

Hence, (p, λy1 + (1 − λ)y2) ∈ ΞM , i.e. λy1 + (1 − λ)y2 is a weak solution in the
sense of Minty of the boundary value problem (1.2)–(1.3).

It remains to show that ΞM is a closed set in the sense of convergence (3.10).
Let {(pk, yk)}k∈N be a sequence such that (pk, yk) ∈ ΞM for all k ∈ N and
properties (3.10) hold with some distributions p ∈ Pad and y ∈ W 1,p(·)

0 (Ω). Our
aim is to show that (p, y) ∈ ΞM . With that in mind, we note that, in view of the
estimate

ˆ
E
|∇yk| dx ≤ |E|1/α

′
(ˆ

E
|∇yk|α dx

)1/α

≤ |E|1/α′
(ˆ

Ω
|∇yk|α dx

)1/α

≤ |E|1/α′ sup
k∈N
‖yk‖W 1,α

0 (Ω)

by (3.10)
≤ C|E|1/α′

where E 6= ∅ is an arbitrary measurable subset of Ω, the sequence {∇yk}k∈N is
equi-integrable, i.e. for every ε > 0 there exists a δ > 0 such that

ˆ
B
|∇yk| dx < ε

holds for all k ∈ N and all Borel sets B ⊂ Ω with |B| < δ. Let ϕ ∈ C∞0 (Ω) be a
test function. Then, setting up

ψk := |∇ϕ|pk(x)−2∇ϕ and ψ := |∇ϕ|p(x)−2∇ϕ = ψ,

we see that ψk → ψ almost everywhere in Ω as k →∞ and

|ψk| = |∇ϕ|pk(x)−1 ≤ ‖ϕ‖β−1

C(Ω)
+ 1 = C∗ a.e. in Ω ∀ k ∈ N.

Therefore, ψk → ψ in L1(Ω) by Lebesgue dominated theorem and
ˆ

Ω

(
|ϕ|pk(x)−2∇ϕ,∇ϕ−∇yk

)
dx =

ˆ
Ω

(ψ,∇ϕ−∇yk) dx

+

ˆ
Ω

(ψk − ψ,∇ϕ−∇yk) dx = I1 + I2,
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where, by definition of the weak convergence in Lα(Ω)N , we have

lim
k→∞

I1 = lim
k→∞

ˆ
Ω

(ψ,∇ϕ−∇yk) dx =

ˆ
Ω

(ψ,∇ϕ−∇y) dx,

and

I2 ≤
ˆ

Ω
|(ψk − ψ,∇ϕ−∇yk)| dx

=

ˆ
{|∇ϕ−∇yk|≥n}

|(ψk − ψ,∇ϕ−∇yk)| dx

+

ˆ
{|∇ϕ−∇yk|<n}

|(ψk − ψ,∇ϕ−∇yk)| dx

≤ 2C∗
ˆ
{|∇ϕ−∇yk|≥n}

|∇ϕ−∇yk| dx+ n

ˆ
Ω
|ψk − ψ| dx

for any fixed n ∈ R+. Hence, for a given ε > 0 there exist indices k0 ∈ N and
n0 ∈ N such that for all k > k0 and n > n0 we have
ˆ
{|∇ϕ−∇yk|≥n}

|∇ϕ−∇yk| dx <
ε

4C∗
by equi-integrability of {∇ϕ−∇yk}k∈N,

ˆ
Ω
|ψk − ψ| dx <

ε

2n
by the strong convergence ψk → ψ in L1(Ω).

Thus, I2 < ε for k large enough. Hence,

lim
k→∞

ˆ
Ω

(
|ϕ|pk(x)−2∇ϕ,∇ϕ−∇yk

)
dx =

ˆ
Ω

(
|ϕ|p(x)−2∇ϕ,∇ϕ−∇y

)
dx.

Taking into account this fact and the weak convergence ∇yk ⇀ ∇y in Lα(Ω)N ,
we can pass to the limit in the integral inequality

ˆ
Ω
|∇ϕ|pk(x)−2 (∇ϕ,∇ϕ−∇yk) dx ≥

ˆ
Ω

(f,∇ϕ−∇yk) dx

as k tends to ∞. As a result, we get the following: the limit pair (p, y) belongs to
the set Pad ×W

1,p(·)
0 (Ω) and satisfies the inequality (1.11). Hence, (p, y) ∈ ΞM .

The proof is complete.

Proposition 3.3. Assume that the set Pad is given as in (1.4). Then

∅ 6= ΞV ⊂ ΞM and ΞM \ ΞV 6= ∅. (3.11)

Proof. Let p ∈ Pad be an arbitrary admissible exponent. Then we can come
across with two different situations: either H1,p(·)

0 (Ω) = W
1,p(·)
0 (Ω) or H1,p(·)

0 (Ω) ⊂
W

1,p(·)
0 (Ω). In the first case, as Proposition 3.1 indicates, there is a unique weak

solution y = y(p) to the boundary value problem (1.1)–(1.3) such that this
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solutions satisfies both Definitions 1.2 and 1.3. Hence, (p, y) ∈ ΞM , (p, y) ∈ ΞV ,
and, therefore, ΞV 6= ∅.

As for the second case, we have a more delicate situation. Indeed, in this case,
for any intermediate space V , H ⊆ V ⊆ W , the following assertions are well-
known: V is a reflexive separable Banach space [8] and the operator A : V → V ∗,
given by the equality

(Au, v) =

ˆ
Ω

(
|∇u|p(x)−2∇u,∇ϕ

)
dx, ∀ v ∈ V,

is bounded, semicontinuous, coercive, and strictly monotone [16]. Hence, the
equation Ay = f is uniquely solvable for each f ∈ V ∗ [11]. In other words,
there exists a unique distribution yV ∈ V such that (p, yV ) ∈ ΞV and, therefore,
(p, yV ) ∈ ΞM by property (i) of Proposition 3.2. Since H1,p(·)

0 (Ω) 6= W
1,p(·)
0 (Ω), it

follows that there exist at least two subspaces V1 and V2 of W 1,p(·)
0 (Ω) such that

the corresponding variational solutions yV1 and yV2 do not coincide. Hence,

(p, yV1) ∈ ΞV , (p, yV2) ∈ ΞV ,

(
p,

1

2
(yV1 + yV2)

)
by Proposition 3.2

∈ ΞM , (3.12)

and (
p,

1

2
(yV1 + yV2)

)
6∈ ΞV . (3.13)

Since the inclusions (3.12) are obvious, we focus on the proof of (3.13). To do so,
it is enough to show that we loss the energy equality for the pair

(
p, 1

2 (yV1 + yV2)
)

and have the energy inequality instead. Indeed, by the energy equalities for (p, yV1)
and (p, yV2), we obtainˆ

Ω

1

2

(
|∇yV1 |p(x) + |∇yV2 |p(x)

)
dx =

ˆ
Ω

(
f,∇

(
yV1 + yV2

2

))
dx.

However, in view of the Clarkson’s inequalities (see [2])

1

2
(|ϕ|p + |ψ|p) ≥

∣∣∣∣ϕ− ψ2

∣∣∣∣p +

∣∣∣∣ϕ+ ψ

2

∣∣∣∣p , p ≥ 2,(
1

2
(|ϕ|p + |ψ|p)

) 1
p−1

≥
(∣∣∣∣ϕ− ψ2

∣∣∣∣p) 1
p−1

+

(∣∣∣∣ϕ+ ψ

2

∣∣∣∣p) 1
p−1

, 1 < p < 2,

and the fact that yV1 6= yV2 , it is easy to derive the relationˆ
Ω

1

2

(
|∇yV1 |p(x) + |∇yV2 |p(x)

)
dx >

ˆ
Ω

∣∣∣∣∇(yV1 + yV2

2

)∣∣∣∣p dx.
Thus, the pair

(
p, 1

2 (yV1 + yV2)
)
satisfies the strict energy inequality

ˆ
Ω

∣∣∣∣∇(yV1 + yV2

2

)∣∣∣∣p dx < ˆ
Ω

(
f,∇

(
yV1 + yV2

2

))
dx

and, therefore,
(
p, 1

2 (yV1 + yV2)
)
6∈ ΞV . To conclude the proof, it is enough to

recall that
(
p, 1

2 (yV1 + yV2)
)
∈ ΞM by Proposition 3.2. Hence, ΞM \ ΞV 6= ∅.



88 P. I. KOGUT, P. I. TKACHENKO

At the end of this section, it is worth to notice that the relationship between
Ξw, ΞV , and ΞM is very intricate problem, in general. In particular, it is unknown
whether ΞM ⊆ Ξw or vice versa. We even can not assert that if (p, y) ∈ ΞM
and this pair is related by the energy equality (1.10), then (p, y) ∈ ΞV . It also
remains an open question about the standard topological properties of Ξw such as
compactness, closedness and etc. Moreover, as was shown in [16, pp.107-112], the
set Ξw is not convex, in general. Thus, in contrast to the standard situation, where
non-uniqueness is possible in classical monotone problems, it usually comes from
the missing of strict convexity of the corresponding operator, whereas the solution
set is convex and closed. In the case of boundary value problem (1.2)–(1.3), the
corresponding operator A : W

1,p̂(·)
0 (Ω)→

(
W

1,p̂(·)
0 (Ω)

)∗
is strictly monotone. So,

non-uniqueness and non-convexity are of completely different nature.

4. On Solvability of Optimal Control Problem

In what follows, we discuss the following optimal control problem

Minimize
{
J(p, y) =

ˆ
Ω
|y(x)− yd(x)|α dx+ γ

ˆ
Ω
|∇y(x)|p(x) dx

+

ˆ
Ω
|p(x)− pd(x)|2 dx+

ˆ
Ω
|Dp|

}
(4.1)

subject to the constraints

−div
(
|∇y|p(x)−2∇y

)
= −div f, x ∈ Ω, (4.2)

y = 0 on ∂Ω, (4.3)

p ∈ P̂ad = {p ∈ BV (Ω) : 1 < α ≤ p(x) ≤ β, a.e. in Ω} , (4.4)

where by BV (Ω) we denote the space of all functions in L1(Ω) for which the norm

‖p‖BV (Ω) = ‖p‖L1(Ω) +

ˆ
Ω
|Dp| = ‖p‖L1(Ω)

+ sup
{ˆ

Ω
p divϕdx : ϕ ∈ C1

0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω
}

is finite.
We introduce the set of admissible solutions to the OCP (4.1)–(4.4) as follows:

Ξ̂M =

{
(p, y)

∣∣∣∣∣ p ∈ P̂ad, y ∈W
1,p(·)
0 (Ω),

(p, y) is related by Minty inequality (1.10).

}
(4.5)

It is clear that J(p, y) < +∞ for all (p, y) ∈ Ξ̂M .
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Remark 4.1. We recall that a sequence {pk}∞k=1 converges weakly∗ to p in BV (Ω)
if and only if the two following conditions hold (see [1]): pk → p strongly in
L1(Ω) and Dpk

∗
⇀ Dp weakly∗ in the space of Radon measures M(Ω;RN ).

Moreover, if {pk}∞k=1 ⊂ BV (Ω) converges strongly to some p in L1(Ω) and satisfies
supk∈N

´
Ω |Dpk| < +∞, then (see, for instance, [1] and [9])

(i) p ∈ BV (Ω) and
ˆ

Ω
|Dp| ≤ lim inf

k→∞

ˆ
Ω
|Dpk|;

(ii) pk
∗
⇀ p in BV (Ω).

(4.6)

We say that (p0, y0) ∈ BV (Ω)×W 1,p0(·)
0 (Ω) is a Minty optimal solution to the

problem (4.1)–(4.4) if

(p0, y0) ∈ Ξ̂M and J(p0, y0) = inf
(p,y)∈Ξ̂M

J(p, y).

Our main intention in this section is to show that the set of Minty optimal
pairs is nonempty for the problem (4.1)–(4.4). With that in mind we make use of
the direct method of Calculus of Variations.

To begin with, we note that the set of admissible controls P̂ad, given by
(4.4), is nonempty, convex, it has an empty topological interior, and satisfies
the inclusion P̂ad ⊂ L2(Ω). Hence, all results of Section 3, concerning topological
and algebraic properties of the sets Ξw, ΞV , and ΞM , remain valid. Moreover, it is
worth to emphasize that P̂ad is a sequentially closed set with respect to the weak∗

convergence in BV (Ω).
In what follows, we make use of a couple of auxiliary results which are crucial

for our further analysis.

Lemma 4.1. Let {pk}k∈N ⊂ P̂ad and
{
yk ∈W

1,pk(·)
0 (Ω)

}
k∈N

be sequences such

that pk
∗
⇀ p in BV (Ω), and yk ⇀ y in W 1,α

0 (Ω). Then

lim inf
k→∞

ˆ
Ω
|∇yk|pk(x) dx ≥

ˆ
Ω
|∇y|p(x) dx. (4.7)

Proof. By the definition of the weak∗ convergence in BV (Ω), we have: pk → p
strongly in L1(Ω). Hence, within a subsequence, we may suppose that pk(x) →
p(x) almost everywhere in Ω. As a result, for any ξ ∈ RN , the following pointwise
convergence holds:

lim
k→∞

|ξ|pk(x) = |ξ|p(x) a.e. in Ω, (4.8)

lim
k→∞

(
|ξ|pk(x)

)∗
(η) =

(
|ξ|p(x)

)∗
(η) a.e. in Ω, (4.9)

where
(
|ξ|pk(x)

)∗
(η) = (pk(x)− 1)

∣∣∣ η
pk(x)

∣∣∣p′k(x)
is the conjugate function, i.e.(

|ξ|pk(x)
)∗

(η) = sup
ξ∈RN

(
(ξ, η)− |ξ|pk(x)

)
. (4.10)
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As follows from (4.10), for each z ∈ L∞(Ω)N =
(
L1(Ω)N

)∗, we have the Young-
Fenchel inequality

ˆ
Ω
|∇yk|pk(x) dx ≥

ˆ
Ω

(z,∇yk) dx−
ˆ

Ω
f∗k (x, z(x)) dx,

where it has been denoted f∗k (x, η) =
(
|ξ|pk(x)

)∗
(η).

Then, using (4.9) and the continuity of the embedding Lα(Ω)N ↪→ L1(Ω)N ,
we obtain ∇yk ⇀ ∇y in L1(Ω)N and, therefore,

lim inf
k→∞

ˆ
Ω
|∇yk|pk(x) dx ≥

ˆ
Ω

(z,∇y) dx−
ˆ

Ω
f∗(x, z(x)) dx.

Since this relation holds for each z ∈ L∞(Ω)N , it follows that

lim inf
k→∞

ˆ
Ω
|∇yk|pk(x) dx ≥ sup

z∈L∞(Ω)N

[ˆ
Ω

(z,∇y) dx−
ˆ

Ω
f∗(x, z(x)) dx

]
.

To conclude the proof, it remains to apply the following well-known result on
conjugate functionals [5, Chapter IX, Section 2.1]:

Let f be an integrant such that |ξ|α ≤ f(x, ξ) ≤ |ξ|β , and let f∗ be
its conjugate integrant. Then for any v ∈ L1(Ω)N

ˆ
Ω
f(x, v(x)) dx = sup

h∈L∞(Ω)N

[ˆ
Ω

(h, v) dx−
ˆ

Ω
f∗(x, h(x)) dx

]
= sup

h∈L1(Ω)N

[ˆ
Ω

(h, v) dx−
ˆ

Ω
f∗(x, h(x)) dx

]
.

Lemma 4.2. Let {(pk, yk)}k∈N ⊂ Ξ̂M be a sequence such that

sup
k∈N

[
‖pk‖BV (Ω) +

ˆ
Ω
|∇yk|pk(x) dx

]
< +∞. (4.11)

Then, there is a pair (p, y) ∈ Ξ̂M such that, up to a subsequence, pk
∗
⇀ p in

BV (Ω), pk(x)→ p(x) almost everywhere in Ω, and yk ⇀ y in W 1,α
0 (Ω).

Proof. Taking into account condition (4.11) and estimate (2.6), we see that the
sequence {yk}k∈N is uniformly bounded in W 1,α

0 (Ω). Hence, by Remark 4.1 and
compactness properties of BV (Ω) ×W 1,α

0 (Ω), there exists a subsequence of the
sequence {(pk, yk)}k∈N, still denoted by the same indices, and functions p ∈
BV (Ω) and y ∈W 1,α

0 (Ω) such that

pk
∗
⇀ p in BV (Ω), yk ⇀ y in W 1,α

0 (Ω), (4.12)
and pk(x)→ p(x) a.e. in Ω. (4.13)



ON OCP FOR NONLINEAR ELLIPTIC EQUATIONS 91

Then by Lemma 4.1, we have

+∞ > sup
k∈N

ˆ
Ω
|∇yk|pk(x) dx ≥ lim inf

k→∞

ˆ
Ω
|∇yk|pk(x) dx

≥
ˆ

Ω
|∇y|p(x) dx

by (2.6)
≥ ‖y‖α

W
1,p(·)
0 (Ω)

− 1.

This estimate implies that y ∈ W
1,p(·)
0 (Ω). To conclude the proof, i.e. to show

that the limit pair is related by the Minty inequality (1.11), it remains to use the
property (iv) of Proposition 3.2.

We are now in a position to give the existence result for optimal pairs to the
OCP (4.1)–(4.4).

Theorem 4.1. Let pd ∈ L2(Ω), yd ∈ Lα(Ω), and f ∈ L∞(Ω)N be given functions.
Then the optimal control problem (4.1)–(4.4) admits at least one solution in the
sense of Minty.

Proof. Since the set Ξ̂M is nonempty and the cost functional is bounded from
below on Ξ̂M , it follows that there exists a minimizing sequence {(pk, yk)}k∈N ⊂
Ξ̂M to the problem (4.1)–(4.4), i.e.

inf
(p,y)∈Ξ̂M

J(p, y) = lim
k→∞

[ˆ
Ω
|yk(x)− yd(x)|α dx+ γ

ˆ
Ω
|∇yk(x)|pk(x) dx

+

ˆ
Ω
|pk(x)− pd(x)|2 dx+

ˆ
Ω
|Dpk|

]
< +∞.

Hence, in view of estimate (2.6) and definition of the set P̂ad, the sequence
{(pk, yk)}k∈N is bounded in BV (Ω) × W 1,α

0 (Ω). From Lemma 4.2 we deduce
the existence of a subsequence, which is denoted in the same way, and a pair
(p∗, y∗) ∈ Ξ̂M such that pk

∗
⇀ p∗ in BV (Ω), pk(x) → p∗(x) almost everywhere

in Ω, and yk ⇀ y∗ in W 1,α
0 (Ω). From these convergences and Sobolev embedding

theorem, we infer that

lim
k→∞

ˆ
Ω
|yk − yd|α dx =

ˆ
Ω
|y∗ − yd|α dx(

by compactness of the embedding W 1,α
0 (Ω) ↪→ Lα(Ω)

)
,

lim inf
k→∞

ˆ
Ω
|Dpk| ≥

ˆ
Ω
|Dp∗| by (4.6),

lim inf
k→∞

ˆ
Ω
|∇yk(x)|pk(x) dx ≥

ˆ
Ω
|∇y∗(x)|p

∗(x) dx by (4.7), and

lim
k→∞

ˆ
Ω
|pk − pd|2 dx =

ˆ
Ω
|p∗ − pd|2 dx,
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where the last assertion is a direct consequence of the strong convergence pk → p∗

in L1(Ω) and boundedness of this sequence in L∞(Ω). So,

J(p∗, y∗) ≤ inf
(p,y)∈Ξ̂M

J(p, y)

and, consequently, (p∗, y∗) is a Minty optimal solution of the OCP (4.1)–(4.4).
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