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We discuss the existence of weak solutions to one class of Dirichlet boundary
value problems (BVP) for non-linear elliptic equation. Because of the specific of
nonlinearity, we cannot a priori expect to have a solution in the standard functional
space. Instead of this we show that the original BVP admits the so-called approxi-
mate weak solutions. To do so, we introduce a special family of perturbed optimal
control problems (OCPs). The main question we discuss in this paper is about
solvability of perturbed OCPs, uniqueness of their solutions, and asymptotic proper-
ties of optimal pairs as the perturbation parameter ε > 0 tends to zero. As a result,
we derive the sufficient conditions of the existence of weak solutions to the given
class of nonlinear Dirichlet BVP and give a practical way for the approximation of
such solutions.
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1. Introduction

In this paper we are concerned with the following Dirichlet boundary value
problem

−∆y = F ′(y) + g in Ω, (1.1)
y = 0 on ∂Ω, (1.2)

where F ∈ C1
loc(R), F (z) ≥ exp(CF z) for all z ∈ R, and g ∈ Lp(Ω), 2 < p < ∞,

is a given distribution.
It is well known that the indicated BVP is ill-posed in general. It means

that there is no reason to assert the existence of weak solutions to (1.1)–(1.2)
for a given g ∈ Lp(Ω), or to suppose that such solution, even if it exists, is
unique (see, for instance, I.M. Gelfand [11], M.G. Crandall and P.H. Rabinowitz
————————————————–
c© P. I. Kogut, A. O. Putchenko, 2016.



ON APPROXIMATE SOLUTIONS TO NONLINEAR ELLIPTIC BVP 27

[5], F. Mignot and J.P. Puel [15], Th. Gallouët, F. Mignot and J.P. Puel [10],
H. Fujita [8], R.G. Pinsky [16], R. Ferreira, A. De Pablo, J.L. Vazquez [6]). At
the same time, the BVPs like (1.1)–(1.2) appear in many contexts: in the study
of stellar structures [4], in combustion theory for the chemical reactors [7], and
etc.

The aim of this article is to discuss the existence of weak solutions to the
Dirichlet boundary value problem (1.1)–(1.2). Because of the specific of non-
linearity F (y), we cannot assert that the indicated BVP admits at least one
solution in the standard functional space. Instead of this we show that the original
BVP possesses the so-called approximate weak solutions. We define these solutions
as the weak solution to the problem (1.1)–(1.2) with special choice of the distribu-
tion g∗ ∈ Λ which must be close (in some sense) to the original g. Since the set of
feasible distributions Λ has rather complicate structure, it is not easy matter to
touch on the choice of g∗ ∈ Λ directly. In view of this, we introduce a special family
of perturbed optimal control problems (OCPs)

〈
inf(u,y)∈Ξ∆

Jε(u, y)
〉
, where

Jε(u, y) =
ε

2
‖∆y‖2L2(Ω) +

1

p
‖g − u‖pLp(Ω)

and the functional properties of fictitious controls u are closely related with the
properties of the distribution g in right-hand side of the elliptic equation.

The main questions we discuss in this paper are about solvability of perturbed
OCPs, uniqueness of their solutions, and asymptotic properties of optimal pairs
as the perturbation parameter ε > 0 tends to zero. As a result, we show that
the optimal pairs

{
(u0
ε, y

0
ε)
}
ε>0
⊂ Lp(Ω) × H1

0 (Ω) can be defined in a unique
way and each weakly cluster point of this sequence has a structure (g∗, yg), where
yg stands for the approximate solution to the original BVP. Thus, we derive
the sufficient conditions of the existence of weak solutions to the given class of
nonlinear Dirichlet BVP and give a practical way for the approximation of such
solutions (for the details we refer to Theorem 5.2).

2. Statement of the Problem and Some Preliminaries

Let Ω be a bounded open connected subset of RN (N > 2). We assume that
the boundary ∂Ω is Lipschitzian so that the unit outward normal ν = ν(x) is
well-defined for a.e. x ∈ ∂Ω, where a.e. means here with respect to the (N − 1)-
dimensional Hausdorff measure. We also assume that Ω is star-shaped with respect
to some interior point x0, i.e. (σ − x0, ν(σ)) ≥ 0 for almost all σ ∈ ∂Ω.

Let F : R→ (0,+∞) be a mapping such that F ∈ C1
loc(R) and there exists a

constant CF > 0 satisfying

F (z) ≤ CFF ′(z), ∀ z ∈ R, (2.1)

that is, in what follows we may suppose that F (z) ≥ exp(CF z) over R. Let p
(2 ≤ p < ∞) be a real number and let g ∈ Lp(Ω) be a given distribution. By
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H1
0 (Ω) we denote the Sobolev space as the closure of C∞0 (Ω) with respect to the

norm ‖y‖H1
0 (Ω) =

(´
Ω |∇y|

2 dx
)1/2. Let H−1(Ω) be the dual space to H1

0 (Ω).
In order to make a precise meaning of the solution to BVP (1.1)–(1.2) and

indicate its characteristic properties, we begin with the following concept.

Definition 2.1. We say that a function y = y(g) is a weak solution to the
boundary value problem (1.1)–(1.2) for a given distribution g ∈ Lp(Ω) if y ∈
H1

0 (Ω), y belongs to the class of functions

Y =
{
y ∈ H1

0 (Ω)
∣∣∣ F ′(y) ∈ L1(Ω)

}
, (2.2)

and the integral identity
ˆ

Ω
(∇y,∇ϕ) dx =

ˆ
Ω
F ′(y)ϕdx+

ˆ
Ω
gϕ dx (2.3)

holds for every test function ϕ ∈ C∞0 (Ω).

As was indicated before, it is unknown whether the original BVP admits at
least one weak solution in the sense of Definition 2.1 for a given distribution
g ∈ Lp(Ω). Moreover, as follows from (2.2), the continuity of form [y, ϕ]F :=´

Ω F
′(y)ϕdx on the set Y ⊂ H1

0 (Ω) is not evident. This motivates us to introduce
of the following set.

Definition 2.2. We say that an element y ∈ H1
0 (Ω) belongs to the set HF if∣∣∣∣ˆ

Ω
F ′(y)ϕdx

∣∣∣∣ ≤ c(y)

(ˆ
Ω
|∇ϕ|2 dx

)1/2

, ∀ϕ ∈ C∞0 (Ω) (2.4)

with some constant depending on y.

As a result, we have: if y ∈ HF then the mapping ϕ 7→ [y, ϕ]F can be defined
for all ϕ ∈ H1

0 (Ω) using (2.4) and the standard rule

[y, ϕ]F = lim
ε→0

[y, ϕε]F , (2.5)

where {ϕε}ε>0 ⊂ C∞0 (Ω) and ϕε → ϕ strongly in H1
0 (Ω). In particular, if y ∈ HF ,

then we can define the value [y, y]F and this one is finite for every y ∈ HF ,
although the ’integrand’ yF ′(y) needs not to be integrable on Ω, in general. Taking
this fact into account, we immediately arrive at the following conclusion.

Proposition 2.1. If g ∈ Lp(Ω) is a given distribution and y ∈ HF is a weak
solution to BVP (1.1)–(1.2) in the sense of Definition (2.1), then y satisfies the
energy equality ˆ

Ω
|∇y|2 dx = [y, y]F +

ˆ
Ω
gy dx. (2.6)
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We note that by the initial assumptions and Holder’s inequality, this relation
makes a sense because∣∣∣∣ˆ

Ω
gy dx

∣∣∣∣ ≤ ‖g‖L2(Ω)‖y‖L2(Ω) ≤ |Ω|
p−2
2p ‖g‖Lp(Ω)CΩ‖y‖H1

0 (Ω) < +∞. (2.7)

However, since the value [y, y]F does not preserve a constant sign for all y ∈ HF ,
it follows that we cannot make use of the energy equality (2.6) in order to derive a
reasonable a priori estimate in ‖·‖H1

0 (Ω)-norm for the weak solutions. In particular,
to specify the term [y, y]F we can use the following result.

Lemma 2.1. Let y ∈ Y be a weak solution to BVP (1.1)–(1.2). Then y ∈ HF ,
F ′(y) ∈ H−1(Ω), and

[y, z]F =
〈
F ′(y), z

〉
H−1(Ω);H1

0 (Ω)
=

ˆ
Ω
z F ′(y) dx, ∀ z ∈ H1

0 (Ω), (2.8)

i.e. z F ′(y) ∈ L1(Ω) for every z ∈ H1
0 (Ω).

Remark 2.1. Here, by H−1(Ω) we mean the completeness of the Hilbert space
L2(Ω) with respect to the norm

‖f‖H−1(Ω) = sup
ϕ∈H1

0 (Ω),ϕ 6=0

[ˆ
Ω
f(x)ϕ(x) dx

(
‖ϕ‖H1

0 (Ω)

)−1
]
, ∀ f ∈ L2(Ω). (2.9)

Proof. Following the definition of the weak solution, we have (see (2.3))

ˆ
Ω
F ′(y)ϕdx ≤

∣∣∣∣ˆ
Ω

(∇y,∇ϕ) dx

∣∣∣∣+

∣∣∣∣ˆ
Ω
gϕ dx

∣∣∣∣
≤ ‖y‖H1

0 (Ω)

(ˆ
Ω
|∇ϕ|2 dx

)1/2

+ ‖g‖L2(Ω)‖ϕ‖L2(Ω)

by (2.7)
≤

(
‖y‖H1

0 (Ω) + CΩ|Ω|
p−2
2p ‖g‖Lp(Ω)

)
‖ϕ‖H1

0 (Ω), ∀ϕ ∈ C∞0 (Ω). (2.10)

Hence, y ∈ HF by Definition 2.2.
Let z ∈ H1

0 (Ω) ∩ L∞(Ω) be an arbitrary element. Since F ′(y) ∈ L1(Ω), it
follows that the term

´
Ω z F

′(y) dx is well defined. Let {ϕε}ε>0 ⊂ C∞0 (Ω) be a
sequence such ϕε → z in H1

0 (Ω). In view of our assumptions, it is plausible to
suppose that

sup
ε>0
‖ϕε‖L∞(Ω) < +∞ and ϕε

∗
⇀ z in L∞(Ω).

Hence, using the fact that y ∈ HF , we get
ˆ

Ω
z F ′(y) dx = lim

ε→0

ˆ
Ω
ϕεF

′(y) dx = lim
ε→0

[y, ϕε]F
by (2.5)

= [y, z]F . (2.11)
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Thus, we arrive at the relation (2.8) for each z ∈ H1
0 (Ω) ∩ L∞(Ω).

Let us take now z ∈ H1
0 (Ω) such that z ≥ 0 almost everywhere in Ω. For every

ε > 0, let Tε : R→ R be the truncation operator defined by

Tε(s) = max
{

min
{
s, ε−1

}
,−ε−1

}
(2.12)

It is well-know the following property of Tε [13]: If z ∈ H1
0 (Ω) then

Tε(z) ∈ L∞(Ω) ∩H1
0 (Ω) ∀ ε > 0 and Tε(z)→ z in H1

0 (Ω) as ε→ 0.

Hence, Tε(z)→ z almost everywhere in Ω. Since

Tε(z)F
′(y)

by (2.1)
≥ 1

CF
Tε(z)F (y) > 0 in Ω (2.13)

{Tε(z)F ′(y)}ε>0 is a pointwise non-decreasing sequence, and Tε(z)F
′(y)→ z F ′(y)

for almost all x ∈ Ω, it follows by monotone convergence theorem that z F ′(y) is
a measurable function on Ω and

lim
ε→0

ˆ
Ω
Tε(z)F

′(y) dx =

ˆ
Ω
z F ′(y) dx.

Hence, the relation (2.13) remains valid. Thus, (2.8) holds true for each z ∈ H1
0 (Ω)

such that z ≥ 0.
As for a general case, i.e. z ∈ H1

0 (Ω), it is enough to note that z = z+ − z−
with z+, z− ∈ H1

0 (Ω) and z+, z− ≥ 0 in Ω, where

z+ := max {z, 0} , z− := max {−z, 0} .

To complete the proof, it remains to observe that
ˆ

Ω
z F ′(y) dx

by (2.13)
= lim

ε→0

ˆ
Ω
ϕεF

′(y) dx

by (2.10)
≤ lim

ε→0

(
‖y‖H1

0 (Ω) + CΩ|Ω|
p−2
2p ‖g‖Lp(Ω)

)
‖ϕε‖H1

0 (Ω)

(by the strong convergence of ϕε → z in H1
0 (Ω))

=
(
‖y‖H1

0 (Ω) + CΩ|Ω|
p−2
2p ‖g‖Lp(Ω)

)
‖z‖H1

0 (Ω)

holds true for an arbitrary element z ∈ H1
0 (Ω). As a result, we have

F ′(y) ∈ H−1(Ω),
〈
F ′(y), z

〉
H−1(Ω);H1

0 (Ω)
=

ˆ
Ω
z F ′(y) dx, ∀ z ∈ H1

0 (Ω),

and ‖F ′(y)‖H−1(Ω) ≤
(
‖y‖H1

0 (Ω) + CΩ|Ω|
p−2
2p ‖g‖Lp(Ω)

)
,

where the constant CΩ comes from the Friedrichs–Poincaré inequality.
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Remark 2.2. To clarify the main conclusion of Lemma 2.1, we make use of the
following observations (see Remark 2.1). Let {fk}k∈N ⊂ L2(Ω) be a Cauchy
sequence with respect to the norm ‖ · ‖H−1(Ω). Then, following the definition
of the norm ‖ · ‖H−1(Ω), we have

ˆ
Ω
fk(x)ϕ(x) dx ≤ ‖fk‖H−1(Ω)‖ϕ‖H1

0 (Ω).

Hence, the H−1-limit of the sequence {fk}k∈N is a linear functional f on H1
0 (Ω)

satisfying the estimate∣∣∣< f,ϕ >(H1
0 (Ω))

∗
;H1

0 (Ω)

∣∣∣ ≤ ‖f‖H−1(Ω)‖ϕ‖H1
0 (Ω), ∀ϕ ∈ H1

0 (Ω),

that is, limk→∞
´

Ω fk(x)ϕ(x) dx =< f,ϕ >(H1
0 (Ω))

∗
;H1

0 (Ω)
and f ∈

(
H1

0 (Ω)
)∗.

In order to show that f ∈ H−1(Ω), we make use of the Riesz Representation
Theorem. As a result, for a given f ∈

(
H1

0 (Ω)
)∗ there exists an element uf ∈

H1
0 (Ω) such that

< f,ϕ >(H1
0 (Ω))

∗
;H1

0 (Ω)
=

ˆ
Ω

(∇uf (x),∇ϕ(x)) dx, ∀ϕ ∈ H1
0 (Ω).

By definition of the generalized derivative, we have

(−∆uf ) [ϕ] =

ˆ
Ω

(∇uf (x),∇ϕ(x)) dx

≤ ‖∇uf‖L2(Ω)N ‖∇ϕ‖L2(Ω)N = ‖uf‖H1
0 (Ω)‖ϕ‖H1

0 (Ω) (2.14)

for all ϕ ∈ C∞0 (Ω). Since C∞0 (Ω) is dense in H1
0 (Ω), we can infer from (2.14) and

(2.9) that

‖ −∆uf‖H−1(Ω) = sup
ϕ∈H1

0 (Ω),ϕ 6=0

´
Ω (∇uf (x),∇ϕ(x)) dx

‖ϕ‖H1
0 (Ω)

≤ ‖uf‖H1
0 (Ω).

Hence, the linear operator −∆ : H1
0 (Ω) 7→ H−1(Ω) is continuous. Moreover, this

operator is surjective by Riesz Representation Theorem. Thus, −∆ : H1
0 (Ω) 7→

H−1(Ω) is a bijective bounded operator and, therefore, the inverse mapping
theorem implies that −∆ is an isomorphism between Banach spaces H1

0 (Ω) and
H−1(Ω). In view of this, the spaces

(
H1

0 (Ω)
)∗ and H−1(Ω) are isomorphic as well.

Finally, it means that

lim
k→∞

ˆ
Ω
fk(x)ϕ(x) dx =< f,ϕ >H−1(Ω);H1

0 (Ω) and f ∈ H−1(Ω).

As a direct consequence of this lemma and Proposition 2.1, we have the
following result.
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Corollary 2.1. Let g ∈ Lp(Ω) be a given distribution and let y ∈ H1
0 (Ω) be a

weak solution to BVP (1.1)–(1.2) in the sense of Definition (2.1). Then the energy
equality for y takes the form

ˆ
Ω
|∇y|2 dx =

ˆ
Ω
y F ′(y) dx+

ˆ
Ω
gy dx. (2.15)

3. Some Auxiliary Results and a Priori Estimates

In this Section we deal with some extra properties of the weak solutions to
the boundary value problem (1.1)–(1.2). In many aspects we follow the ideas of
the paper E. Casas, O. Kavian, and J.P. Puel [3].

Proposition 3.1. Let y ∈ H1
0 (Ω) be a weak solution to BVP (1.1)–(1.2) such

that ∆y ∈ L2(Ω). Then(
N

2
− 1

)ˆ
Ω
|∇y|2 dx ≤ N

ˆ
Ω

(F (y)− F (0)) dx−
ˆ

Ω
g (x− x0,∇y) dx, (3.1)

where x0 ∈ int Ω is a point such that (σ − x0, ν(σ)) ≥ 0 for almost all σ ∈ ∂Ω,
and ν(σ) denotes the outward unit normal vector to ∂Ω at the point σ.

Proof. In view of the initial assumptions, we have −∆y − g ∈ L2(Ω). Hence,
F ′(y) ∈ L2(Ω) and, therefore, we can multiplay the equation (1.1) by any function
ϕ ∈ L2(Ω). Let us take ϕ := (x− x0,∇y) ∈ L2(Ω). Then

ˆ
Ω

[−∆y (x− x0,∇y)] dx =

ˆ
Ω
F ′(y) (x− x0,∇y) dx+

ˆ
Ω
g (x− x0,∇y) dx.

(3.2)
Step 1. We apply the formula of integration by parts to the left hand side of (3.2).
This yields
ˆ

Ω
[−∆y (x− x0,∇y)] dx =

ˆ
Ω

(∇y,∇ (x− x0,∇y)) dx

−
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ =

N∑
i=1

ˆ
Ω

∂y

∂xi

∂

∂xi

 N∑
j=1

(xj − x0j)
∂y

∂xj

 dx
−
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ =

N∑
i=1

ˆ
Ω

∣∣∣∣ ∂y∂xi
∣∣∣∣2 dx

+

N∑
i,j=1

ˆ
Ω

(xj − x0j)
∂y

∂xi

∂2y

∂xi∂xj
dx−

ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ
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=

ˆ
Ω
|∇y|2 dx+

1

2

N∑
i,j=1

ˆ
Ω

(xj − x0j)
∂

∂xj

(
∂y

∂xi

)2

dx

−
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ =

ˆ
Ω
|∇y|2 dx

+
1

2

ˆ
∂Ω

N∑
j=1

[(σj − x0j)νj(σ)]

[
N∑
i=1

(
∂y(σ)

∂σi

)2
]
dσ − 1

2

N∑
j=1

ˆ
Ω

[
N∑
i=1

(
∂y

∂xi

)2
]
dx

−
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ =

(
1− N

2

)ˆ
Ω
|∇y|2 dx

+
1

2

ˆ
∂Ω

(σ − x0, ν(σ)) |∇y(σ)|2 dσ −
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ.

Since for σ ∈ ∂Ω we have ∇y(σ) = ±|∇y(σ)|ν(σ), it follows that

(σ − x0,∇y(σ)) = ±|∇y(σ)| (σ − x0, ν(σ)) ,

∂y(σ)

∂ν
= (∇y(σ), ν(σ)) = ±|∇y(σ)|.

Hence,
ˆ
∂Ω

∂y(σ)

∂ν
(σ − x0,∇y(σ)) dσ =

ˆ
∂Ω

(σ − x0, ν(σ)) |∇y(σ)|2 dσ,

and, therefore,
ˆ

Ω
[−∆y (x− x0,∇y)] dx

=

(
1− N

2

) ˆ
Ω
|∇y|2 dx− 1

2

ˆ
∂Ω

(σ − x0, ν(σ)) |∇y(σ)|2 dσ

by the star-shaped
properties of Ω

≥
(

1− N

2

) ˆ
Ω
|∇y|2 dx. (3.3)

Step 2. Before proceeding further, let us show that the following relation
ˆ

Ω
F ′(y) (∇y, ψ) dx = −

ˆ
Ω

[F (y)− F (0)] divψ dx (3.4)

holds true for any vector-valued test function ψ ∈ C1(Ω)N provided y ∈ H1
0 (Ω) is

a weak solution to (1.1)–(1.2). Indeed, let Tε : R→ R be the truncation operator
defined in (2.12). By definition of Tε, we have

Tε(y)→ y strongly in H1
0 (Ω) and almost everywhere in Ω as ε→ 0. (3.5)

Moreover, since F ′(y) ∈ L2(Ω) and F ′ ∈ Cloc(R), it follows from (3.5) that

F ′ (Tε(y))→ F ′(y) in L2(Ω) and almost everywhere in Ω.
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Then Lebesgue Dominated Theorem implies: F ′ (Tε(y))∇Tε(y) → F ′(y)∇y in
L1(Ω)N . Taking into account the fact that

F ′ (Tε(y))∇Tε(y) = ∇F (Tε(y)) , ∀ ε > 0,

we conclude

F ′(y)∇y = ∇ (F (y)− F (0)) as elements of L1(Ω).

As a result, the equality (3.4) is a direct consequence of the formula of integration
by parts.

Now we are in a position to transform of the right hand side in (3.2). Indeed,
due to relation (3.4), we have
ˆ

Ω
F ′(y) (x− x0,∇y) dx =

ˆ
Ω

(x− x0,∇ [F (y)− F (0)]) dx

by (3.4)
= −

ˆ
Ω

[F (y)− F (0)] div(x− x0) dx = −N
ˆ

Ω
[F (y)− F (0)] dx.

Combining this equality with (3.2) and inequality (3.3), we arrive at the desired
relation (3.1). The proof is complete.

The next result is crucial in this section. Namely, we show that inequality
(3.1) implies some a prioiri estimate for the weak solutions y ∈ Y to the original
BVP.

Theorem 3.1. Let y ∈ Y be a weak solution to BVP (1.1)–(1.2) such that y
satisfies the inequality (3.1). Then

ˆ
Ω
y F ′(y) dx ≤ C1‖g‖2Lp(Ω) + C2‖g‖Lp(Ω) + C3, (3.6)

‖y‖H1
0 (Ω) ≤ C4‖g‖Lp(Ω) + C5, (3.7)

for some positive constants Ci, 1 ≤ i ≤ 5, independent of g and y.

Proof. Combining the energy equality (2.6) with inequality (3.1), we get(
N

2
− 1

)ˆ
Ω
y F ′(y) dx+

(
N

2
− 1

) ˆ
Ω
gy dx

≤ N
ˆ

Ω
(F (y)− F (0)) dx−

ˆ
Ω
g (x− x0,∇y) dx.

Hence, in view of estimate (2.7), we can rewrite the last relation as follows
ˆ

Ω
y F ′(y) dx ≤ 2N

N − 2

ˆ
Ω

(F (y)− F (0)) dx

+ |Ω|
p−2
2p

2CΩ diam Ω

N − 2
‖g‖Lp(Ω)‖y‖H1

0 (Ω). (3.8)
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For our further analysis, we set

ΩN :=

{
x ∈ Ω : y(x) >

4NCF
N − 2

}
,

where the constant CF is defined in (2.1). Since F : R→ (0,+∞), it follows from
(2.1) that

2N

N − 2

ˆ
Ω

(F (y)− F (0)) dx

≤ 2N

N − 2

ˆ
Ω
F (y) dx ≤ 2NCF

N − 2

ˆ
Ω
F ′(y) dx

≤ 1

2

ˆ
ΩN

yF ′(y) dx+
2NCF
N − 2

ˆ
Ω\ΩN

F ′
(

4NCF
N − 2

)
dx

≤ 1

2

ˆ
ΩN

yF ′(y) dx+
2N

N − 2
CF |Ω|F ′

(
4NCF
N − 2

)
and ˆ

Ω\ΩN
yF ′ (y) dx ≤ 4NCF

N − 2

ˆ
Ω\ΩN

F ′
(

4NCF
N − 2

)
dx

≤ 4N

N − 2
CF |Ω|F ′

(
4NCF
N − 2

)
. (3.9)

Then inequality (3.8) yields to the following relationˆ
ΩN

y F ′(y) dx =

ˆ
Ω
y F ′(y) dx−

ˆ
Ω\ΩN

y F ′(y) dx

by (3.8)
≤ 1

2

ˆ
ΩN

yF ′(y) dx+
2N

N − 2
CF |Ω|F ′

(
4NCF
N − 2

)
−
ˆ

Ω\ΩN
y F ′(y) dx

+ |Ω|
p−2
2p

2CΩ diam Ω

N − 2
‖g‖Lp(Ω)‖y‖H1

0 (Ω).

Therefore,

1

2

ˆ
Ω
y F ′(y) dx ≤ 2N

N − 2
CF |Ω|F ′

(
4NCF
N − 2

)
− 1

2

ˆ
Ω\ΩN

y F ′(y) dx

+ |Ω|
p−2
2p

2CΩ diam Ω

N − 2
‖g‖Lp(Ω)‖y‖H1

0 (Ω).

As a result, we get from (3.9) and the previous inequality
ˆ

Ω
y F ′(y) dx ≤ 8N

N − 2
CF |Ω|F ′

(
4NCF
N − 2

)
+ 4|Ω|

p−2
2p
CΩ diam Ω

N − 2
‖g‖Lp(Ω)‖y‖H1

0 (Ω)

= Ĉ1 + 2Ĉ2‖g‖Lp(Ω)‖y‖H1
0 (Ω). (3.10)
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Finally using the energy equality (2.6), we obtain

‖y‖2H1
0 (Ω) ≤ Ĉ1 + 3Ĉ2‖g‖Lp(Ω)‖y‖H1

0 (Ω)

and this implies the desired estimate (3.7). In order to establish the estimate (3.6),
it is enough to make use of (3.7) in (3.10). The proof is complete.

Remark 3.1. It is worth to notice that inequality (3.1) makes sense even if we
do not assume the fulfillment of inclusion ∆y ∈ L2(Ω) but have only that y ∈
Y ⊂ H1

0 (Ω) and g ∈ Lp(Ω). At the same time it is unknown whether this
inequality holds for an arbitrary weak solution to BVP (1.1)–(1.2). Since the
existence and uniqueness of the weak solutions to the original BVP is an open
question for arbitrary given distribution g ∈ Lp(Ω), the following result reflects
some interesting properties of weak solutions satisfying inequality (3.1).

Proposition 3.2. Let (g, y) be a given pair in Lp(Ω) ×H1
0 (Ω) with p > 2. Let

{(gk, yk)}k∈N ⊂ Lp(Ω) × Y be a sequence such that, for each k ∈ N the pairs
(gk, yk) are related by the integral identity (2.3), satisfy inequality (3.1), and

(gk, yk) ⇀ (g, y) weakly in Lp(Ω)×H1
0 (Ω) as k →∞. (3.11)

Then y is a weak solution to BVP (1.1)–(1.2) for given g ∈ Lp(Ω), the pair (g, y)
satisfies the inequality (3.1), and

F ′(yk)→ F ′(y) in L1(Ω) as k →∞. (3.12)

Proof. By the Rellich–Kondrachov theorem, the embedding H1
0 (Ω) ↪→ L2(Ω) is

compact. Hence, the weak convergence yk ⇀ y in H1
0 (Ω) implies the strong

convergence in L2(Ω). Therefore, up to a subsequence, we can suppose that
yk(x) → y(x) for almost every point x ∈ Ω. As a result, we have the pointwise
convergence: F ′(yk) → F ′(y) everywhere in Ω. Let us show that this implies the
strong convergence (3.12).

With that in mind we recall that a sequence {fk}k∈N is called equi-integrable
on Ω if for any δ > 0, there is a τ = τ(δ) such that

´
S |fk| dx < δ for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Let us show that the
sequence {F ′(yk)}k∈N is equi-integrable on Ω. To do so, we take m > 0 such that

m >
2
(
C1 supk∈N ‖gk‖2Lp(Ω) + C2 supk∈N ‖gk‖Lp(Ω) + C3

)
δ

. (3.13)

We also set τ = δ/(2F ′(m)). Then for every measurable set S ⊂ Ω with |S| < τ ,
we haveˆ
S
F ′(yk) dx ≤

ˆ
{x∈S : yk(x)>m}

F ′(yk) dx+

ˆ
{x∈S : yk(x)≤m}

F ′(yk) dx

≤ 1

m

ˆ
{x∈S : yk(x)>m}

ykF
′(yk) dx+

ˆ
{x∈S : yk(x)≤m}

F ′(m) dx

by (3.6)
≤

C1‖gk‖2Lp(Ω) + C2‖gk‖Lp(Ω) + C3

m
+ F ′(m)|S|

by (3.13)
≤ δ

2
+
δ

2
.
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As a result, the assertion (3.12) is a direct consequence of Lebesgue’s Convergence
Theorem. Hence, y ∈ Y and it is easy to show that the limit pair (g, y) is related
by the integral identity (2.3). Indeed, in view of the initial assumptions and the
strong convergence property (3.12), the limit passage in

ˆ
Ω

(∇yk,∇ϕ) dx =

ˆ
Ω
F ′(yk)ϕdx+

ˆ
Ω
gkϕdx, ∀ϕ ∈ C∞0 (Ω)

becomes trivial. Thus, y is a weak solution to BVP (1.1)–(1.2) for given g ∈ Lp(Ω).
Our next intension is to prove that (g, y) satisfies (3.1). With that in mind

we make use of the following result (see L. Boccardo and F. Murat [2]): if yk ⇀
y in H1

0 (Ω) and the sequence {∆yk}k∈N is bounded in L1(Ω), then, within a
subsequence, ∇yk(x) → ∇y(x) almost everywhere as k → ∞. Indeed, as follows
from (2.3), ˆ

Ω
|∆yk| dx ≤

ˆ
Ω
|F ′(yk)| dx+

ˆ
Ω
|gk| dx. (3.14)

Hence, in view of (3.14) and Lp(Ω)-boundedness of {gk}k∈N with p > 2, we have
supk∈N ‖∆yk‖L1(Ω) < +∞. Thus, in what follows we may suppose that

∇yk ⇀ ∇y in L2(Ω)N and ∇yk(x) ⇀ ∇y(x) a.e. in Ω. (3.15)

Let us show that this fact implies the strong convergence of gradients ∇yk →
∇y in Lp′(Ω)N with p′ = p/(1 − p). Indeed, for an arbitrary small set A, by the
Hölder inequality for 1/q + 1/q′ = 1, we have

ˆ
A
|∇yk −∇y|p

′
dx ≤

(ˆ
A
|∇yk −∇y|p

′q dx

)1/q (ˆ
A

1q
′
dx

)1/q′

.

Having chosen q > 1 such that p′q = 2, we obtain

1

q′
= 1− 1

q
= 1− p′

2
=

2− p′

2
=

p− 2

2(p− 1)
or q′ =

2(p− 1)

p− 2
.

Then
ˆ
A
|∇yk −∇y|p

′
dx ≤ |A|

p−2
2(p−1) sup

k∈N
‖∇yk −∇y‖p

′

L2(Ω)N
≤ C|A|

p−2
2(p−1) ,

that is, the sequence
{
|∇yk −∇y|p

′
}
k∈N

is equi-integrable. Combining this fact

with (3.15), by Lebesgue Convergence Theorem, we conclude: |∇yk −∇y|p
′ → 0

strongly in L1(Ω), and, therefore,

∇yk → ∇y strongly in Lp
′
(Ω)N with p′ = p/(1− p). (3.16)
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As a result, we get

lim
k→∞

ˆ
Ω
gk (x− x0,∇yk) dx

by (3.16)
=

ˆ
Ω
g (x− x0,∇y) dx

(as product of weakly and strongly convergent sequences),

lim
k→∞

ˆ
Ω

(F (yk)− F (0)) dx
by (3.12)

=

ˆ
Ω

(F (y)− F (0)) dx,

lim inf
k→∞

ˆ
Ω
|∇y|2 dx

by (3.11)
≥

ˆ
Ω
|∇y|2 dx.

Then we can pass to the limit in the inequality (3.1) to finally obtain(
N

2
− 1

)ˆ
Ω
|∇y|2 dx ≤

(
N

2
− 1

)
lim inf
k→∞

ˆ
Ω
|∇y|2 dx

≤ lim inf
k→∞

[
N

ˆ
Ω

(F (yk)− F (0)) dx−
ˆ

Ω
gk (x− x0,∇yk) dx

]
= N

ˆ
Ω

(F (y)− F (0)) dx−
ˆ

Ω
g (x− x0,∇y) dx.

The proof is complete.

4. Fictitious Controls and Associated Optimal Control Problems

Let us consider the following sequence of optimal control problems (OCPs)
associated with BVP (1.1)–(1.2){〈

inf
(u,y)∈Ξ∆

Jε(u, y)

〉
, ε→ 0

}
, (4.1)

where

Ξ∆ =


(u, y) ∈ Lp(Ω)× Y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ˆ
Ω

(∇y,∇ϕ) dx =

ˆ
Ω
F ′(y)ϕdx

+

ˆ
Ω
uϕdx, ∀ϕ ∈ C∞0 (Ω),ˆ

Ω
|∇y|2 dx ≤ 2N

N − 2

ˆ
Ω

(F (y)− F (0)) dx

− 2

N − 2

ˆ
Ω
u (x− x0,∇y) dx,

Jε(u, y) < +∞.


,

(4.2)

Jε(u, y) =
ε

2
‖∆y‖2L2(Ω) +

1

p
‖g − u‖pLp(Ω) =

ε

2

ˆ
Ω
|∆y|2 dx+

1

p

ˆ
Ω
|g − u|p dx.

(4.3)
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Here, u ∈ Lp(Ω) we consider as a fictitious control and ε is a small parameter.
Hereinafter we assume that the parameter ε varies within a strictly decreasing
sequence of positive real numbers which converge to zero.

It is worth to notice that, in contrast to the original BVP (1.1)–(1.2) for
which it is unknown whether the set of its weak solutions is nonempty, each of
the parametrized OCPs (4.1)–(4.3) is regular in the following sense: the set of
feasible solution Ξ∆ is always nonempty. Indeed, it is enough to take an arbitrary
function ỹ ∈ C∞0 (Ω) and to put ũ := −∆ỹ−F ′(ỹ). Since ỹ ∈ Y and ∆ỹ ∈ L2(Ω),
it follows from Proposition 3.1 and Definition 2.1 that Jε(ũ, ỹ) < +∞ and the pair
(ũ, ỹ) is related by integral identity (2.3) and inequality (3.1). Hence, (ũ, ỹ) ∈ Ξ∆.

Let us show that the OCPs (4.1)–(4.3) are solvable for each ε > 0.

Theorem 4.1. Let g ∈ Lp(Ω) be a given distribution. Assume that Ω is star-
shaped with respect to some of its interior point x0. Then for every ε > 0 there
exists at least one pair

(
u0
ε, y

0
ε

)
∈ Ξ∆ such that

Jε
(
u0
ε, y

0
ε

)
= inf

(u,y)∈Ξ∆

Jε(u, y).

Proof. Since Ξ∆ 6= ∅, it follows that for given ε > 0 and g ∈ Lp(Ω) there exists a
minimizing sequence {(uε,k, yε,k)}k∈N to OCP (4.1)–(4.3), i.e.

lim
k→∞

Jε(uε,k, yε,k) = inf
(u,y)∈Ξε

Jε(u, y) ≤ Jε(ũ, ỹ)

≤ ‖∆ỹ‖2L2(Ω) + ‖g − ũ‖pLp(Ω) = C̃ < +∞. (4.4)

As a result, we have

sup
k∈N
‖∆yε,k‖2L2(Ω)

by (4.4)
≤ ε−1C̃ (4.5)

and this estimate implies that each of the pairs (uε,k, yε,k) satisfies the inequality
(see Proposition 3.1)(

N

2
− 1

) ˆ
Ω
|∇yε,k|2 dx ≤ N

ˆ
Ω

(F (yε,k)− F (0)) dx

−
ˆ

Ω
uε,k (x− x0,∇yε,k) dx. (4.6)

Moreover, in view of Theorem 3.1, we have

sup
k∈N

[
‖yε,k‖2H1

0 (Ω) + ‖uε,k‖pLp(Ω)

]
by (4.5) and (3.7)

≤ sup
k∈N

[(
C4‖uε,k‖Lp(Ω) + C5

)2
+ ‖uε,k‖pLp(Ω)

]
≤ 2p−1Cp5 + p

(
1 + 2p−1Cp4

)
sup
k∈N

Jε(uε,k, yε,k)
by (4.4)
< +∞ (4.7)
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for ε > 0 small enough, where the constants C4 and C5 do not depend on ε.
Thus, passing to subsequences, if necessary, we can suppose that there exists

a pair (u0
ε, y

0
ε) ∈ Lp(Ω)×H1

0 (Ω) such that

uε,k ⇀ u0
ε in Lp(Ω) and yε,k ⇀ y0

ε in H1
0 (Ω) as k →∞. (4.8)

Hence, in view of Proposition 3.2, y0
ε is a weak solution to BVP

−∆y = F ′(y) + u0
ε in Ω,

y = 0 on ∂Ω,

the pair (u0
ε, y

0
ε) satisfies the inequality (4.6), and

F ′(yε,k)→ F ′(y0
ε) in L1(Ω) as k →∞. (4.9)

Thus, (u0
ε, y

0
ε) ∈ Ξ, where

Ξ =


(u, y) ∈ Lp(Ω)× Y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ˆ
Ω

(∇y,∇ϕ) dx =

ˆ
Ω
F ′(y)ϕdx

+

ˆ
Ω
uϕdx, ∀ϕ ∈ C∞0 (Ω),ˆ

Ω
|∇y|2 dx ≤ 2N

N − 2

ˆ
Ω

(F (y)− F (0)) dx

− 2

N − 2

ˆ
Ω
u (x− x0,∇y) dx.


(4.10)

It remains to show that (u0
ε, y

0
ε) ∈ Ξ∆ and (u0

ε, y
0
ε) is an optimal pair to the

constrained minimization problem (4.1) for a given ε > 0. Taking into account
the estimates (4.5) and (4.7), it is easy to see that the sequence {yε,k}k∈N is
bounded in the Banach space H1

0,∆(Ω) connected with the Laplace operator by
the formula (see, for instance, [9])

H1
0,∆(Ω) =

{
y ∈ H1

0 (Ω) : ∆y ∈ L2(Ω)
}
,

where the norm in H1
0,∆(Ω) can be defined in the standard way as the norm of

graph:
‖y‖2H1

0,∆(Ω) = ‖∇y‖2L2(Ω)N + ‖∆y‖2L2(Ω).

Hence, the limit properties (4.8) can be supplemented by the following one

∆yε,k ⇀ ∆y0
ε in L2(Ω) as k →∞.

As a result, making use of the lower semi-continuity property of the cost functional
Jε : Lp(Ω)×H1

0 (Ω)→ R with respect to the weak convergence in Lp(Ω)×H1
0,∆(Ω),

we arrive at the following relation

inf
(u,y)∈Ξ∆

Jε(u, y) = lim
k→∞

Jε(uε,k, yε,k) ≥ Jε(u0
ε, y

0
ε).

Hence, Jε(u0
ε, y

0
ε) < +∞ and (u0

ε, y
0
ε) is an optimal pair to the corresponding

optimization problem (4.1).
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Our next intention is to discuss the uniqueness property of the solutions to
OCPs (4.1). We begin with the following noteworthy characteristic of the set Ξ∆.

Lemma 4.1. Assume that, in addition to the property (2.1), the function F ∈
C1
loc(R) is such that its derivative F ′ : R → (0,∞) is a strictly convex function.

Then the set

Λ = {u ∈ Lp(Ω) : ∃ y ∈ Y such that (u, y) ∈ Ξ∆} (4.11)

is nonempty and convex.

Proof. Since the set of feasible solution Ξ∆ is nonempty, it follows from (4.11)
that Λ 6= ∅. Let us establish the convexity of Λ. Let (u1, y1) and (u2, y2) be two
different pairs of Ξ∆. It is clear that in this case we have y1 6= y2 and u1, u2 ∈ Λ.
Let λ ∈ (0, 1). We set

u = λu1 + (1− λ)u2, y = λy1 + (1− λ)y2.

Our aim is to show that u ∈ Λ.
Since for Lipschitz domains Ω the mapping −∆ : H1

0 (Ω) → H−1(Ω) is an
isomorphism (see Remark 2.2), we can define, in a unique way, a distribution
z ∈ H1

0 (Ω) as follows

−∆z = u = λu1 + (1− λ)u2 in Ω.

Hence,
−∆y1 = F ′(y1) + u1 and −∆y2 = F ′(y2) + u2

imply
−∆y = λF ′(y1) + (1− λ)F ′(y2) + u in Ω. (4.12)

Taking into account the facts that F ′(z) > 0 almost everywhere in Ω (see (2.1))
and F ′ satisfies the Jensen’s inequality

F ′(y) ≤ λF ′(y1) + (1− λ)F ′(y2), (4.13)

we obtain

−∆z ≤ F ′(z) + u and ∆y
by (4.12) and (4.13)

≥ F ′(y) + u, (4.14)

i.e. z is a subsolution to the boundary value problem

−∆ψ = F ′(ψ) + u in Ω, ψ = 0 on ∂Ω,

and y is its supersolution. Moreover, since

−∆y ≥ F ′(y) + u
by (2.1)
≥ u = −∆z in Ω, (4.15)
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it follows that −∆(y−z) ≥ 0. Hence, by the maximum principle we conclude that
y ≥ z in Ω. Thus, following the classical techniques introduced by D.H. Sattinger
[17] (see also H. Amann [1]), we deduce that for given control u = λu1 +(1−λ)u2

there exists a solution ψ to the above boundary value problem such that

z(x) ≤ ψ(x) ≤ y(x) almost everywhere in Ω. (4.16)

Moreover, as follows from (4.16) and the fact that z, y ∈ H1
0 (Ω), we have ψ ∈

H1
0 (Ω) and

ˆ
Ω
F ′(ψ) dx

by (4.16) and (2.1)
≤

ˆ
Ω
F ′(y) dx

by (4.13)
≤ λ‖F ′(y1)‖L1(Ω) + (1− λ)‖F ′(y2)‖L1(Ω) < +∞.

Hence, ψ ∈ Y and, therefore, ψ is a weak solution to BVP (4.15).
In order to prove the inclusion u ∈ Λ, we have to establish that (u, ψ) ∈ Ξ∆.

To do so, we note that

−∆z = u ≤ F ′(ψ) + u︸ ︷︷ ︸
−∆ψ

by (4.16)
≤ F ′(y) + u

by (4.13)
≤ λ

(
F ′(y1) + u1

)
+ (1− λ)

(
F ′(y2) + u2

)
= λ(−∆y1) + (1− λ)(−∆y2). (4.17)

Since ∆z ∈ L2(Ω) and yi ∈ H1
0,∆(Ω), i = 1, 2, it follows from (4.17) that ∆ψ ∈

L2(Ω). Hence, Jε(u, ψ) < +∞ and it remains to note that ψ satisfies inequality
(3.1) with g = u by Proposition 3.1. So, (u, ψ) is an admissible pair to each of
OCPs (4.1). Thus, u ∈ Λ and, therefore, the convexity of Λ is established.

Remark 4.1. In general, we can not assert that the set Λ is closed in Lp(Ω).
Indeed, let {uk}k∈N ⊂ Λ be a sequence such that uk → u in Lp(Ω) as k → ∞.
Let {yk}k∈N ∈ Y be the corresponding sequence of states, that is, (uk, yk) ∈ Ξ∆

for each k ∈ N. Then, in view of estimate (3.7), we can suppose that there exists
a distribution y ∈ H1

0 (Ω) such that yk ⇀ y in H1
0 (Ω). Hence, by Proposition 3.2,

we have: y is a weak solution to BVP (1.1)–(1.2) with g = u and the pair (u, y)
satisfies the inequality (3.1). However, it is unknown whether Jε(u, y) < +∞,
because the given choice of the sequence of feasible pairs {(uk, yk)}k∈N ⊂ Ξ∆ does
not guarantee the L2(Ω)-boundedness of the corresponding Laplacians {∆yk}k∈N.
So, it is plausible to admit the case when ∆y 6∈ L2(Ω). As the same time, as follows
from Theorem 4.1, the lack of Lp(Ω)-closedness of Λ is not restrictive option for the
solvability of the corresponding OCP. Moreover, as we show in the next assertion,
the main result of Theorem 4.1 can be essentially specified.

Theorem 4.2. Under assumptions of Lemma 4.1, each of the OCPs (4.1) has at
most one solution.
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Proof. Let’s assume the converse. Namely, let ε > 0 be a fixed value and let
(uε,1, yε,1) and (uε,2, yε,2) be two different pairs such that (uε,1, yε,1) 6= (uε,2, yε,2),

(uε,1, yε,1), (uε,2, yε,2) ∈ Ξ∆, and Jε(uε,1, yε,1) = Jε(uε,2, yε,2) = inf
(u,y)∈Ξ∆

Jε(u, y).

We set uε = (uε,1 + uε,2) /2. By analogy with the proof of Lemma 4.1, it is easy
to show that there exists a distribution ψε ∈ H1

0 (Ω) such that (uε, ψε) ∈ Ξ∆ and

ψε ≤ (yε,1 + yε,2) /2 a.e. in Ω.

In fact, because of the strict convexity of F ′, it can be shown that the previous
inequality is strict in Ω. Indeed, since

−∆

(
1

2
yε,1 +

1

2
yε,2 − ψε

)
=

1

2

(
F ′(yε,1) + uε,1

)
+

1

2

(
F ′(yε,2) + uε,2

)
− F ′(ψε)− uε

=
1

2

(
F ′(yε,1) + F ′(yε,2)

)
− F ′(ψε)

≥ 1

2

(
F ′(yε,1) + F ′(yε,2)

)
− F ′

(
yε,1 + yε,2

2

)
≥ 0

by the Jensen’s inequality, and 1
2 (F ′(yε,1) + F ′(yε,2)) − F ′

(
yε,1+yε,2

2

)
6= 0 on Ω

because of the strict convexity of F ′, it follows that (yε,1 + yε,2) /2 > ψε in Ω by
the strong maximum principle [13]. As a result, we obtain an inequality

Jε(uε, ψε) =
ε

2

ˆ
Ω
|∆ψε|2 dx+

1

p

ˆ
Ω
|g − uε|p dx

≤ ε

8

ˆ
Ω
|∆yε,1 + ∆yε,2|2 dx+

1

p 2p

ˆ
Ω
|g − uε,1 + g − uε,2|p dx

<
ε

4

ˆ
Ω
|∆yε,1|2 dx+

1

2p

ˆ
Ω
|g − uε,1|p dx+

ε

4

ˆ
Ω
|∆yε,2|2 dx+

1

2p

ˆ
Ω
|g − uε,2|p dx

=
1

2
Jε(uε,1, yε,1) +

1

2
Jε(uε,2, yε,2) = inf

(u,y)∈Ξε
Jε(u, y),

which is a contradiction with the fact that (uε, ψε) is an admissible pair to the
problem (4.1).

Remark 4.2. As was mentioned in Remark 4.1, the convex set Λ is not closed in
Lp(Ω). Let Λ ⊂ Lp(Ω) denotes the closure of Λ with respect to the strong topology
of Lp(Ω). Then by Mazur’s theorem this set coincides with the sequential weak
closure of Λ in Lp(Ω), that is, Λ = clw−Lp(Ω) Λ.

5. Variational Properties of Fictitious Optimal Control Problems

Before setting foot in the asymptotic analysis of the sequence of OCPs (4.1)
as ε → 0, we define the µ-topology on Lp(Ω) × H1(Ω) as the product of weak
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topologies of Lp(Ω) and H1(Ω), respectively. Let clµ Ξ∆ be the sequential closure
of the set of feasible pairs Ξ∆ with respect to the µ-topology. In view of Proposi-
tion 3.2, it is clear that in this case we have

Λ = {u ∈ Lp(Ω) : ∃ y ∈ Y such that (u, y) ∈ clµ Ξ∆} . (5.1)

Indeed, let u be an arbitrary element of Λ. Then there exists a sequence {uε}ε>0 ∈
Λ such that uε → u in Lp(Ω) as ε→ 0. By definition of the set Λ, it follows that
we can construct a sequence of pairs {(uε, yε)}ε>0 such that (uε, yε) ∈ Ξ∆ for
all ε > 0. In view of definition of the set Ξ∆ and Theorem 3.1, the sequence
of states {yε}ε>0 is bounded in H1

0 (Ω). So, we can suppose that the exists an
element y ∈ H1

0 (Ω) such that, up to a subsequence, yε ⇀ y in H1
0 (Ω). Hence,

(uε, yε)
µ
⇀ (u, y) in Lp(Ω)×H1(Ω) and therefore (u, y) ∈ clµ Ξ∆. As a result, we

obtain u ∈ {v ∈ Lp(Ω) : ∃ y ∈ Y such that (v, y) ∈ clµ Ξ∆}, that is, we have
shown that

Λ ⊆ {u ∈ Lp(Ω) : ∃ y ∈ Y such that (u, y) ∈ clµ Ξ∆} . (5.2)

In order to establish the converse inclusion, we fix an arbitrary pair (u∗, y∗) in
clµ Ξ∆. Then u∗ ∈ {u ∈ Lp(Ω) : ∃ y ∈ Y such that (u, y) ∈ clµ Ξ∆} and there
exists a sequence {(uε, yε)}ε>0 ⊂ Lp(Ω) × Y such that (uε, yε) ∈ Ξ∆ for each
ε > 0 and (uε, yε)

µ
⇀ (u∗, y∗) in Lp(Ω)×H1(Ω). Since the condition (uε, yε) ∈ Ξ∆

implies that uε ∈ Λ, it follows that {uε}ε>0 ⊂ Λ and uε ⇀ u∗ in Lp(Ω) as ε→ 0.
Hence, u∗ ∈ clw−Lp(Ω) Λ. To conclude, it is enough to apply the Mazur’s Theorem.
Thus,

{u ∈ Lp(Ω) : ∃ y ∈ Y such that (u, y) ∈ clµ Ξ∆} ⊆ Λ

and combining this fact with (5.2), we arrive at the required equality.
It is clear now that clµ Ξ∆ ⊆ Ξ, where the set Ξ is defined in (4.10). However,

we can not exclude the case when we have (u, y) ∈ Ξ and u ∈ Lp(Ω) \ Λ. Hence,
the validity of the inclusion Ξ ⊆ clµ Ξ∆ is an open question. So, our next intention
is to specify the structure of the set clµ Ξ∆.

Lemma 5.1. Assume that Ω is star-shaped with respect to some of its interior
point x0. Assume also that, in addition to the property (2.1), the function F ∈
C1
loc(R) is such that its derivative F ′ : R → (0,∞) is a strictly convex function.

Then

clµ Ξ∆ =


(u, y) ∈ Λ× Y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ˆ
Ω

(∇y,∇ϕ) dx =

ˆ
Ω
F ′(y)ϕdx

+

ˆ
Ω
uϕdx, ∀ϕ ∈ C∞0 (Ω),ˆ

Ω
|∇y|2 dx ≤ 2N

N − 2

ˆ
Ω

(F (y)− F (0)) dx

− 2

N − 2

ˆ
Ω
u (x− x0,∇y) dx.


(5.3)
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Proof. Since the set in the right-hand side of (5.3) can be represented as

Ξ ∩
(
Λ× Y

)
and the inclusion clµ Ξ∆ ⊆ Ξ ∩

(
Λ× Y

)
is obvious, we concentrate at the proof

of the reverse inclusion
Ξ ∩

(
Λ× Y

)
⊆ clµ Ξ∆. (5.4)

Let (u∗, y∗) be an arbitrary representative of the set Ξ ∩
(
Λ× Y

)
. Then y∗ is

a weak solution to the boundary value problem (1.1)–(1.2) with g = u∗ in the
sense of Definition 2.1. Our aim is to show that (u∗, y∗) ∈ clµ Ξ∆. To this end, it
is enough to prove the existence of the sequence {(uε, yε)}ε>0 in Lp(Ω)×H1

0 (Ω)
such that

(uε, yε)
µ
⇀ (u∗, y∗) in Lp(Ω)×H1

0 (Ω), and (uε, yε) ∈ Ξ∆ ∀ ε > 0. (5.5)

The most natural way to construct such sequences is to apply the procedure of
the direct smoothing. Indeed, let us define the elements yε ∈ H1

0 (Ω) as follows

yε(x) =
1

νN (ε)

ˆ
RN

K

(
x− z
ν(ε)

)
ϕ̃ε(z) dz, (5.6)

where ν(ε) > 0 is a positive value such that ν(ε) → 0 as ε → 0, K is a positive
compactly supported smooth function with properties

K ∈ C∞0 (RN ),

ˆ
RN

K(x) dx = 1, and K(x) = K(−x), (5.7)

˜ is zero extension operator outside of Ω, and {ϕε}ε>0 is a sequence in C∞0 (Ω)
such that ϕε → y∗ in H1

0 (Ω) as ε→ 0.
Then the property

yε → y∗ in L2(Ω) and ∇yε → ∇y∗ in L2(Ω)N (5.8)

is the direct consequence of the classical properties of smoothing. Moreover, since
each element of the sequence {ϕε}ε>0 has a compact support in Ω, we can suppose
that yε has zero trace on ∂Ω for each ε small enough, i.e., in view of (5.8) we have:
yε ∈ H1

0 (Ω) for each ε > 0. It remains to note that the parameters ν(ε) can be
defined such that limε→0

√
ε/ν2(ε) = 0. Hence,

√
ε∆yε =

√
ε

ν2(ε)

[
1

νN (ε)

ˆ
RN

∆K

(
x− z
ν(ε)

)
ϕ̃ε(z) dz

]
→ 0 in L2(Ω).

Summarizing these properties, we can infer that for a given element y∗ ∈ Y ⊂
H1

0 (Ω) there exists a sequence {yε}ε>0 such that

(a) yε ∈ Y for each ε > 0 and yε → y∗ in H1
0 (Ω) as ε→ 0;

(b) ∆yε ∈ L2(Ω) for each ε > 0 and limε→0

(
ε‖∆yε‖2L2(Ω)

)
= 0.
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Moreover, by Lemma 2.1, we have F ′(y∗) ∈ H−1(Ω). Hence, we can supplement
the above properties (a)–(b) by the following one

(c) supε>0 ‖F ′(yε)‖H−1(Ω) < +∞.

Remark 5.1. As immediately follows from the reasons given above, the limit
property (b) for elements yε ∈ H1

0 (Ω) can be sharpened in the following way:
the smoothing parameter ν(ε) can be defined such that for a given non-negative
constant C0 we have

(b)∗ ∆yε ∈ L2(Ω) for each ε > 0 and limε→0

(
ε‖∆yε‖2L2(Ω)

)
= C0.

Let us define the corresponding controls {uε}ε>0 as follows

uε := −∆yε − F ′(yε), ∀ ε > 0.

Since yε are the smooth functions, we obviously have uε ∈ Lp(Ω). Moreover, by
Proposition 3.1, each of the pairs (uε, yε) ∈ Lp(Ω) × Y is related by the integral
identity

ˆ
Ω

(∇yε,∇ϕ) dx =

ˆ
Ω
F ′(yε)ϕdx+

ˆ
Ω
uεϕdx, ∀ϕ ∈ C∞0 (Ω)

and the inequality(
N

2
− 1

)ˆ
Ω
|∇yε|2 dx ≤ N

ˆ
Ω

(F (yε)− F (0)) dx−
ˆ

Ω
uε (x− x0,∇yε) dx.

Thus, the sequence {(uε, yε)}ε>0 lies in the set Ξ∆. It remains to show that
(uε, yε)

µ
⇀ (u∗, y∗) in Lp(Ω) × H1

0 (Ω). With that in mind, we make use of the
energy equality

ˆ
Ω
|∇yε|2 dx =

ˆ
Ω
yε F

′(yε) dx+

ˆ
Ω
uεyε dx, ∀ ε > 0. (5.9)

Since ˆ
Ω
yε F

′(yε) dx ≤ ‖F ′(yε)‖H−1(Ω)‖yε‖H1
0 (Ω),

and

‖yε‖H1
0 (Ω) =

(ˆ
Ω
|∇yε|2 dx

)1/2

≤ Cs‖y‖Lq(Ω)

by the Sobolev Embedding Theorem for q ∈
[
1, 2N

N−2

]
, it follows from (5.9) that∣∣∣∣ˆ

Ω
uεyε dx

∣∣∣∣ ≤ ‖yε‖2H1
0 (Ω) + ‖F ′(yε)‖H−1(Ω)‖yε‖H1

0 (Ω)

≤ Cs
(
‖yε‖H1

0 (Ω) + ‖F ′(yε)‖H−1(Ω)

)
‖y‖Lp′ (Ω),
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where p′ = p/(p− 1) ∈
[
1, 2N

N−2

]
for a given p > 2. Hence,

sup
ε>0
‖uε‖Lp(Ω) ≤ Cs

(
sup
ε>0
‖yε‖H1

0 (Ω) + sup
ε>0
‖F ′(yε)‖H−1(Ω)

)
< +∞.

As a result, we deduce that the sequence {uε}ε>0 is relatively compact with respect
to the weak topology of Lp(Ω). Let u0 ∈ Lp(Ω) be any its cluster point and
{uεk}k∈N be a subsequence of {uε}ε>0 such that uεk ⇀ u0 in Lp(Ω) as k → ∞.
Since {(uεk , yεk)}k∈N ⊂ Ξ∆, it follows that each of the pairs (uεk , yεk) is related
by the integral identityˆ

Ω
(∇yεk ,∇ϕ) dx =

ˆ
Ω
F ′(yεk)ϕdx+

ˆ
Ω
uεkϕdx, ∀ϕ ∈ C∞0 (Ω). (5.10)

Taking into account that yεk → y∗ in H1
0 (Ω), we can pass to the limit in (5.10)

as k →∞ (see the proof of Proposition 3.2 for the details). We getˆ
Ω

(∇y∗,∇ϕ) dx =

ˆ
Ω
F ′(y∗)ϕdx+

ˆ
Ω
u0ϕdx, ∀ϕ ∈ C∞0 (Ω). (5.11)

On the other hand, (u∗, y∗) ∈ Ξ ∩
(
Λ× Y

)
. Hence, this pair is related by the

similar relationˆ
Ω

(∇y∗,∇ϕ) dx =

ˆ
Ω
F ′(y∗)ϕdx+

ˆ
Ω
u∗ϕdx, ∀ϕ ∈ C∞0 (Ω). (5.12)

Combining (5.11) with (5.12), we obtainˆ
Ω

(
u0 − u∗

)
ϕdx = 0, ∀ϕ ∈ C∞0 (Ω).

Since C∞0 (Ω) is dense in Lp′(Ω), it follows that u0 = u∗ almost everywhere in Ω. It
remains to note that this inference is valid for any cluster point u0 of the sequence
{uε}ε>0. Hence, u

∗ is a weak limit in Lp(Ω) for the entire sequence {uε}ε>0.
Thus, we have constructed a sequence {(uε, yε)}ε>0 in L

p(Ω)×H1
0 (Ω) satisfying

the properties (5.5). It suffices to conclude that (u∗, y∗) ∈ clµ Ξ∆. Hence, the
inclusion (5.4) is valid. The proof is complete.

As a consequence of this lemma, we make use of the following observation.

Proposition 5.1. Under assumptions of Lemma 5.1, we have: for any (u∗, y∗) ∈
clµ Ξ∆ and for any non-negative real number C0 there exists a sequence of pairs
{(ûε, ŷε)}ε>0 in Lp(Ω)×H1

0 (Ω) such that

(ûε, ŷε)
µ
⇀ (u∗, ŷ) in Lp(Ω)×H1

0 (Ω), (ûε, ŷε) ∈ Ξ∆, ∀ε > 0, (5.13)
ûε → u∗ strongly in Lp(Ω), (5.14)

∆ŷε ∈ L2(Ω) ∀ ε > 0, and lim
ε→0

(ε
2
‖∆ŷε‖2L2(Ω)

)
= C0, (5.15)

where ŷ = y∗ provided the Dirichlet boundary value problem (1.1)–(1.2) has a
unique solution for g = u∗.
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Proof. Let (u∗, y∗) ∈ clµ Ξ∆ be an arbitrary pair. Closely following the proof
of Lemma 5.1, we can construct a sequence {(uεk , yεk)}k∈N in Lp(Ω) × H1

0 (Ω)
with properties (5.5) and (a)–(c). Here, {εk}k∈N stands for a strictly decreasing
sequence of positive real numbers converging to zero. Then, by Mazur’s lemma,
there exists a sequence of controls {ûεk}k∈N such that

ûεk → u∗ strongly in Lp(Ω) and ûεk = co {uε1 , . . . , uεk} , ∀ k ∈ N, (5.16)

where coA denotes the convex hull of the set A. In view of Lemma 4.1, Λ is
a convex set. Since {uεk}k∈N ⊂ Λ, it follows from (5.16) that {ûεk}k∈N ⊂ Λ as
well. Let us show that the corresponding weak solutions ŷk to the boundary value
problem

−∆y = F ′(y) + ûεk in Ω, y = 0 on ∂Ω,

satisfy properties (5.13) and (5.15).
By definition of the convex hull co {uε1 , uε2 , . . . , uεk} we have: for each k ∈ N

there exists a collection of non-negative real numbers {α1,k, α2,k, . . . , αk,k} such
that

α1,k + α2,k + · · ·+ αk,k = 1 and ûε = α1,kuε1 + α2,kuε2 + · · ·+ αk,kuεk .

With each control ûεk we associate two elements zk ∈ H1
0 (Ω) and wk ∈ H1

0 (Ω) by
the following rule

−∆zk = ûεk =

k∑
i=1

αi,kuεi in Ω, (5.17)

wk = α1,kyε1 + α2,kyε2 + · · ·+ αk,kyεk . (5.18)

Hence,
−∆yεi = F ′(yεi) + uεi , i = 1, . . . , k

imply

−∆wk =
k∑
i=1

αi,kF
′(yi,k) + ûεk in Ω. (5.19)

Taking into account the facts that F ′(y) > 0 almost everywhere in Ω (see (2.1))
and F ′ satisfies Jensen’s inequality

F ′(wk) ≤
k∑
i=1

αi,kF
′(yi,k), (5.20)

we obtain

−∆zk ≤ F ′(zk) + ûεk and ∆wk
by (5.19) and (5.20)

≥ F ′(wk) + ûεk , (5.21)
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i.e. zk is a subsolution to the boundary value problem

−∆ψ = F ′(ψ) + ûεk in Ω, ψ = 0 on ∂Ω,

and wk is its supersolution. Moreover, since

−∆wk ≥ F ′(wk) + ûεk
by (2.1)
≥ ûεk = −∆zk in Ω, (5.22)

it follows that −∆(wk − zk) ≥ 0. Hence, by the maximum principle we conclude
that wk ≥ zk in Ω. Thus, following the classical techniques, we deduce that for
given control ûεk there exists a solution ŷεk to the above boundary value problem
such that

zk(x) ≤ ŷεk(x) ≤ wk(x) almost everywhere in Ω. (5.23)

Moreover, as follows from (5.23) and the fact that zk, wk ∈ H1
0 (Ω), we have

ŷεk ∈ H1
0 (Ω) and

ˆ
Ω
F ′(ŷεk) dx

by (5.23) and (2.1)
≤

ˆ
Ω
F ′(ωk) dx

by (5.20)
≤

k∑
i=1

αi,k‖F ′(yi,k)‖L1(Ω) < +∞.

Hence, ŷεk ∈ Y and, therefore, ŷεk is a weak solution to BVP (5.22).
Let us show that {ŷεk}k∈N is a weakly compact sequence in H1

0 (Ω) with the
extra property

∆ŷεk ∈ L
2(Ω) ∀ ε > 0, and lim

εk→0

(εk
2
‖∆ŷεk‖

2
L2(Ω)

)
= C0. (5.24)

Indeed, as follows from (5.17), we have

sup
k∈N
‖zk‖H1

0 (Ω) = sup
k∈N
‖(−∆)−1ûεk‖H1

0 (Ω) ≤ CΩ sup
k∈N

(
k∑
i=1

αi,k‖uεi‖L2(Ω)

)

≤ CΩ|Ω|
p−2
2p sup

k∈N

(
k∑
i=1

αi,k‖uεi‖Lp(Ω)

)
≤ CΩ|Ω|

p−2
2p sup

k∈N
‖uεk‖Lp(Ω) < +∞ (5.25)

and

sup
k∈N
‖∆zk‖L2(Ω) = sup

k∈N
‖ûεk‖L2(Ω) ≤ sup

k∈N

[(
k∑
i=1

αi,k

)
‖uεk‖L2(Ω)

]
≤ |Ω|

p−2
2p sup

k∈N
‖uεk‖Lp(Ω) < +∞, (5.26)
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where the constant CΩ comes from the Friedrichs–Poincaré inequality.
As for the super solutions wk, we get

sup
k∈N
‖wk‖H1

0 (Ω) = sup
k∈N
‖

k∑
i=1

αi,kyεi‖H1
0 (Ω)

(by (3.7) and the fact that (uεk , yεk) ∈ Ξ∆)

≤ sup
k∈N

[(
k∑
i=1

αi,k

)(
C4‖uεk‖Lp(Ω) + C5

)]
= C4 sup

k∈N
‖uεk‖Lp(Ω) + C5 < +∞ (5.27)

and (see Remark 5.1 for the details)

lim
εk→0

(√
εk‖∆wk‖L2(Ω)

)
≤ lim

εk→0

(
√
εk

[
k∑
i=1

αi,k‖∆yεi‖L2(Ω)

])

≤ lim
εk→0

[√
εk‖∆yεk‖L2(Ω)

] by property (b)∗
= 0. (5.28)

As a result, it follows from inequality (5.23) and estimates (5.25), and (5.27) that
the sequence {ŷεk}k∈N is bounded in H1

0 (Ω) and, hence, there exists an element
ŷ ∈ H1

0 (Ω) such that, up to a subsequence,

ŷεk ⇀ ŷ in H1
0 (Ω).

Then, Proposition 3.2 implies that ŷ is a weak solution to BVP (1.1)–(1.2) for
g = u∗ and the pair (u∗, ŷ) satisfies the inequality (3.1). It is clear now that ŷ = y∗

provided the Dirichlet boundary value problem (1.1)–(1.2) has a unique solution
for g = u∗. Thus, the sequence {(ûε, ŷε)}ε>0 possesses desired properties (5.13)–
(5.14). As for the property (5.15), its validity immediately follows from (5.26) and
(5.28). The proof is complete.

Our final intention in this paper is to discuss the variational properties of the
solutions to the sequence of fictitious optimal control problems (4.1) as ε → 0.
As usual, we assume that Ω is star-shaped with respect to some of its interior
point x0 and in addition to the property (2.1), the function F ′ : R → (0,∞) is
strictly convex. Let

{
(u0
ε, y

0
ε)
}
ε>0
⊂ Ξ∆ be a sequence of optimal pairs to the

corresponding fictitious problem (4.1). As follows from Theorem 4.2, each of the
OCPs (4.1) has a unique solution. We begin with the following result.

Proposition 5.2. There exists a pair (u0, y0) ∈ clµ Ξ∆ such that, within a
subsequence,

(u0
ε, y

0
ε)

µ
⇀ (u0, y0) in Lp(Ω)×H1

0 (Ω), (5.29)

lim
ε→0

(ε
2
‖∆y0

ε‖2L2(Ω)

)
= C∆ (5.30)

for some C∆ ≥ 0.
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Proof. Since the pair (ũ, ỹ) := (−F ′(0), 0) is feasible for each of OCPs (4.1), i.e.
(ũ, ỹ) ∈ Ξ∆, it follows that

Jε(u
0
ε, y

0
ε) = inf

(u,y)∈Ξ∆

Jε(u, y) ≤ Jε(ũ, ỹ) =
1

p
‖g + F ′(0)‖Lp(Ω)︸ ︷︷ ︸

C∗

< +∞, ∀ ε > 0.

Hence,
sup
ε>0

[ε
2
‖∆y0

ε‖2L2(Ω)

]
≤ C∗ and

sup
ε>0
‖u0

ε‖
p
Lp(Ω) ≤ 2p−1‖g‖pLp(Ω) + 2p−1 sup

ε>0
‖g − u0

ε‖
p
Lp(Ω)

≤ 2p−1‖g‖pLp(Ω) + 2p−1p sup
ε>0

Jε(u
0
ε, y

0
ε) ≤ 2p−1‖g‖pLp(Ω) + 2p−1pC∗,

sup
ε>0
‖y0
ε‖H1

0 (Ω)

by (3.7)
≤ C4 sup

ε>0
‖u0

ε‖Lp(Ω) + C5 < +∞

So, we can suppose that there exists a subsequence of
{

(u0
ε, y

0
ε)
}
ε>0

(still denoted
by the same index ε), a pair (u0, y0) ∈ Lp(Ω) ×H1

0 (Ω), and a constant C∆ ≥ 0
such that

lim
ε→0

[ε
2
‖∆y0

ε‖2L2(Ω)

]
= C∆ and (u0

ε, y
0
ε)

µ
⇀ (u0, y0) in Lp(Ω)×H1

0 (Ω). (5.31)

To conclude the proof, it remains to note that (u0, y0) ∈ clµ Ξ∆ by Proposition 3.2
and Lemma 5.1.

The main question arising in this case is about variational properties of the
µ-cluster pairs (u0, y0) ∈ Lp(Ω)×H1

0 (Ω).

Theorem 5.1. Let (u0, y0) ∈ Lp(Ω)×H1
0 (Ω) be a µ-cluster pair of the sequence

of optimal solutions
{

(u0
ε, y

0
ε)
}
ε>0

to the fictitious problems (4.1) as ε→ 0. Then

J0(u0, y0) = inf
(u,y)∈clµ Ξ∆

J0(u, y), (5.32)

where
J0(u, y) =

1

p
‖g − u‖pLp(Ω), ∀ (u, y) ∈ clµ Ξ∆.

Proof. To begin with, let us show that the constrained minimization problem〈
inf(u,y)∈clµ Ξ∆

J0(u, y)
〉
has a nonempty set of solutions. Indeed, in view of definition

of the set clµ Ξ∆ (see Lemma 5.1), there exists a sequence {(uk, yk)}k∈N ⊂ clµ Ξ∆

such that
lim
k→∞

J0(uk, yk) = inf
(u,y)∈clµ Ξ∆

J0(u, y). (5.33)

Moreover, because of the density of C∞(Ω)× C∞0 (Ω) in Lp(Ω)×H1
0 (Ω), we can

suppose that the sequence is rather regular. For our purpose it is enough to have
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the following inclusion: (uk, yk) ∈ Ξ∆ for all k ∈ N. Then, there exists a constant
C > 0 such that

sup
k∈N
‖uk‖pLp(Ω) ≤ 2p−1‖g‖pLp(Ω) + 2p−1 sup

k∈N
‖g − uk‖pLp(Ω)

≤ 2p−1‖g‖pLp(Ω) + 2p−1p sup
k∈N

J0(uk, yk)

by (5.33)
≤ 2p−1‖g‖pLp(Ω) + 2p−1pC∗,

sup
k∈N
‖yk‖H1

0 (Ω)

by (3.7)
≤ C4 sup

k∈N
‖uk‖Lp(Ω) + C5 < +∞.

So, the minimizing sequence {(uk, yk)}k∈N is relatively µ-compact in Lp(Ω) ×
H1

0 (Ω), that is, there exists a pair (u∗, y∗) ∈ Lp(Ω) × H1
0 (Ω) such that, up to a

subsequence,

(uk, yk)
µ
⇀ (u∗, y∗) and (u∗, y∗)

by Proposition 3.2 and Lemma 5.1
∈ clµ Ξ∆.

To conclude the optimality of (u∗, y∗) to the problem
〈
inf(u,y)∈clµ Ξ∆

J0(u, y)
〉
,

it remains to make use of the lower semi-continuity of the cost functional J0 :
clµ Ξ∆ → R with respect to the µ-convergence.

We are now in a position to prove the equality (5.32). By contraposition, let
us assume that there exists a pair (u∗, y∗) ∈ clµ Ξ∆ such that

J0(u0, y0) > inf
(u,y)∈clµ Ξ∆

J0(u, y) = J0(u∗, y∗). (5.34)

Then, due to Proposition 5.1, we can construct a sequence {(ûε, ŷε)}ε>0 in L
p(Ω)×

H1
0 (Ω) with properties

(ûε, ŷε)
µ
⇀ (u∗, ŷ) in Lp(Ω)×H1

0 (Ω), (ûε, ŷε) ∈ Ξ∆, ∀ ε > 0, (5.35)
ûε → u∗ strongly in Lp(Ω), (5.36)

∆ŷε ∈ L2(Ω) ∀ ε > 0, and lim
ε→0

(ε
2
‖∆ŷε‖2L2(Ω)

)
= C∆, (5.37)

where the constant C∆ is defined by (5.30). Moreover, since a weak solution to
the boundary value problem

−∆y = F ′(y) + u∗ in Ω, y = 0 on ∂Ω,

can be non-unique, we admit the case that y∗ 6= ŷ as elements of H1
0 (Ω). Then

we can write down

Jε(u
0
ε, y

0
ε) = inf

(u,y)∈Ξ∆

Jε(u, y) ≤ Jε(ûε, ŷε), ∀ ε > 0,

or in other terms

ε

2

ˆ
Ω
|∆y0

ε |2 dx+
1

p

ˆ
Ω
|g − u0

ε|p dx ≤
ε

2

ˆ
Ω
|∆ŷε|2 dx+

1

p

ˆ
Ω
|g − ûε|p dx. (5.38)
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Passing to the limit in both sides of this inequality as ε → 0 and taking into
account that

lim
ε→0

ε

2

ˆ
Ω
|∆y0

ε |2 dx
by (5.31)1

= C∆,

lim
ε→0

ε

2

ˆ
Ω
|∆ŷε|2 dx

by (5.37)
= C∆,

lim inf
ε→0

ˆ
Ω
|g − u0

ε|p dx
by (5.29)
≥

ˆ
Ω
|g − u0|p dx,

lim
ε→0

ˆ
Ω
|g − ûε|p dx

by (5.36)
=

ˆ
Ω
|g − u∗|p dx,

we arrive at the relation

J0(u0, y0) =
1

p

ˆ
Ω
|g − u0|p dx ≤ 1

p

ˆ
Ω
|g − u∗|p dx = J0(u∗, ŷ) ≡ J0(u∗, y∗),

which comes into conflict with (5.34). The proof is complete.

Remark 5.2. Because of ill-posedness of the original BVP (1.1)–(1.2), it is reasonably
to suppose that the set of solutions to minimization problem (5.32) is not singleton.
On the other hand, we have

inf
(u,y)∈clµ Ξ∆

J0(u, y) =
1

p
inf

(u,y)∈clµ Ξ∆

[
‖g − u‖pLp(Ω)

]
=

1

p
inf
u∈Λ

[
‖g − u‖pLp(Ω)

]
.

It means that the minimal value of the cost functional J0(u0, y0) does not depend
on the y-component of the optimal pair. Hence, Theorem 5.1 implies that even if
the sequence of optimal solutions

{
(u0
ε, y

0
ε)
}
ε>0

to the fictitious problems (4.1) has
more than one µ-cluster pair, their u-components must coincide. In other words, if{

(u0
ε, y

0
ε)
}
ε>0

is a sequence of optimal pairs to the fictitious problems (4.1), then{
y0
ε

}
ε>0

is relatively weakly compact in H1
0 (Ω) and there exists a unique u0 ∈ Λ

such that
u0
ε ⇀ u0 in Lp(Ω) as ε→ 0,

where u0 is a minimizer to the minimization problem 1
p infu∈Λ

[
‖g − u‖pLp(Ω)

]
. This

circumstance and ill-posedness of the BVP (1.1)–(1.2) motivates us to introduce
the following concept.

Definition 5.1. Let g be a given element of Lp(Ω) with p > 2. Then we say that
a distribution y∗ = y∗(g) ∈ H1

0 (Ω) is the approximate solution to the boundary
value problem (1.1)–(1.2) if y∗ ∈ Y and y∗ satisfies the relationsˆ

Ω
(∇y∗,∇ϕ) dx =

ˆ
Ω
F ′(y∗)ϕdx+

ˆ
Ω
g∗ϕdx, ∀ϕ ∈ C∞0 (Ω), (5.39)

ˆ
Ω
|∇y∗|2 dx ≤ 2N

N − 2

ˆ
Ω

(F (y∗)− F (0)) dx

− 2

N − 2

ˆ
Ω
g∗ (x− x0,∇y∗) dx, (5.40)
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where

‖g − g∗‖pLp(Ω) = inf
(u,y)∈clµ Ξ∆

‖g − u‖pLp(Ω). (5.41)

As immediately follows from this definition, an approximate solution y∗ is
not unique, in general. Moreover, y∗ coincides with a weak solution to (1.1)–(1.2)
in the sense of Definition 2.1 provided g∗ = g. However, in this case we have a
weak solution with an extra property: this solution satisfies the inequality (3.1)
even if we do not know whether ∆y∗ ∈ L2(Ω). In the context of Definition 5.1, it
arises the question about existence and attainability of the approximate solutions
to the boundary value problem (1.1)–(1.2). In view of this, it makes sense to
give the following final result which is an obvious consequence of Theorem 5.1,
Proposition 5.2, and Theorem 4.2.

Theorem 5.2. Let Ω be a bounded open subset of RN (N > 2) which is assumed to
be star-shaped with respect to some of its interior point x0. Let F : R→ (0,+∞)
be a mapping of the class C1

loc(R) such that F satisfies estimate (2.1) and its
derivative F ′ : R→ (0,∞) is a strictly convex function. Let g ∈ L2(Ω) be a given
distribution. Assume that there exists a positive value δ such that g ∈ L2+δ(Ω).
Then the set of approximate solutions to the boundary value problem (1.1)–(1.2) is
non-empty for the given g. Moreover, in this case some of such solutions y∗ ∈ Y
can be attained as follows: y∗ is an H1

0 (Ω)-weak cluster point of the sequence{
y0
ε

}
ε>0

, where
{

(u0
ε, y

0
ε)
}
ε>0

are minimizers to the corresponding fictitious OCPs
(4.1).
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