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We discuss the existence of weak solutions to one class of Dirichlet boundary
value problems (BVP) for non-linear elliptic equation. Because of the specific of
nonlinearity, we cannot a priori expect to have a solution in the standard functional
space. Instead of this we show that the original BVP admits the so-called approxi-
mate weak solutions. To do so, we introduce a special family of perturbed optimal
control problems (OCPs). The main question we discuss in this paper is about
solvability of perturbed OCPs, uniqueness of their solutions, and asymptotic proper-
ties of optimal pairs as the perturbation parameter ¢ > 0 tends to zero. As a result,
we derive the sufficient conditions of the existence of weak solutions to the given
class of nonlinear Dirichlet BVP and give a practical way for the approximation of

such solutions.
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1. Introduction

In this paper we are concerned with the following Dirichlet boundary value
problem

—Ay=F(y)+g in Q,
y=0 on 09, (1.2)

where F' € C}OC(R), F(z) > exp(Cpz) for all z € R, and g € LP(f2), 2 < p < o0,
is a given distribution.

It is well known that the indicated BVP is ill-posed in general. It means
that there is no reason to assert the existence of weak solutions to (1.1)—(1.2)
for a given g € LP(Q), or to suppose that such solution, even if it exists, is

unique (see, for instance, .M. Gelfand [11], M.G. Crandall and P.H. Rabinowitz

©P. I Kogut, A. O. Putchenko, 2016.
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[5], F. Mignot and J.P. Puel [15]|, Th. Gallouét, F. Mignot and J.P. Puel [10],
H. Fujita [8], R.G. Pinsky [16], R. Ferreira, A. De Pablo, J.L. Vazquez [6]). At
the same time, the BVPs like (1.1)—(1.2) appear in many contexts: in the study
of stellar structures [4], in combustion theory for the chemical reactors |7], and
ete.

The aim of this article is to discuss the existence of weak solutions to the
Dirichlet boundary value problem (1.1)—(1.2). Because of the specific of non-
linearity F'(y), we cannot assert that the indicated BVP admits at least one
solution in the standard functional space. Instead of this we show that the original
BVP possesses the so-called approximate weak solutions. We define these solutions
as the weak solution to the problem (1.1)—(1.2) with special choice of the distribu-
tion g* € A which must be close (in some sense) to the original g. Since the set of
feasible distributions A has rather complicate structure, it is not easy matter to
touch on the choice of g* € A directly. In view of this, we introduce a special family
of perturbed optimal control problems (OCPs) <inf(u7y)€EA Je(u, y)>, where

€ 1
Jo(wy) = S8yl + g =l

and the functional properties of fictitious controls u are closely related with the
properties of the distribution g in right-hand side of the elliptic equation.

The main questions we discuss in this paper are about solvability of perturbed
OCPs, uniqueness of their solutions, and asymptotic properties of optimal pairs
as the perturbation parameter € > 0 tends to zero. As a result, we show that
the optimal pairs {(ug,yg)}€>0 C LP(Q) x HY() can be defined in a unique
way and each weakly cluster point of this sequence has a structure (g*,y,), where
Yy stands for the approximate solution to the original BVP. Thus, we derive
the sufficient conditions of the existence of weak solutions to the given class of
nonlinear Dirichlet BVP and give a practical way for the approximation of such
solutions (for the details we refer to Theorem 5.2).

2. Statement of the Problem and Some Preliminaries

Let © be a bounded open connected subset of RY (N > 2). We assume that
the boundary 0 is Lipschitzian so that the unit outward normal v = v(z) is
well-defined for a.e. © € 0f2, where a.e. means here with respect to the (N — 1)-
dimensional Hausdorff measure. We also assume that € is star-shaped with respect
to some interior point xg, i.e. (¢ — xg,v(0)) > 0 for almost all o € 9.

Let F: R — (0,+00) be a mapping such that F € C} (R) and there exists a
constant Cr > 0 satisfying

F(2) < CpF'(2), VzeR, (2.1)

that is, in what follows we may suppose that F(z) > exp(Cpz) over R. Let p
(2 < p < 00) be a real number and let g € LP(§2) be a given distribution. By
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HE(Q) we denote the Sobolev space as the closure of C§°(€2) with respect to the
norm [|y| g1 () = (fq |Vy[*d) Y2 Let H=1(Q) be the dual space to H}(£2).

In order to make a precise meaning of the solution to BVP (1.1)—(1.2) and
indicate its characteristic properties, we begin with the following concept.

Definition 2.1. We say that a function y = y(g) is a weak solution to the
boundary value problem (1.1)-(1.2) for a given distribution ¢ € LP(Q) if y €
HZ(9), y belongs to the class of functions

v ={ye (@) | Fy) e L)}, (2.2)

and the integral identity

/Q(Vy,V@) dac—/gF’(y)god:c%—/Qggadm (2.3)

holds for every test function ¢ € C§°(12).

As was indicated before, it is unknown whether the original BVP admits at
least one weak solution in the sense of Definition 2.1 for a given distribution
g € LP(2). Moreover, as follows from (2.2), the continuity of form [y, ], =
Jo F'(y)¢ dx on the set Y C H () is not evident. This motivates us to introduce
of the following set.

Definition 2.2. We say that an element y € H}(Q) belongs to the set Hp if

/QF’(:L/)sodfv

with some constant depending on y.

<t |W|2d:c)1/2, VeelE@  (24)

As a result, we have: if y € Hp then the mapping ¢ — [y, 9| can be defined
for all ¢ € H}(2) using (2.4) and the standard rule

[y7 <)D]F = gli% [y’ QOE]F ’ (25)

where {¢:}.., C C5°(Q) and . — ¢ strongly in H}(Q). In particular, if y € Hp,
then we can define the value [y,y|, and this one is finite for every y € Hp,
although the ’integrand’ yF”(y) needs not to be integrable on €, in general. Taking
this fact into account, we immediately arrive at the following conclusion.

Proposition 2.1. If g € LP(Q) is a given distribution and y € Hp is a weak
solution to BVP (1.1)—(1.2) in the sense of Definition (2.1), then y satisfies the
energy equality

/QIVy\zdw=[y,y]F+/ngdx- (2.6)
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We note that by the initial assumptions and Holder’s inequality, this relation
makes a sense because

s

However, since the value [y, y] does not preserve a constant sign for all y € Hp,
it follows that we cannot make use of the energy equality (2.6) in order to derive a
reasonable a priori estimate in ||-|| 1} (o)~norm for the weak solutions. In particular,

p—2
< lgllrz@ lWllz2) < 192 gllLe @) Callyll gy @) < +o0.  (2.7)

to specify the term [y, y]» we can use the following result.

Lemma 2.1. Let y € Y be a weak solution to BVP (1.1)-(1.2). Then y € Hp,
F'(y) € HY(Q), and

b2l = (F012) gy = [ 2P/ 0)dn, Ve HY@, (29

i.e. 2 F'(y) € LY(Q) for every z € H} ().

Remark 2.1. Here, by H~1(2) we mean the completeness of the Hilbert space
L?(£2) with respect to the norm

M= s | [ 1@ (lelge) | ¥r <120 @9)
)70

pEHL(Q

Proof. Following the definition of the weak solution, we have (see (2.3))

‘/ gpdx

12
< Iyl (/ |ww2dx) T llgllzz lellzo

/F’ goda:<‘/ (Vy, V) dx| +

by(27
< (Illggcoy + Cal)™ Iglloey) Ielly@y Yo € CE(Q). (210)

Hence, y € HFr by Definition 2.2.

Let 2 € H}() N L>®(Q) be an arbitrary element. Since F'(y) € L(€), it
follows that the term [, z F'(y) dx is well defined. Let {¢.}.., C C5°(2) be a
sequence such ¢, — z in H(Q). In view of our assumptions, it is plausible to
suppose that

SUIO)H%HLOO(Q) <+oo and . >z in L®(Q).
e>

Hence, using the fact that y € Hp, we get

[ePwde=tin [ o @de=lm e " e (2
Q

e—0 [¢)
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Thus, we arrive at the relation (2.8) for each z € H}(2) N L>(Q).
Let us take now z € H}(2) such that z > 0 almost everywhere in . For every
€ >0, let T : R — R be the truncation operator defined by

T.(s) = max {min {s,e" '}, -} (2.12)
It is well-know the following property of T; [13]: If z € H{(Q) then
T.(2) € L®°(Q)NHI(Q) Ve >0 and Ti(z) — 2 in H} () as e — 0.
Hence, T.(z) — z almost everywhere in . Since

by (21) 1
>

L) 2 £ T()Fy) >0 i 9 (2.13)
F

{T.(2)F'(y)} .~ is a pointwise non-decreasing sequence, and 7. (2) F'(y) — z F'(y)

for almost all = € Q, it follows by monotone convergence theorem that z F’(y) is

a measurable function on 2 and

lim TE(Z)F'(y)da::/zF'(y)d$.
e—0 0 0

Hence, the relation (2.13) remains valid. Thus, (2.8) holds true for each z € H} ()
such that z > 0.

As for a general case, i.e. z € H}(Q), it is enough to note that z = 2+ — 2~
with 27,27 € H}(Q) and 2%, 27 > 0 in Q, where

2T i=max{z,0}, 2z :=max{—z0}.
To complete the proof, it remains to observe that

/ 2 F'(y) dz @13 )i 0 F'(y) dx
Q Q

e—0

—~

2.10

by ) p—2
< tim (lylge + Cal®™ gl ) el

—

(by the strong convergence of . — z in H}(Q))
p=2
= (Il sy + Cold™ llglzoey ) 1m0

holds true for an arbitrary element z € H}(€2). As a result, we have

F@) € B @), (P02 apmye = [ #F0)de. Ve e HY@),
’ Q

p=2
and [ F'(9)llr-10) < (Illmge + Coll™ gl ) -

where the constant Cq comes from the Friedrichs—Poincaré inequality. O
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Remark 2.2. To clarify the main conclusion of Lemma 2.1, we make use of the
following observations (see Remark 2.1). Let {fr}, oy C L*(Q) be a Cauchy
sequence with respect to the norm || - [|-1(q). Then, following the definition
of the norm || - || -1(q), we have

/Q Fo(@)(@) ds < | fil s Il 2oy

Hence, the H~'-limit of the sequence {fj},cy is a linear functional f on H}(Q)
satisfying the estimate

‘< e >(H3(Q))*;H3(Q)’ < HfHH*l(Q)”SOHH(}(Q)a Vo € H&(Q),

that is, limgeo [ fe(z)p(z)dz =< f,¢ > (@) HL(Q) and f € (H(Q)".
In order to show that f € H~1(Q), we make use of the Riesz Representation

Theorem. As a result, for a given f € (H&(Q))* there exists an element uy €
HE(9) such that

< f,p >(H&(Q))*;H&(Q): /Q (VUf(az),Vgo(a:)) dz, Vg€ H&(Q)

By definition of the generalized derivative, we have

(—Auy) [¢] = /Q (Vus(x), Vip(a)) da
< [Vugll 2@ Vel 2@y = lugll mrolellm @) (2.14)

for all ¢ € C§°(£2). Since C§°(12) is dense in H} (), we can infer from (2.14) and
(2.9) that

= Mgl = sp oGV E
PEH(Q) 070 el m ) 0
Hence, the linear operator —A : H} () = H~1(Q) is continuous. Moreover, this
operator is surjective by Riesz Representation Theorem. Thus, —A : H}(Q) —
H~1(Q) is a bijective bounded operator and, therefore, the inverse mapping
theorem implies that —A is an isomorphism between Banach spaces H}(€2) and
H=1(Q). In view of this, the spaces (H&(Q))* and H~1(Q) are isomorphic as well.
Finally, it means that

k—o0

lim /ka@:)sO(w) dr =< f,0 >y-1qumi and feH Q).

As a direct consequence of this lemma and Proposition 2.1, we have the
following result.
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Corollary 2.1. Let g € LP(Q) be a given distribution and let y € HL(Q) be a
weak solution to BVP (1.1)—(1.2) in the sense of Definition (2.1). Then the energy
equality for y takes the form

/Q|Vy|2dx:/QyF’(y)dx—i—/ngd:L‘. (2.15)

3. Some Auxiliary Results and a Priori Estimates

In this Section we deal with some extra properties of the weak solutions to
the boundary value problem (1.1)—(1.2). In many aspects we follow the ideas of
the paper E. Casas, O. Kavian, and J.P. Puel [3].

Proposition 3.1. Let y € H}(Q2) be a weak solution to BVP (1.1)—(1.2) such
that Ay € L*(Q). Then

<_1>/|Vy’2d$<]\f/ )dx—/Qg(ﬂU—LEo,Vy) dz, (3.1)

where zp € int ) is a point such that (¢ — zg,v(0)) > 0 for almost all ¢ € 09,
and v(o) denotes the outward unit normal vector to 92 at the point o.

Proof. In view of the initial assumptions, we have —Ay — g € L?(2). Hence,
F'(y) € L*(Q) and, therefore, we can multiplay the equation (1.1) by any function
© € L%(Q). Let us take ¢ := (z — zg, Vy) € L?(Q). Then

/ [—Ay (x — x9, Vy)] dox = / F'(y) (x — z0, Vy) dz + / g (x — xo, Vy) dx.
Q Q Q

(3.2)
Step 1. We apply the formula of integration by parts to the left hand side of (3.2).
This yields

[ =80 = w0, Vo)l o = / (V.Y (@ — 20, V) de
Q

9u0) _ / 0y 0 [N~ L0y
/BQ v (0' ZL'O,vy dO' Z o, 05 2 .%'] .Toj)axj dx
9y(o)
- o — xg, Vy(o)) do =
9 OV ( 0 ( )) Z
)0y Oy dy(o)
- Z / 8:13, Ox;0x; dr — /8Q v (0 — 9, Vy(o)) do

3,j=1
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y 2
2
/Vy! dx + = Z/ 83:] ((%Z) da

1]1

WD (o (o)) do — / Vy[? da
o0 8V

+;Agg[(0j—$0j)Vj(U)] [; <8g((jz ) ] Z/ [i <8m1> ]

=1
) a%(ya) (0 — w0, V(o)) do = (1 B 2) /Q -

+ 1 /8(2 (0 — z0,v(0)) |Vy(o)|? do — / (o) (0 — x0,Vy(o)) do.

2 o0 61/

Since for o € 052 we have Vy(o) = £|Vy(o)|v(o), it follows that

(0 =0, Vy(0)) = £[Vy(o)| (o — x0, (7)),

W) _ (Vy(0). 1(0)) = IVu(0)]

Hence,

/ out0) (o0 — x0, Vy(0)) do :/ (0 — 20,v(0)) |Vy(o)|* do,
) 20

QaV

and, therefore,

/ [~Ay (x — 20, Vy)] dz
Q

_ (1 _ ]2V> /Q V2 da — ;/m (o — 20, (0)) |Vy(0) 2 do

by the star-shaped

properties of 2 N
> (1 - 2) / Vy|? da. (3.3)
Q

Step 2. Before proceeding further, let us show that the following relation
| ') (990) do = = [ 1F() = FO))div o da (3.4)

holds true for any vector-valued test function ¢ € C1(Q)" provided y € H}() is
a weak solution to (1.1)—(1.2). Indeed, let 7. : R — R be the truncation operator
defined in (2.12). By definition of T;, we have

T-(y) — y strongly in Hj () and almost everywhere in Q as ¢ — 0. (3.5)
Moreover, since F'(y) € L?(2) and F’ € C,(R), it follows from (3.5) that

F'(T.(y)) = F'(y) in L*(Q) and almost everywhere in Q.
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Then Lebesgue Dominated Theorem implies: F' (T.(y)) VI.(y) — F'(y)Vy in
LY(Q)N. Taking into account the fact that

F'(T.(y)) VT.(y) = VF (T:(y)), Ve >0,
we conclude
F'(y)Vy =V (F(y) — F(0)) as elements of L'(£).

As a result, the equality (3.4) is a direct consequence of the formula of integration
by parts.

Now we are in a position to transform of the right hand side in (3.2). Indeed,
due to relation (3.4), we have

/ F'(y) (2 — 20, Vy) do — / (x — 20, V [F() — F(0)))
Q

Q
by (3.4)

=" — /Q [F(y) — F(0)]div(z — z) de = —N/ (0)] de.

Combining this equality with (3.2) and inequality (3.3), we arrive at the desired
relation (3.1). The proof is complete. O

The next result is crucial in this section. Namely, we show that inequality
(3.1) implies some a prioiri estimate for the weak solutions y € Y to the original
BVP.

Theorem 3.1. Let y € Y be a weak solution to BVP (1.1)~(1.2) such that y
satisfies the inequality (3.1). Then

| 5P ) da < Cillligey + Callglznoy + Co (36)
1Yl 12 0) < CallgllLr @) + Cs, (3.7)
for some positive constants C;, 1 < i <5, independent of g and y.

Proof. Combining the energy equality (2.6) with inequality (3.1), we get

<§_1>/QyF’(y)dx+<]§—1)/gydfv

<N/ )dac/ﬂg(:vxo,Vy)dx.

Hence, in view of estimate (2.7), we can rewrite the last relation as follows

/Q yF(y)de < 2 [ (P) = F () s

- N-2
CQ diam

72
+ |2 2 N2 lgllze@) 1yl 222 0)- (3.8)
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For our further analysis, we set

4NCF}

QN::{JJEQ : y(w)>N_2

where the constant Cr is defined in (2.1). Since F' : R — (0, +00), it follows from
(2.1) that

2N

N_9 (F(y) — F(0)) dz

IN INCp [
<—— | F < F
v | P < T [ Py
1 / , ONC / ,<4NC’F>
— yEF' (y) dox + F dx
2 Ja, () N-2 Joq, \N-2
2

1 Crlolr (4NCF>

N
< = F'(y)d
—2/9Ny W)de+ 55— N2

IN

and

4NC’F ANCp
yF' (y) dx < > T
/Q\QN (@) SN- Q\Q -2
4N
) (3.9)

—CrlQ|F <

Then inequality (3.8) yields to the following relation

/QN yFw)de = [ yF)do— /Q\QN yF'(y) do

by (3.8) 1/ 2N ANCp
< = yF'(y) dx + C’FQF'< )—/ y F'(y) dz
5 Jy v ool () - [ )
—2 2C diam 2
\Q| WHQHL?(Q)HQHH(%(Q)
Therefore,
1 2N ANCp 1
— F'(y)dx < Q|F - = F'(y)d
2/Qy (y)dz < 77— Crl9 (N_2> 2/9\9Ny (y) dx
-2 2C diam €
\Q| ﬂ”g”Lﬁ(Q)HyHHé(Q)
As a result, we get from (3.9) and the previous inequality
8N ANCp
F' < QIF
[P < Forop (S
7C’Qd1amQ
+ 4] 2 THQHLP o) Wl 51 (o)

=C1 + 2C2HQHLP(Q)HZ/HH3(Q)' (3.10)
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Finally using the energy equality (2.6), we obtain
19140 < G+ 38 lglloceyllylm o

and this implies the desired estimate (3.7). In order to establish the estimate (3.6),
it is enough to make use of (3.7) in (3.10). The proof is complete. O

Remark 3.1. It is worth to notice that inequality (3.1) makes sense even if we
do not assume the fulfillment of inclusion Ay € L?(2) but have only that y €
Y C H}(Q) and g € LP(Q). At the same time it is unknown whether this
inequality holds for an arbitrary weak solution to BVP (1.1)—(1.2). Since the
existence and uniqueness of the weak solutions to the original BVP is an open
question for arbitrary given distribution g € LP(Q), the following result reflects
some interesting properties of weak solutions satisfying inequality (3.1).

Proposition 3.2. Let (g,y) be a given pair in LP(Q) x H}(Q2) with p > 2. Let
{(9k, yk) }pew C LP(Q) x Y be a sequence such that, for each k € N the pairs
(9k, yx) are related by the integral identity (2.3), satisfy inequality (3.1), and

(9k> yk) — (g9,9) weakly in LP(Q) x H}(Q) as k — oco. (3.11)

Then y is a weak solution to BVP (1.1)—(1.2) for given g € LP(Q2), the pair (g,y)
satisfies the inequality (3.1), and

F'(yp) — F'(y) in LY(Q) as k — oo. (3.12)

Proof. By the Rellich-Kondrachov theorem, the embedding H}(Q) — L?(Q) is
compact. Hence, the weak convergence y;, — y in Hj(Q) implies the strong
convergence in L?(Q). Therefore, up to a subsequence, we can suppose that
yr(z) — y(x) for almost every point = € Q. As a result, we have the pointwise
convergence: F'(yr) — F'(y) everywhere in €. Let us show that this implies the
strong convergence (3.12).

With that in mind we recall that a sequence {fi},cy is called equi-integrable
on Q if for any § > 0, there is a 7 = 7(8) such that [|fx|dx < & for every
measurable subset S C 2 of Lebesgue measure |S| < 7. Let us show that the
sequence {F'(yx)} ey Is equi-integrable on . To do so, we take m > 0 such that

2 (Cr supgers 981250y + C25ubgent 9kl oy + Cs)
. |

We also set 7 = ¢/(2F’(m)). Then for every measurable set S C Q with |S] < 7,
we have

/F’(yk)dx S/ F’(yk)d$+/ F'(yy) da
S {z€S : yr(z)>m} {z€S : yp(z)<m}

(3.13)

m >

<L yrF" (yr) dz +/ F'(m)dz
M J{zeS : yp(x)>m} {z€S : yx(x)<m}
by 3.6) C1l|gkl|2pqy + Collgk +Cs by (3.13)
r 20 Gl m” lr@ 5 s g+ g
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As a result, the assertion (3.12) is a direct consequence of Lebesgue’s Convergence
Theorem. Hence, y € Y and it is easy to show that the limit pair (g,y) is related
by the integral identity (2.3). Indeed, in view of the initial assumptions and the
strong convergence property (3.12), the limit passage in

/Q(vykvaO) dw:/QF/(?/k)Sde+/ng¢dxv Ve G5 (Q)

becomes trivial. Thus, y is a weak solution to BVP (1.1)—(1.2) for given g € LP(Q2).

Our next intension is to prove that (g,y) satisfies (3.1). With that in mind
we make use of the following result (see L. Boccardo and F. Murat [2]): if yp —
y in Hgj(Q) and the sequence {Ayy}cy is bounded in L'(Q), then, within a
subsequence, Vyi(x) — Vy(x) almost everywhere as k — oo. Indeed, as follows
from (2.3),

/ Ayl de < / P ()| d + / 0k da. (3.14)
Q Q Q

Hence, in view of (3.14) and LP(Q)-boundedness of {gy}, <y with p > 2, we have
supyen [|Aykl| L1 (@) < +00. Thus, in what follows we may suppose that

Vyr — Vy in L*(Q)Y and Vy(z) — Vy(z) ae. in Q. (3.15)
Let us show that this fact implies the strong convergence of gradients Vy; —

Vy in LPI(Q)N with p’ = p/(1 — p). Indeed, for an arbitrary small set A, by the
Holder inequality for 1/¢ + 1/¢" = 1, we have

’ , 1/q , 1/‘]/
/ |Vyr — Vy|P da < (/ |Vyr — Vy\pqda:> </ 19 dx) .
A A A

Having chosen ¢ > 1 such that p'q = 2, we obtain

T —_1-=1 = or ¢ =——-+.

1 1 f 22—y p-2 , 2p-1)
q q 2 2 2(p—1) p—2

Then

, —2 f —2
Yy — Vyl!' do < | A0 sup Vg — Vy|[Vy g < CA|IZD,
A keN ( )

that is, the sequence {\Vyk. — Vy|p,}k N is equi-integrable. Combining this fact
€

with (3.15), by Lebesgue Convergence Theorem, we conclude: |Vy;, — Vy|P" — 0
strongly in L'(Q), and, therefore,

Vyr = Vy strongly in L () with p' = p/(1 — p). (3.16)
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As a result, we get

lim gk (x — o, Vyi) dzx by (3.16) / g (x —x0,Vy) dx
Q

k—o0

(as product of weakly and strongly convergent sequences),

by (3.12
Jim [ (Plo) = FO) da ™ & [ (P) -~ F0) o
(3.1
liminf/ \Vy|2d:c 2 / \Vy|? dz.
k—oo Jq
Then we can pass to the limit in the inequality (3.1) to finally obtain
N N
( - 1) / Vy|? dx < ( — 1) liminf/ |Vy|? dx
2 Q 2 k—oo Jq
< hénmf [ / (F(yx) — F(0)) dz — / gr (x — xo, Vyi) dx
—00 Q

—N/ 0)) dv — | g(z —xo, Vy) dx.
Q

The proof is complete. O

4. Fictitious Controls and Associated Optimal Control Problems

Let us consider the following sequence of optimal control problems (OCPs)
associated with BVP (1.1)—(1.2)

{<<u7;§1efaA ‘]5(“7y)> e 0} , (4.1)

where
)
/(Vy,th) d:z:z/F’(y)sodw
0 Q
+ [ uwpdxr, Yee C5(90),
Q
- 2N
=2 = ) O oy an < 250 [ (R) - FO) do (-
2
_]H/QU(I'—-TOavy) dz,
Ja(u’y) < +o0. 7/

(4.2)

€ 1 € 1
J.tusw) = 5180l + g =l = 5 [ 189 da s [ o= ulraa.
(4.3)
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Here, u € LP()) we consider as a fictitious control and ¢ is a small parameter.
Hereinafter we assume that the parameter € varies within a strictly decreasing
sequence of positive real numbers which converge to zero.

It is worth to notice that, in contrast to the original BVP (1.1)—(1.2) for
which it is unknown whether the set of its weak solutions is nonempty, each of
the parametrized OCPs (4.1)—(4.3) is regular in the following sense: the set of
feasible solution = is always nonempty. Indeed, it is enough to take an arbitrary
function § € C§°(Q) and to put 4 := —Ay — F'(y). Since § € Y and Ay € L*(Q),
it follows from Proposition 3.1 and Definition 2.1 that J.(u,y) < 400 and the pair
(u,y) is related by integral identity (2.3) and inequality (3.1). Hence, (u,y) € Ea.

Let us show that the OCPs (4.1)-(4.3) are solvable for each ¢ > 0.

Theorem 4.1. Let g € LP(QQ) be a given distribution. Assume that S is star-
shaped with respect to some of its interior point xog. Then for every e > 0 there
exists at least one pair (u2,y?) € Ea such that

Je (ud,y?) = “ ;I)Tlef:A Je(u,y).

Proof. Since Za # (), it follows that for given € > 0 and g € LP(f2) there exists a
minimizing sequence {(ue k, Ye k) } oy to OCP (4.1)-(4.3), i.e.

kh—g)lo Je(us,kvys,k) = inf Je(uvy) < Ja(a7m

(u,y)€E:
< NATBaq + g =il = C < 400 (4.4)
As a result, we have
9 by (44) . ~
sup |Aye k2 < € °C (4.5)
keN

and this estimate implies that each of the pairs (uc i, ye 1) satisfies the inequality
(see Proposition 3.1)

<J2V . 1> /Q Vi pl2dz < N /Q (F(y-) — F(0)) da

— / Ue ip (€ — 20, VYo i) dz.  (4.6)
Q

Moreover, in view of Theorem 3.1, we have

2 p
sup ekl ) + el o)

by (4.5) and (3.7) 9
< sup [(Culluepllzoe) + C5)° + el
keEN

o o by (4.4)
<2PICP +p (14 2071CY) sup Je(wep, Ye) < 400 (4.7)
kEN
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for € > 0 small enough, where the constants Cy and C5 do not depend on €.
Thus, passing to subsequences, if necessary, we can suppose that there exists
a pair (u?,42) € LP(Q) x HZ(Q) such that

U —ul in LP(Q) and y.p — 3yl in Hi(Q) as k — oo. (4.8)
Hence, in view of Proposition 3.2, 40 is a weak solution to BVP

~Ay=F'(y)+u) in Q,
y=0 on 09,

the pair (u?,?) satisfies the inequality (4.6), and
Fl(yer) — F'(y2) in LY(Q) as k — oo. (4.9)

Thus, (u?,4?) € =, where

| (9590 do = [ Pli)pds

Q
+ [ uwpdx, Ve C5(9),

Q
[ volae< 5 [ (Po) - FO) do
Q N =2 Jg
—% Qu(x—xo,Vy) dx. )
(4.10)
It remains to show that (u?,y?) € Za and (u2,3?) is an optimal pair to the
constrained minimization problem (4.1) for a given € > 0. Taking into account
the estimates (4.5) and (4.7), it is easy to see that the sequence {yek}, oy is
bounded in the Banach space H& A(€) connected with the Laplace operator by
the formula (see, for instance, [9])

Hoa(Q) = {y € Hy(Q) : Ay € L*(Q)},

(1]

(u,y) € LP(Q) x Y

where the norm in H&’ A(€) can be defined in the standard way as the norm of
graph:
H?JH%{&’A(Q) = IVl 72y + 1891172 (q)-
Hence, the limit properties (4.8) can be supplemented by the following one
Ayer — Ay in L*(Q) as k — oo.

As a result, making use of the lower semi-continuity property of the cost functional
Je o LP(2) x H}(2) — R with respect to the weak convergence in LP(Q) x H} A (),
we arrive at the following relation
il’lf_ Je(ua y) = lim JE(“E,k: :’-/E,k) > JE(uga yg)
(u,y)EEA k—s00
Hence, J-(u2,4%) < +oco and (u?,y?) is an optimal pair to the corresponding
optimization problem (4.1). O
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Our next intention is to discuss the uniqueness property of the solutions to
OCPs (4.1). We begin with the following noteworthy characteristic of the set Za.

Lemma 4.1. Assume that, in addition to the property (2.1), the function F €

CL.(R) is such that its derivative F' : R — (0,00) is a strictly convex function.

Then the set
A={ueIlP() : JyeY suchthat (u,y) € Ea} (4.11)
is nonempty and convex.

Proof. Since the set of feasible solution Za is nonempty, it follows from (4.11)
that A # (). Let us establish the convexity of A. Let (u1,y1) and (ug,y2) be two
different pairs of Za. It is clear that in this case we have y1 # yo and uy,us € A.
Let A € (0,1). We set

u=Aug + (1 — \ug, y=Ay1 + (1 = Nya.

Our aim is to show that u € A.

Since for Lipschitz domains  the mapping —A : H} () — H1(Q) is an
isomorphism (see Remark 2.2), we can define, in a unique way, a distribution
z € H}(Q) as follows

—Az=u=Au; + (1 —Nug in Q.

Hence,
—Ay1 = F'(y) +ur and  — Ay = F'(y2) + uz

imply
Ay =AF'(y1) + (1 =N F'(y2) +u in Q. (4.12)

Taking into account the facts that F’(z) > 0 almost everywhere in Q (see (2.1))
and F’ satisfies the Jensen’s inequality

F'(y) < AF'(y1) + (1 = ) F'(y2), (4.13)

we obtain

by (4.12) and (4.13)
—Az < F'(2)+u and Ay > F'(y) + u, (4.14)

i.e. z is a subsolution to the boundary value problem
—AYp =F'(¢) +uin Q, =0 on 09,

and y is its supersolution. Moreover, since

by (2.1)
~Ay>F'(y)+u > u=-Azin Q, (4.15)
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it follows that —A(y—z) > 0. Hence, by the maximum principle we conclude that
y > z in Q. Thus, following the classical techniques introduced by D.H. Sattinger
[17] (see also H. Amann [1]), we deduce that for given control u = Auj + (1 — X)ua
there exists a solution 1 to the above boundary value problem such that

z(x) <¢(x) <y(zr) almost everywhere in €. (4.16)

Moreover, as follows from (4.16) and the fact that z,y € Hg(Q), we have 9 €
H(Q) and

by (4.16) and (2.1)

[P [ Py

by (4.13) , ,
< AMF (Yl + (= NF (y2)l L1 (@) < +oo.

—~

Hence, 1) € Y and, therefore, 1) is a weak solution to BVP (4.15).
In order to prove the inclusion u € A, we have to establish that (u,) € ZEa.
To do so, we note that

by (4.16)
—Az=u<F@)+u < F(y)+u
—_————
— A
by (4.13)

< A(F' () +ur) + (1= X) (F'(y2) + u2)
= A(—Ay1) + (1 = A)(—Ayz). (4.17)

Since Az € L?(Q) and y; € H&A(Q), i = 1,2, it follows from (4.17) that Ay €
L?(2). Hence, J.(u,1) < 4+oc0 and it remains to note that ¢ satisfies inequality

(3.1) with ¢ = u by Proposition 3.1. So, (u,1) is an admissible pair to each of
OCPs (4.1). Thus, u € A and, therefore, the convexity of A is established. O

Remark 4.1. In general, we can not assert that the set A is closed in LP(2).
Indeed, let {ur},cny € A be a sequence such that up — w in LP(2) as k — oc.
Let {yx}reny € Y be the corresponding sequence of states, that is, (ug,yr) € Ea
for each k € N. Then, in view of estimate (3.7), we can suppose that there exists
a distribution y € HJ () such that y, — y in HZ (). Hence, by Proposition 3.2,
we have: y is a weak solution to BVP (1.1)-(1.2) with ¢ = u and the pair (u,y)
satisfies the inequality (3.1). However, it is unknown whether J.(u,y) < +oo,
because the given choice of the sequence of feasible pairs {(ug, yx)} ey C Ea does
not guarantee the L?(Q)-boundedness of the corresponding Laplacians { Ayy} keN
So, it is plausible to admit the case when Ay ¢ L?(Q). As the same time, as follows
from Theorem 4.1, the lack of LP(€2)-closedness of A is not restrictive option for the
solvability of the corresponding OCP. Moreover, as we show in the next assertion,
the main result of Theorem 4.1 can be essentially specified.

Theorem 4.2. Under assumptions of Lemma 4.1, each of the OCPs (4.1) has at
most one solution.
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Proof. Let’s assume the converse. Namely, let € > 0 be a fixed value and let
(ue,1,Ye1) and (ue 2, ye,2) be two different pairs such that (uz1,ve1) # (ue2, Ye2),

(ua,hya,l)? (UE,Zaya,Q) € EA7 and JE(UE,lvyE,l) = Jg(Ug,Q,y&Q) = ( u)’leH J€(u7 y)
u,y)ES

We set ue = (ue,1 + ue2) /2. By analogy with the proof of Lemma 4.1, it is easy
to show that there exists a distribution 1. € Hg () such that (ue, 1) € Za and

Ve < (Yen +Ye2) /2 ae in Q.

In fact, because of the strict convexity of F”, it can be shown that the previous
inequality is strict in €. Indeed, since

1 1
-A <2y51+ S Y2 — %)

1 1
:§(F/(ysl)+u€1)+§(F(y€2)+u€2) F'(te) — ue
1
:§(F(y51 JFF y52)
1 +
Zg(F(yal )+ F'(ye.2) (W)ZO

by the Jensen’s inequality, and 3 (F'(ye1) + F'(ye2)) — F' (%) # 0 on 2

because of the strict convexity of F”, it follows that (ye1 + ve,2) /2 > . in Q by
the strong maximum principle [13]. As a result, we obtain an inequality

Tty ) = /mwgﬁdw /|g—ug|f’dx

“il,

which is a contradiction with the fact that (ue,1.) is an admissible pair to the
problem (4.1). O

/ ‘Ays,1+Ay€,2’ dx‘f’/ ’9—U6,1+g
/|g—u51|pdx~|— /|Ay€2] d$+/!g—u€2|pdaz

1 1 .
= *Js(us,lays,l) + 7‘]5(“6,2’ ys,Q) = 1nf,_ JS(uvy)7
2 2 (u,y)EE.

Remark 4.2. As was mentioned in Remark 4.1, the convex set A is not closed in
LP(2). Let A C LP(Q) denotes the closure of A with respect to the strong topology
of LP(€2). Then by Mazur’s theorem this set coincides with the sequential weak
closure of A in LP(§2), that is, A = cly—rp(q) A

5. Variational Properties of Fictitious Optimal Control Problems

Before setting foot in the asymptotic analysis of the sequence of OCPs (4.1)
as ¢ — 0, we define the p-topology on LP(Q) x H'(f) as the product of weak
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topologies of LP(£2) and H'(f2), respectively. Let cl, Ea be the sequential closure
of the set of feasible pairs ZA with respect to the u-topology. In view of Proposi-
tion 3.2, it is clear that in this case we have

A={ueLP(Q) : JyeY such that (u,y) €cl,En}. (5.1)

Indeed, let u be an arbitrary element of A. Then there exists a sequence {u:},., €
A such that u. — w in LP(Q2) as ¢ — 0. By definition of the set A, it follows that
we can construct a sequence of pairs {(ue,y:)}.-( such that (ue,y.) € Ea for
all € > 0. In view of definition of the set =a and Theorem 3.1, the sequence
of states {y.}.., is bounded in Hg(f2). So, we can suppose that the exists an
element y € HJ(Q) such that, up to a subsequence, y. — y in H} (). Hence,
(e, ye) = (u,y) in LP(Q) x HY(Q) and therefore (u,y) € cl, Za. As a result, we
obtain u € {v € LP(?) : Jy €Y such that (v,y) € cl, Za}, that is, we have
shown that

AC{uelLP(Q) : JyeY suchthat (u,y) €cl,En}. (5.2)

In order to establish the converse inclusion, we fix an arbitrary pair (uv*,y*) in
cl,Za. Then u* € {u e LP(Q) : Jy €Y such that (u,y) € cl,Ean} and there
exists a sequence {(ug,¥:)}.ng C LP(2) x Y such that (u.,y.) € Ea for each
e>0and (us,y:) = (u*,y*) in LP(Q) x HY(Q). Since the condition (ue,y.) € Ea
implies that u. € A, it follows that {u.}.., C A and u. — u* in LP(Q) as ¢ — 0.
Hence, u* € cl,,_r»(q) A. To conclude, it is enough to apply the Mazur’s Theorem.
Thus,

{ue IP(Q) : Jy €Y suchthat (u,y) €cl,Ea} CA

and combining this fact with (5.2), we arrive at the required equality.

It is clear now that cl, =o C =, where the set Z is defined in (4.10). However,
we can not exclude the case when we have (u,y) € Z and u € LP(2) \ A. Hence,
the validity of the inclusion = C cl, E is an open question. So, our next intention
is to specify the structure of the set cl, Za.

Lemma 5.1. Assume that 2 is star-shaped with respect to some of its interior
point xg. Assume also that, in addition to the property (2.1), the function F €
CL.(R) is such that its derivative F' : R — (0,00) is a strictly convex function.

Then

/Q(Vy,Vso) dx:/QF’(y)stx

+ [ uwpdx, Yoe C5(9Q),
CIMEA: (U,y)EAXY ) L IN
[ vy ds < (F(y) - F(0)) da
Q N -2 Jq
2

N_Q/Qu(x—xo,Vy) dx.

(5.3)
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Proof. Since the set in the right-hand side of (5.3) can be represented as
EN(AxY)

and the inclusion cl, EAo € EN (K X Y) is obvious, we concentrate at the proof
of the reverse inclusion
EN(AxY) CclyEa. (5.4)

Let (u*,y*) be an arbitrary representative of the set = N (K X Y). Then y* is
a weak solution to the boundary value problem (1.1)—(1.2) with g = «* in the
sense of Definition 2.1. Our aim is to show that (u*,y*) € cl, Ea. To this end, it
is enough to prove the existence of the sequence {(uc,y:)}.oo in LP(Q) x H}(Q)
such that

(ue,ye) & (u*,y*) in LP(Q) x HY(Q), and (ue,y:) € Ea Ve >0. (5.5)

The most natural way to construct such sequences is to apply the procedure of
the direct smoothing. Indeed, let us define the elements y. € H}(Q2) as follows

o) = v [ () e (5:6)

where v(g) > 0 is a positive value such that v(¢) — 0 as € — 0, K is a positive
compactly supported smooth function with properties

K € C°(RY), K(z)dr =1, and K(z)= K(—x), (5.7)
RN
~ is zero extension operator outside of , and {¢.}.. is a sequence in C§°(9)
such that ¢. — y* in H}(Q) as e — 0.
Then the property

ye —y* in L*(Q) and Vy. — Vy* in L2(Q)Y (5.8)

is the direct consequence of the classical properties of smoothing. Moreover, since
each element of the sequence {¢. },. has a compact support in {2, we can suppose
that y. has zero trace on 0f for each & small enough, i.e., in view of (5.8) we have:
ye € HE(Q) for each € > 0. It remains to note that the parameters v(¢) can be
defined such that lim. o //v%(g) = 0. Hence,

ﬁAyazy\/g{ ! /RNAK<"”_Z>@;(2)(12}—>0 in L2(Q).

2(e) [vN(e) v(e)

Summarizing these properties, we can infer that for a given element y* € Y C
H} () there exists a sequence {y.}.., such that

(a) y. € Y for each ¢ > 0 and y. — y* in H}(Q) as ¢ — 0;

(b) Ay. € L?(Q) for each ¢ > 0 and lim. . <6||Ayg\|%2(9)) =0.
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Moreover, by Lemma 2.1, we have F’(y*) € H~1(Q). Hence, we can supplement
the above properties (a)—(b) by the following one

(©) $uD |17/ (e)]| -1 @) < +oo.

Remark 5.1. As immediately follows from the reasons given above, the limit
property (b) for elements y. € H{(Q) can be sharpened in the following way:
the smoothing parameter v(e) can be defined such that for a given non-negative
constant Cy we have

(b)* Ay. € L?(Q) for each ¢ > 0 and lim, g (8||Ay5H%2(Q)) = ().
Let us define the corresponding controls {u.},. as follows
ue = —Aye — F'(ye), Ve>0.

Since y. are the smooth functions, we obviously have u. € LP(2). Moreover, by
Proposition 3.1, each of the pairs (u.,y:) € LP(2) x Y is related by the integral
identity

/(Vys,Vso) dw:/F’(ys)stw+/uasodfc7 Vi € C5°(Q)
Q Q Q

and the inequality

(f—l) | de < [ (P00 - FO) do = [ o= 0, V0) de

Q

Thus, the sequence {(ue,yc)}.o( lies in the set EA. It remains to show that
(ue,ye) & (u*,y*) in LP(Q) x H{(Q). With that in mind, we make use of the

energy equality

/|Vy€\2dx:/ygF’(yg)da:—i—/usygdx, Ve > 0. (5.9)
Q Q Q
Since
e P ) de < 1P ol g
and

1/2
ey = ( / |Vy€|2dx) < Cullyll ey

by the Sobolev Embedding Theorem for ¢ € [1 N }, it follows from (5.9) that

' N—2
[ weneda] < el + 1 G0l

< Cy (Ilvellmyy + I1F @l ) 19l
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where p' =p/(p—1) € [1, ]\2,—]_\’2] for a given p > 2. Hence,

sup el (o) < Cu (500 Iy + 508 1/ () -1 ) < .
e>0 e>0 e>0

As aresult, we deduce that the sequence {u.},.  is relatively compact with respect
to the weak topology of LP(€2). Let u® € LP(Q2) be any its cluster point and
{ue, }en e a subsequence of {uc},.( such that u,, — u® in LP(Q) as k — oo,
Since {(Uey; Yer ) tpen C Za, it follows that each of the pairs (ue,, e, ) is related
by the integral identity

/Q(Vygk,VLp) dx—/QF’(yEk)godx+/Quskcpdx, Vo e C5o(0). (5.10)

Taking into account that y., — y* in Hg (), we can pass to the limit in (5.10)
as k — oo (see the proof of Proposition 3.2 for the details). We get

/(Vy*,ch) dx:/F’(y*)gpd:c+/u0cpdx, Ve C§o(R). (5.11)
Q 0 Q

On the other hand, (u*,y*) € EN (K X Y). Hence, this pair is related by the
similar relation

/(Vy*,Vw) dm:/F’(y*)gpda:+/u*<pdx, Ve C5o(). (5.12)
Q 0 Q

Combining (5.11) with (5.12), we obtain
/ (W’ —u*)pde =0, VyeCFW).
Q

Since C5°(0) is dense in LP'(£2), it follows that u® = u* almost everywhere in Q. It
remains to note that this inference is valid for any cluster point u° of the sequence
{ue}, (- Hence, u* is a weak limit in LP(£2) for the entire sequence {uc}, - -
Thus, we have constructed a sequence {(ue,yz)}..( in LP(Q)x H} () satisfying
the properties (5.5). It suffices to conclude that (u*,y*) € cl, Za. Hence, the
inclusion (5.4) is valid. The proof is complete. O

As a consequence of this lemma, we make use of the following observation.
Proposition 5.1. Under assumptions of Lemma 5.1, we have: for any (u*,y*) €
cl, Ea and for any non-negative real number Cy there exists a sequence of pairs
{(ﬂe,g//})}a>0 in LP(Q) x H&(Q) such that

(Ue, Ye) LN (u*,7) in LP(Q) x HY(), (Ue,7:) €EEn, Ve>0, (5.13)
ue — u”* strongly in LP(Q), (5.14)

~ ) . € —~ 112
Ay. € L*(2) VYe>0, and gl_l% <§HAy€HL2(Q)> = (Y, (5.15)

where § = y* provided the Dirichlet boundary value problem (1.1)—(1.2) has a
unique solution for g = u*.
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Proof. Let (u*,y*) € cl,Ea be an arbitrary pair. Closely following the proof
of Lemma 5.1, we can construct a sequence {(ue,,¥e, ) }pey in LP(Q) x Hg ()
with properties (5.5) and (a)-(c). Here, {€;},cy stands for a strictly decreasing
sequence of positive real numbers converging to zero. Then, by Mazur’s lemma,
there exists a sequence of controls {u, }, . such that

Us, — u” strongly in LP(Q) and 4., = co {ue,,...,us}, VK €N,  (5.16)

where co A denotes the convex hull of the set A. In view of Lemma 4.1, A is
a convex set. Since {ug, },ony C A, it follows from (5.16) that {u., },oy C A as
well. Let us show that the corresponding weak solutions 7}, to the boundary value
problem

—Ay=F'(y) +1, in Q, y=0 on 09,

satisfy properties (5.13) and (5.15).

By definition of the convex hull co {uc,, te,, ..., us, } we have: for each k € N
there exists a collection of non-negative real numbers {aq i, a2, ..., ok} such
that

ajp+ogk+ - +agr=1 and U = ag e, + Q2 pUe, + -+ - + Qp kU, -

With each control 7., we associate two elements zj, € Hg(Q) and wy, € H(Q) by
the following rule

k
Az =T, = Y aipue, in Q (5.17)
=1
W = Q1 kYe; + Q2 kYey + - + Qf kYey, - (518)
Hence,
—Aye, = F'(ye,) +uey, i=1,....k
imply
k
—Awg =Y i F'(yig) + Uz, in Q. (5.19)
i=1

Taking into account the facts that F'(y) > 0 almost everywhere in Q (see (2.1))
and F’ satisfies Jensen’s inequality

k
F'(wr) <Y i, (i), (5.20)
=1

we obtain

by (5.19) and (5.20)
—Az, < FI(Zk) + ﬂak and  Aw > F/(U)k) + ﬂgk, (5.21)
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i.e. zx is a subsolution to the boundary value problem
—Ayp = F'(¢) + U, in Q, =0 on 09,

and wy, is its supersolution. Moreover, since

[\

by (2.1)
—Awy, > F'(wk) + ﬂak > /'ngk = —Az, in €, (5.22)

it follows that —A(wy — 2z;) > 0. Hence, by the maximum principle we conclude
that wg > zp in Q. Thus, following the classical techniques, we deduce that for
given control 4, there exists a solution y., to the above boundary value problem
such that

zk(x) < Yep () < wp(x) almost everywhere in Q. (5.23)

Moreover, as follows from (5.23) and the fact that zg,wy € H}(Q), we have
e, € H}(Q) and

by (5.23) and (2.1)
/ F/(5.,) do > / F(wp) da
Q Q
by (5.20) *
Sy

Hence, ., € Y and, therefore, ., is a weak solution to BVP (5.22).
Let us show that {y, }, .y is a weakly compact sequence in H{(Q) with the
extra property

"(Wik)llLr ) < +oc.

—~ 2 . €k ~ 12 _
Af, € Q) Ve>0, and  lim (5||Ay5k||L2(Q)) = Cy. (5.24)

Indeed, as follows from (5.17), we have
k
sup ||z =sup ||(-A)7'7%, < Cqsu o || ue,
kegH kll g 0) keg”( ) el o) < o sup <Z ikl az\lm(g))

=1
< Cql|Q] 2z &3 21113 (Zaz k||u5zHLp )
€N =1

< Cql|Q] 2z £ sup [tey, Nl zp () < +o0 (5.25)

and

sup |8zl 2(g) = sup [z, 2o <Sup[<2am> ey | 22 ]
c

-
< 19| 2 sup [Jue, || ) < +oo, (5.26)
keN
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where the constant Cg comes from the Friedrichs—Poincaré inequality.
As for the super solutions wyg, we get

k
sup [|will g1 () =sup || ) qikyellm
keN Ho (@) k ; BREHG ()

(by (3.7) and the fact that (u.,,y,) € Za)

8
< sup [( az‘,k) (Callue, | Lr() + Cs)
keN | \

=Cy iug [te, Nl r () + Cs < +00 (5.27)
€

and (see Remark 5.1 for the details)

al,jgo (\/aHAwkH[ﬂ(Q)) - elkigo (ﬁ

k
Zai,kHAy&”LQ(Q)]>

i=1
. by property (b)*
< alklgo [VerllAYe, [l 2] = 0. (5.28)

As a result, it follows from inequality (5.23) and estimates (5.25), and (5.27) that
the sequence {7, }, oy is bounded in Hj(Q2) and, hence, there exists an element
y € H} () such that, up to a subsequence,

U., =y in HYR).
Then, Proposition 3.2 implies that ¥ is a weak solution to BVP (1.1)-(1.2) for
g = u* and the pair (u*,y) satisfies the inequality (3.1). It is clear now that y = y*
provided the Dirichlet boundary value problem (1.1)—(1.2) has a unique solution
for g = u*. Thus, the sequence {(ue,y:)}.- possesses desired properties (5.13)-

(5.14). As for the property (5.15), its validity immediately follows from (5.26) and
(5.28). The proof is complete. O

Our final intention in this paper is to discuss the variational properties of the
solutions to the sequence of fictitious optimal control problems (4.1) as ¢ — 0.
As usual, we assume that 2 is star-shaped with respect to some of its interior
point z¢ and in addition to the property (2.1), the function F’ : R — (0,00) is
strictly convex. Let {(ug,yg)}oo C =a be a sequence of optimal pairs to the
corresponding fictitious problem (4.1). As follows from Theorem 4.2, each of the
OCPs (4.1) has a unique solution. We begin with the following result.

Proposition 5.2. There exists a pair (u’,y%) € cl, Za such that, within a
subsequence,

(ul,y0) & (u0,9%) in LP(Q) x H(Q), (5.29)
. g
tim (S18921320) ) = Ca (5.30)

for some Ca > 0.
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Proof. Since the pair (u,y) := (—F’(0),0) is feasible for each of OCPs (4.1), i.e.
(u,y) € Zp, it follows that

. - 1
Jo(ul,0) = “ ;glef:A Je(u,y) < J(u,y) = 2;”9 + F/(O)”Lp(ﬂ) < 400, Ve>0.

C*

Hence,
€
sup §|’Ayg||%2(ﬂ) <C* and
e>0

sup ||u(e)HiP(Q) < 2p_1”9”ip(9) +2r! sup |lg — ug”ﬁp(g)
e>0 e>0

< 2 gl gy + 2 s . a8) < 2 gl + 219
€
0 by (3. 0
sup [[Yz [l g1y < Casup [lug||ze() + Cs < 400
e>0 e>0

So, we can suppose that there exists a subsequence of {(ug, yg)}oo (still denoted
by the same index ¢), a pair (u®,y°) € LP(Q2) x HE(Q), and a constant Ca > 0
such that

m

. 3 .
tim [10003000) | = Ca and (u0) 2 (u°,4%) in LP() x HY(@). (5.31)

To conclude the proof, it remains to note that (u°,y°) € cl, ZEa by Proposition 3.2
and Lemma 5.1. O

The main question arising in this case is about variational properties of the
p-cluster pairs (u®,y%) € LP(Q) x HE(Q).

Theorem 5.1. Let (u°,y°) € LP(Q) x H}(Q) be a u-cluster pair of the sequence

of optimal solutions {(u, yg)}Do to the fictitious problems (4.1) as e — 0. Then

Jb(uovyo):: inf Jb(u>y)7 (5'32)
(u,y)€cly En

where ]
o) = Sl = ullgy V() € cluZa.

Proof. To begin with, let us show that the constrained minimization problem
<inf (uy)ecl, = JO (u, y)> has a nonempty set of solutions. Indeed, in view of definition
of the set cl, Za (see Lemma 5.1), there exists a sequence {(ug, Yx)}pen C cly Ea
such that
lim Jo(uk, yx) = inf  Jo(u,y). (5.33)
k—o0 (u,y)ecly Ea
Moreover, because of the density of C*°(Q) x C§°() in LP(2) x H (), we can
suppose that the sequence is rather regular. For our purpose it is enough to have
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the following inclusion: (ug,yr) € Ea for all k& € N. Then, there exists a constant
C > 0 such that

sup [|ugll,q) < 2P lglp ) + 277 sup lg — well}
ken o @) il keN Lo
< 27 gl o) + 2p71P}SCUI]§ Jo(uk, Y)
S

by (5.3

3)
< 2p_1“9”ip(9) + 2p_1p0*7

—

by (3.7
sup [|[yellga) < Casup [lugllLe) + Cs < +o0.
keN keN

So, the minimizing sequence {(ux,yr)}ey is relatively p-compact in LP(€2) x
HZ(Q), that is, there exists a pair (u*,y*) € LP(Q) x H}(Q) such that, up to a
subsequence,

M % . x by Proposition 3.2 and Lemma 5.1 _
(ukvyk) - (U Y ) and (u Y ) € Cl/,L SA-

To conclude the optimality of (u*,y*) to the problem <inf(u,y)€c1# EA Jo(u,y)>,
it remains to make use of the lower semi-continuity of the cost functional Jy :
cl, Ea — R with respect to the u-convergence.

We are now in a position to prove the equality (5.32). By contraposition, let
us assume that there exists a pair (u*,y*) € cl, Ea such that

Jo(®,4°) > inf  Jo(u,y) = Jo(u*,y"). (5.34)

(u,y)€cly Ea

Then, due to Proposition 5.1, we can construct a sequence {(ue, J:) } .~ in LP(£2) x
H} () with properties

(e, 72) & (u*,7) in LP(Q) x HYQ), (G, ) € Ba, Ve >0, (5.35)
U — u* strongly in  LP(Q), (5.36)
~ . € ~
Ag. € L*(Q) Ve>0, and ;I_I}(l) <§|!Aye||%2(g)> = Ca, (5.37)
where the constant Ca is defined by (5.30). Moreover, since a weak solution to
the boundary value problem
Ay =F'(y)+u* in Q, y=0 on 09,

can be non-unique, we admit the case that y* # 7 as elements of HZ (). Then
we can write down

Jg(ug,yg) = inf J.(u,y) < Je(Ue,Ye), Ve>0,

(uzy) €EA

or in other terms

£ 1 € ~ 1 ~
/ ]Ay?]de—i—/ lg — ul|Pda < / |Ay€|2dx+/ lg — uc|Pdz. (5.38)
2 Ja pJa 2 Ja PJa
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Passing to the limit in both sides of this inequality as ¢ — 0 and taking into
account that

hm /|AyE dz ™ & Cha,

hm |Ay5|2 dz ™ &7 Ca,

(5.2
l1m1nf/]g—u0|pdx Z /|g—u0\pdac

lim/|g—a5|pdm 556 /|g—u [P dz,
e—0 [¢)

we arrive at the relation
B ) =+ [ g =P de <o [ g =P do = Do 5) = Do),

which comes into conflict with (5.34). The proof is complete. O

Remark 5.2. Because of ill-posedness of the original BVP (1.1)—(1.2), it is reasonably
to suppose that the set of solutions to minimization problem (5.32) is not singleton.
On the other hand, we have

: 1 1. »
gt _ Jolwy) = b [Hg ullZo (@) } = Inf [Hg - UHLP(Q)] :
It means that the minimal value of the cost functional Jy(u", °) does not depend
on the y-component of the optimal pair. Hence, Theorem 5.1 implies that even if
the sequence of optimal solutions {(ug, y?) }6>0 to the fictitious problems (4.1) has
more than one p-cluster pair, their u-components must coincide. In other words, if
{(ug, yg)}€>0 is a sequence of optimal pairs to the fictitious problems (4.1), then
{yg}DO is relatively weakly compact in H}(Q) and there exists a unique u® € A
such that
ud —=u® in LP(Q) as € =0,

0;

1: _ P :
where u” is a minimizer to the minimization problem 5 inf 3 [Hg “HLP(Q) . This

circumstance and ill-posedness of the BVP (1.1)-(1.2) motivates us to introduce
the following concept.

Definition 5.1. Let g be a given element of LP(Q2) with p > 2. Then we say that
a distribution y* = y*(g) € H&(Q) is the approximate solution to the boundary
value problem (1.1)—(1.2) if y* € Y and y* satisfies the relations

/(Vy V) d:ﬁ—/F’ godm—{—/g pdx, VYepeCF), (5.39)
[vvtas< 725 [ (6 - FO) da

_ 2 / ( — 20, Vy*) da, (5.40)
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where

”g - g*lep(Q) = (u,y)iel}:i =i ”g - UHZ[)/p(Q) (541)

As immediately follows from this definition, an approximate solution y* is
not unique, in general. Moreover, y* coincides with a weak solution to (1.1)—(1.2)
in the sense of Definition 2.1 provided ¢g* = g. However, in this case we have a
weak solution with an extra property: this solution satisfies the inequality (3.1)
even if we do not know whether Ay* € L%(Q). In the context of Definition 5.1, it
arises the question about existence and attainability of the approximate solutions
to the boundary value problem (1.1)—(1.2). In view of this, it makes sense to
give the following final result which is an obvious consequence of Theorem 5.1,
Proposition 5.2, and Theorem 4.2.

Theorem 5.2. Let Q be a bounded open subset of R™Y (N > 2) which is assumed to
be star-shaped with respect to some of its interior point xg. Let F' : R — (0, +00)
be a mapping of the class CL_(R) such that F satisfies estimate (2.1) and its
derivative F' : R — (0,00) is a strictly convex function. Let g € L*(Q) be a given
distribution. Assume that there exists a positive value § such that g € L*T°(Q).
Then the set of approzimate solutions to the boundary value problem (1.1)—(1.2) is
non-empty for the given g. Moreover, in this case some of such solutions y* € Y
can be attained as follows: y* is an Hi(Q)-weak cluster point of the sequence
{yg}€>0, where {(ug, yg)}€>0 are minimizers to the corresponding fictitious OCPs
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