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1. Introduction

The aim of this article is to analyze an optimal control problem for a nonlinear
PDE with mixed boundary conditions where the coefficient of p-Laplacian ope-
rator we take as a control. As for the class of admissible controls, we consider it
as a nonempty subset of L!(2) with an empty topological interior. Such choice is
motivated by needs of having good properties of solutions to the corresponding
boundary value problem. Since an important matter for applications is to obtain
a solution to a given boundary problem with desired properties, it leads to the
reasonable questions: can we define an appropriate coeflicient of p-Laplacian
to minimize the discrepancy between a given displacement y4 and an expected
solution to such problem.

The characteristic feature of OCP we deal with in this article, is the fact
that the solutions of nonlinear boundary value problem should be restricted by
some pointwise constraints in LP-spaces. In fact, the ordering cone of positive
elements in LP-spaces is typically nonsolid, i.e. it has an empty topological interior.
Following Lagrange multiplier rule, which gives a necessary optimality condition
for local solutions to state constrained OCPs, the constraint qualifications such
as the Slater condition or the Robinson condition should be applied in this case.
However, these conditions cannot be verified for cones such as L (Q) due to
int (L% (€2)) = 0. Therefore, our main intention in this article is to propose a
suitable relaxation of the pointwise state constraints in the form of some inequality
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conditions involving a so-called Henig approximation (L% (Q))8 (B) of the ordering
cone of positive elements L% (). Here, B is a fixed closed base of L% (2). Due to
fact that L'} () C (L.())_ (B) for all £ > 0, we can replace the cone L% () by
its approximation (Lﬁ(Q))E (B). As a result, it leads to some relaxation of the
inequality constraints of the considered problem, and, hence, to an approximation
of the set of admissible pairs to OCP. The main issue is to show that admissibility
and solvability of a given class of OCPs can be characterized by solving the
corresponding Henig relaxed problems in the limit € — 0.

2. Definitions and Basic Properties

Let © be a bounded open connected subset of RY (N > 2). We assume that
the boundary 0 is Lipschitzian so that the unit outward normal v = v(z) is
well-defined for a.e. z € 92, where a.e. means here with respect to the (N — 1)-
dimensional Hausdorff measure. We also assume that the boundary 92 consists
of two disjoint parts 00 = I'p U 'y, where the sets I'p and I'y have positive
(N — 1)-dimensional measures, and 'y is now C'.

Let p be a real number such that 2 < p < co. By WHP(Q) we denote the
Sobolev space as the subspace of LP(2) of functions y having generalized derivative
Dy in LP(Q). Tt is well known that W1P(€) is a Banach space with respect to the
norm (see |1, Theorem 4.14|)

1/p 1/p
oot = (19 + 1D81ey) = ([ o+ D7) )

For any y € C'(Q) we define the traces

_ %

YY) =yloa, and y(y) = Y

o0

By [10, Theorem 8.3], these linear operators can be extended continuously to the
whole of space WP (Q). We set W1/92(9Q) := [(WP(Q)] as closed subspace
of LP(0Q), where ¢ = p/(p — 1) is the conjugate of p. Moreover, the injection

WP (9Q) s LP(09) (2.1)

is compact.

Let C°(RY;Tp) = {p € C(RY) : ¢ =0 onT'p}. We define the Banach
space Wol’p(Q; I'p) as the closure of C§°(RY; ' p) with respect to the norm lyllw1e0)-
Let W~14(Q; T p) be the dual space to Wol’p(Q; I'p).

Throughout this paper, we use the notation W,(Q) := W&’p(Q;FD). Let us
notice that W, () equipped with the norm

p 1/p
da;) (2.2)

1/p
v = V9l ey = ( / rvmpdx) -/
Q Q

N ay
I >
i=1 v
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is a uniformly convex Banach space [3|. Moreover, the norm || - ||, v is equivalent
on W, () to the usual norm of WP(Q2). By BV () we denote the space of all
functions in L!(Q) for which the norm

1 lsve = Il + /Q Df| = 1/l

+sup{/fdivgpdx e CHORY), ]ap(m)\glforxeﬁ}
Q

is finite.

We recall that a sequence {f;}?°, converges weakly-* to f in BV (Q) if and
only if the two following conditions hold (see [6]): fx — f strongly in L!(£2) and
D fy — Df weakly-* in the space of Radon measures M(£2), i.e.

lim @ka:/gon Vo e Co(Q).
Q Q

k—o0

The following compactness result for BV -spaces is well-known (Helly’s selection
theorem, see [2]).

Theorem 2.1. If {fi};2, C BV(Q) and supgey || fellpvo) < +oo, then there
exists a subsequence of {fi}re, strongly converging in L*(Q) to some f € BV ()
such that Df, = Df in the space of Radon measures M(Q). Moreover, if
{fx}32, C BV(Q) strongly converges to some f in L*(Q) and satisfies condition
SUPLeN fQ |D fr| < 400, then

(1) f € BV(Q) and /Q|Df|§likrg'£f/9|ka|;

(i) fr = f in BV(Q).

(2.3)

3. Setting of the Optimal Control Problem
Let &1, & be fixed elements of L>°(Q2) N BV (Q) satisfying the conditions
0<a<&(x) <&() ae. in Q, (3.1)
where « is a given positive value.

Let I/ : © x R — R be a nonlinear mapping such that F' is in the space
Car (©2 x R) of Carathéodory functions on Q x R, i.e.

— the function F(z,-) is continuous in R for almost all z € €;

— the function F'(-,y) is measurable for each y € R.
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In addition, the following conditions of subcritical growth, monotonicity, and non-
negativity are fulfilled:
|F(z,n)] < Cin["™! for a.e. z € Qand all n € R, (3.2)
(F(z,n) — F(z,n)) (n—7n') >0 forae z€Qandallnn eR, n#y, (3.3)
F(z,mn >0 forae. z€ QandallneR,

for some r € (1,p*), where

«_ ) Np/(N—p), p<N,
P +o0, p=N

is the critical exponent for the Sobolev imbedding W1P(Q) < L"(f), and C; > 0.

Let f € W54(Q;Tp), ya € L*(R2), and (™ € LP(0NQ) be given distributions.
The optimal control problem we consider in this paper is to minimize the discre-
pancy between yg and the solutions of the following state-constrained boundary
valued problem

—Ap(u(z),y) + F(z,y) = f(z) n Q (3.5)
y=0 on I'p, ag(j) =0 only, (3.6)
0<y(s) <(™*(s) a.e.on Iy (3.7)

by choosing an appropriate weight function u € 2,4 as control. Here,
Ap(u,y) := div(u|Vy[P~*Vy)

is the operator of the second order called the generalized p-harmonic operator,
and the class of admissible controls 2,4 we define as follows

Apg = {u e L'(Q) ) &1(x) <u(r) < &(x) ae. in Q} (3.8)

It is clear that 2,4 is a nonempty convex subset of L!(€) with an empty topological
interior.
More precisely, we are concerned with the following optimal control problem

Minimize {I(u,y) :/ |y—yd]2dx+/ |Du]}
0 0 (3.9)
subject to the constraints (3.5)—(3.8).

Before we will discuss the question of existence of admissible pairs to the
problem (3.9), we note that the function F' € Car (2 x R) can be associated with
operator F : W,(Q) — (W,(Q))" defined by the rule

(F (), v)w, @) w, @) = /QF(:c,y)v dz, YveW,(Q). (3.10)

Moreover, taking into account the growth condition (3.2) and the compactness of
the Sobolev imbedding Wol’p(Q; I'p) — L"(Q) for r < p* it is easy to show that
operator F : W,(Q) — (W,(Q))" is compact.
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Definition 3.1. We say that an element y € W,(£2) is the weak solution (in the
sense of Minty) to the boundary value problem (3.5)-(3.6), for a given admissible
control u € Ayq, if

/Qu|v90|p2 (V% V(p - Vy) dx + <F(90)7 Y — y>W*1’q(Q;FD);WOI’p(Q;FD)
Z <fa Y — y>W_1’q(Q§FD);WOI’p(Q;FD) 5 \V/(,O S C(()X)(Q, FD) (311)

Remark 3.1. Since the integrand on the left hand side of inequality (3.11) has,
in view of (3.10), the structure of a composite functions g(x,y, Vy), it follows
from Krasnosel’ski’s well-know theorem (see [5] Ch.IV, Proposition 1.1) that ¢ —
g(x,y,Vy) is a continuous map W,(Q) — L9(f2). Using the fact that the set
C&°(RY;Tp) is dense in W,(Q), this allows us to take an arbitrary element ¢ €
W, (€2) for a test function in (3.11). Therefore, taking ¢ = y+tw with w € W,(Q)
and t > 0, we obtain

/u|Vy+ti|p2 (Vy + tVw, Vw) d:c+/F(x,y+tw)wdx
Q Q

Z <f’ w>W_1’q(Q§FD);W01’p(Q;FD) 5 Yw S Wp(Q)

Passing to the limit as ¢ — 0 (because F' € Car (22 x R)), we get

/{‘2u|vy‘p_2 (Vy7 Vw) dx + /{2 F(x7 y)w dx Z <f’w>W71’q(Q;FD);W01’p(Q;FD)

for all w € W, (). Hence,

/Qu]Vy‘p—Q (Vy,Vw) dx + /Q F(z,y)wdr = <f,w)W,lyq(Q;FD);Wg,p(Q;FD) :
(3.12)
It is worth to note that having applied Green’s formula to the operator
— div(u|Vy|P~2Vy) tested by v € C§°(Q;Tp), we arrive at the identity

—/ diV(u|Vy|p_2Vy)vdx:/u|Vy|p_2 (Vy, Vv) dx
Q Q

—/ u\Vy]p_Qv%d’HN_l Vo e Cg°(Tp).

'y

Hence, if y as an element of W,(2) := Wol’p(Q;FD) is the weak solution of the
boundary value problem (3.5)-(3.6) in the sense of Definition 3.1, then relations
(3.5)-(3.6) are fulfilled as follows

—Ap(u,y) +F(y)=f in  (C(QTp))",
Yo(y) =0 in WeP(T'p),
y1(y) =0 in W=1/PP(Ty).
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In particular, taking w = y in (3.12), this yields the relation

Jalvupde+ [ Feyds =iy raarpmivany . 313)

which is usually referred to as the energy equality. As a result, conditions (3.1),
(3.8), and inequality (3.4) lead us to the following a priori estimate

1/p 1
Il == (/Q |Vy\pda:) < (@ Coll fllw-ragourg) T V€ Uag. (3.14)

The existence of a unique weak solution to the boundary value problem (3.5)—
(3.6) in the sense of Definition 3.1 follows from an abstract theorem on monotone
operators.

Theorem 3.1 ( [9]). Let V be a reflexive separable Banach space. Let V* be
the dual space, and let A : V. — V* be a bounded, hemicontinuous, coercive and

strictly monotone operator. Then the equation Ay = f has o unique solution for
each f € V*.

Here, the above mentioned properties of the strict monotonicity, hemicontinuity,
and coercivity of the operator A have respectively the following meaning:

(Ay — Av,y =)y 20, Vy,vw eV (3.15)
(Ay — Av,y =)y =0 = y = (3.16)
the function ¢+ (A(y + tv), w)y..;, is continuous for all y,v,w € V; (3.17)
A 9 * .
YV +00. (3.18)
lyllv=oo llyllv

In our case, we can define the operator A(u,-) as a mapping W,(Q2) — (W,(Q))"
by

(A, y), ) (w, (@) :w,(@) ::/Qu]Vy|p_2Vwada:+/QF(x,y)wda:. (3.19)

In view of the properties (3.2)—(3.4) and compactness of the Sobolev imbedding
W, P(;Tp) < L7 (Q) for r < p*, it is easy to show that A(u,y) = —A,(u,y) +
F(y) and A(u,-) satisfies all assumptions of Theorem 3.1 (for the details we refer
to [9,11]). Hence, the variational problem

For a given u € A4, find y € W, (Q) such that

3.20
(A(w, y), 0y (w, @) w,@) = (9w, @) w,@) 7 € Wp() (3.20)

for which A(u,y) = f is its operator form, has a unique solution y = y(u) €
W, (€2). We note that the duality pairing in the right hand side of (3.20) makes a
sense for any distribution f € W=14(€;Tp) because

Wb Tp) 1= (W(}’p(Q;FD))*.
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It remains to show that the solution y of (3.20) satisfies the Minty relation (3.11).
Indeed, in view of the monotonicity of A, we have

0 < (A(u,v) — AU, ¥), v — ¥) (W, (2))*:W,(Q)

= (A(u, v), v = ) w, @) w,@) — (A ¥), v — ¥) w, @) w,©@)

by (3.20)
= <A(u7 U)a v — y>(Wp(Q))*, <f7 >W 1,9 Q FD) WO (Q;FD) .

Thus,
<A(U7U)7U _y>( Wy ()" Wy, (Q2) = <f7 >W La(Q;T'p);W, 14’(9;1“[)) , Vuve W()l,p(Q;FD)v

and, hence, in view of Remark 3.1, the Minty relation (3.11) holds true.
Taking this fact into account, we adopt the following notion.

Definition 3.2. We say that (u,y) is an admissible pair to the OCP (3.9) if
u € Agq C L1(Q), y € W,(Q), the pair (u,y) is related by the Minty inequality
(3.11), I(u,y) < 400, and

(y) € LA (Ty), ¢ —~(y) € LA (Ty), (3.21)

where Lﬁ (T'n) stands for the natural ordering cone of positive elements in LP(T'y),
le.
LE(TN)={ve L’(Ty)|v=>0 HV"La.e. on Iy}.

We denote by E the set of all admissible pairs for the OCP (3.9). Let 7 be
the topology on the set = C L(2) x W,(Q) which we define as the product of
the norm topology of L'() and the weak topology of Wol’p(Q; I'p). We say that
a pair (u,3°) € L1(Q) x W,(Q) is an optimal solution to problem (3.9) if

(W’ y") €Z and I(u’,¢°) = inf I(u,y).
(u,y)€E

Remark 3.2. Before we proceed further, we need to make sure that minimization
problem (3.9) is meaningful, i.e. there exists at least one pair (u,y) such that (u,y)
satisfying the control and state constraints (3.6)—(3.8), I(u,y) < +o0, and (u,y)
would be a physically relevant solution to the boundary value problem (3.5)—
(3.6)7 In fact, one needs the set of admissible solutions to be nonempty. But
even if we are aware that = # (), this set must be sufficiently rich in some sense,
otherwise the OCP (3.9) becomes trivial. From a mathematical point of view, to
deal directly with the control and especially state constraints is typically very
difficult [4,8,12]. Thus, the regularity of OCPs with control and state constraints
is an open question even for the simplest situation.

It is reasonably now to make use of the following Hypothesis.

1 .9) 18 regular 1n the following sense — there exists at least one pair
Hy) OCP (3.9) i lar in the followi h 1 | 1
(u,y) € LY(2) x W,(Q) such that (u,y) € =
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4. Existence of Optimal Solutions

In this section we focus on the solvability of optimal control problem (3.5)-
(3.9). Hereinafter, we suppose that the space L!(2) x W,(Q) is endowed with the

norm H(u7y)HL1(Q)><Wp(Q) = HU”Ll(Q) + lyllp,v-
We begin with a couple of auxiliary results.

Lemma 4.1. Let {(uy,yr) € Z},ey be a sequence such that (ug, yix) — (u,y) in
LY(Q) x W,(Q). Then we have

lim
—00

ug (Vyg, V) de = / u(Vy, Vo) dx Vo e C5°(2;p). (4.1)
Q Q

Proof. Since uy, — u in L'(Q) and {ug}ren is bounded in L>®(12), we get that
up — u strongly in L"(Q) for every 1 < r < +o0. In particular, we have that
up — win L9(Q) and (Vyg, Vo) = (Vy, Vo) in LP(Q). Hence, it is immediate to
pass to the limit and to deduce (4.1). O

As a consequence, we have the following property.
Corollary 4.1. Let {(uy,yx) € E} ey and {Ck: € Wol’q(Q;FD)}k N be sequences
€
such that (ug,yr) — (u,y) in L (Q) x Wy(Q) and x — ¢ in WOI’Q(Q; I'p). Then

lim Ul (Vyk, V§k> dr = / u (Vy, VC) dr.
Q

k—oo J

Our next step concerns the study of topological properties of the set of admissible
solutions = to problem (3.9).
The following result is crucial for our further analysis.

Theorem 4.1. Let {(uk, yx) }ren C Z be a bounded sequence in BV (€2) x W, (£2).
Then there is a pair (u,y) € LY(Q) x W,(Q) such that, up to a subsequence,

(uk, yk) — (u,y) and (u,y) € =.

Proof. By Theorem 2.1 and compactness properties of the space W,(12), there
exists a subsequence of {(ug,yr) € E}ren, still denoted by the same indices, and
functions u € BV () and y € W,(€2) such that

up — win LY(Q), y —y in W(}’p(Q;FD). (4.2)

Then by Lemma 4.1, we have

lim [ g (Veo, Vyi) do = / u(Ve,Vy) dz, V¢ e Cy®(Q;Tp).
Q Q

k—o0

It remains to show that the limit pair (u,y) is related by inequality (3.11) and
satisfies the state constraints (3.21). With that in mind we write down the Minty
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relation for (ug, yg):

/Q k| VelP2 (Vo, Vo — Vi) di + /Q Fle,0)(p — yi) de
2 <f7 " yk>W*l,q(Q;FD);WOl,P(Q;FD) y VSO S Cgo(Q, FD) (43)

In view of (4.2) and Lemma 4.1, we have

lim/|Vap|pukdx:/|V90]pud$,
Q Q

k—o0

lim / up|VolP~2 (Ve, Vyi) do = / u|Vp|P~2 (Vp, Vy) d.
k—oo J Q

Moreover, due to the compactness of the Sobolev imbedding VVO1 P(Tp) —
L"(Q) for r < p*, we have

/F(w,sO)(so—yk)dw:/F(%s@)(so—y)d:vﬂLJk,
Q Q

where Holder’s inequality yields as k — oo

r—1

by (3.2)

( T
uk:—\/ﬂ Flo, o)y — o) da| " S (01 / w@ v = oLy — 0.

We, thus, can pass to the limit in relation (4.3) as k — oo and arrive at the
inequality (3.11), which means that y € W, () is a weak solution to the boundary
value problem (3.5)-(3.6) in the sense of Minty. Since the injections (2.1) are
compact and the cone L% (T'y) is closed with respect to the strong convergence
in LP(T'y), it follows that y — y strongly in LP(I'y) and, hence,

klglolo Yo(yx) = 10(y) € LY (Tn) and ~o(y) € ¢"* — LA (D).

This fact together with u € 44 leads us to the conclusion: (u,y) € =, i.e. the limit
pair (u,y) is admissible to optimal control problem (3.9). The proof is complete.
[

Remark 4.1. Having applied the arguments of Remark 3.1, it is easy to show that
in this case the energy equality (3.13) holds true for every 7-cluster pair (u,y)
mentioned in Theorem 4.1.

In conclusion of this section, we give the existence result for optimal pairs to
problem (3.9).

Theorem 4.2. Assume that, for given distributions f € W=24(Q;Tp), yq €
L2(Q), and (™ € LP(ORY), the Hypothesis (Hy) is valid. Then optimal control
problem (3.9) admits at least one solution (u°P',y°P') € BV (Q) x W, ().
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Proof. Since the set of admissible pairs = is nonempty and the cost functional
is bounded from below on =, it follows that there exists a minimizing sequence
{(uk, yr) € Z}ken to problem (3.9). Then the inequality

Jinf_I(uy) = lim [/ (@) — (e >|2dx+/\Duk@ < 4o,
u,y E‘—‘

implies the existence of a constant C' > 0 such that

sup/ |Dug| < C.
keN JQ

Hence, in view of the definition of the class of admissible controls 21,4 and a priori
estimate (3.14), the sequence {(uy,yx) € E}gen is bounded in BV (Q) x W, (Q).
Therefore, by Theorem 4.1, there exist functions u* € 2,q and y* € W,(Q) such
that (u*,y*) € = and, up to a subsequence, up — u* strongly in L'(2) and
yr — y* weakly in Wol’p(Q; I'p). To conclude the proof, it is enough to show that
the cost functional I is lower semicontinuous with respect to the tau-convergence.
Since y, — y* strongly in LP(2) by Sobolev embedding theorem, it follows that

Jim [ (o) = ya(o)do = [ 19°(@) = pa@) da and,
liminf/ | Dug| 2/\Du*] by (2.3).
Q Q

k—o0

Thus,

I(u*,y*) < liminf I'(ug,yx) = inf I(u,y).
k—o0 (u,y)e=Z

Hence, (u*,y*) is an optimal pair, and we arrive at the required conclusion. [

5. Henig Relaxation of State-Constrainted OCP

As was mentioned above, the pointwise inequality constraints
0<wy(s) <{™*(s) ae.on I'y

can be equivalently rewritten as vo(y) € L% (I'y) and ("% — yy(y) € L% (T'n),
where L% (') stands for the natural ordering cone of positive elements in LP(T'y ).
From practical point of view it means that we cannot apply to OCP (3.9) any
constraint qualifications like the Slater condition or the Robinson condition because
each of those approaches is essentially based on non-emptiness of the interiors
of the ordering cone L (T'y). However, in our case we have int (L5 (T'y)) = 0.
Therefore, the main goal of this section is to provide a regularization of the
pointwise state constraints by replacing the ordering cone A := L% (T'y) by
its solid Henig approximation (A): (see [14]) and show that admissibility and
solvability of OCP (3.9) can be characterized by solving the corresponding Henig
relaxed problems in the limit as ¢ — 0.

We begin with some formal descriptions and abstract results. Let Z be a real
normed space, and let A C Z be a closed ordering cone in Z.
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Definition 5.1. A nonempty convex subset B of a nontrivial ordering cone A C Z
(i.e. A # {0z}, where 0z is the zero element in Z) is called base of A if for each
element z € A\{0Oz} there is a unique representation z = pb where p > 0 and
be B.

In what follows, we always assume that the ordering cone A has a closed base
B C A. We note that, in general, bases are not unique. We denote the norm of Z
by || - ||z, and for arbitrary elements 21, 29 € Z we define

21<A 22 & 20—2z1 €N aswellas 21 <p 20 & 20— 21 € A\{0z}.

In order to introduce a representation for a base of A, let Z* be the topological
dual space of Z, and let (-,-)z+ 7z be the dual pairing. Moreover, by

AN ={"€Z"|(z",2) 2.2 >0 Vz € A}
and
AP = {z € Z*|(z*,2)z+ 2 >0 Vze A\{0z}}

we define the dual cone and the quasi-interior of the dual cone of A, respectively.
Using the definition of the dual cone, the ordering cone A can be characterized as
follows (see [7, Lemma 3.21]):

A= {z € Z! (2%, 2)z» 7 >0 V2" € A*}
Due to Lemma 1.28 in |7], we can give the following result.

Lemma 5.1. Let A C Z be a nontrivial ordering cone in o Banach space Z. Then
the set B := {z € A|(2*,2) 2+ 7 = 1} is a base of A for every z* € A¥*. Moreover,
if A is reproducing in Z, i.e. if N— A= Z, and if B is a base of A, then there is
an element z* € A* satisfying B = {z € A| (2%, 2)z+ 7z = 1}.

Remark 5.1. As follows from Lemma, 5.1, the set

B:= {5 e Lﬁ(FN)‘ caHN 1 = 1} (5.1)

INY
is a closed base of ordering cone A := L¥ (T'y).

Now, we are prepared to introduce the definition of a so-called Henig dilating
cone (see Zhuang, [14]) which is based on the existence of a closed base of ordering
cone A.

Definition 5.2. Let Z be a normed space, and let A C Z be a closed ordering
cone with a closed base B. Choosing € > 0 arbitrarily, the corresponding Henig
dilating cone is defined by

Ae(B) = cly., (cone (B + Bg(OZ))> = cl, <{,uz ‘ uw>0,2€ B+ BS(OZ)}>,

where 1B.(0z) := {v € Z | ||v||z < 1} is the closed unit ball in Z centered at the
origin.
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It is clear that A.(B) depends on the particular choice of B. As follows from
this definition, int (A):(B) # () for every € > 0, i.e. Henig dilating cone is proper
solid. Moreover, we have the following properties of such cones (see [13,14]).

Proposition 5.1. Let Z be a normed space, and let A C Z be a closed ordering
cone with a closed base B. Choosing ¢ € (0, ), where

§ :=inf {||bl|lz | b€ B} >0, (5.2)
the following statements hold true.
(i) A<(B) is pointed, i.e. A(B) N (= A:(B)) = {0z};
(i) Ac(B) C Acyry(B) Vy > 0;
(iii) As(B) = cone (cl”_”Z (B+ BE(OZ))>;

(iv) A= [ A(B);

0<e<d

(v) the implication

€
E(MeB) = Iz +E¢ (=), (53)
e €t ———|¢llz

holds true with k = sup{||{||z : ¢ € B}.

In the context of constraint qualifications problem, the following result plays
an important role.

Proposition 5.2. Let Z be a normed space, and let A C Z be a closed ordering
cone with a closed base B. Choosing ¢ € (0,6) arbitrarily, where ¢ is defined by
(5.2), the inclusion

A C{0z}U int(Ag(B)) (5.4)

holds true.

Proof. Let z € A\ {0z} be chosen arbitrarily. By the definition of a base there is
a unique representation z = Ab with A > 0 and b € B. Obviously,

z € int({Ab} + B). (07) ) = int(B).(\b))
holds true. Let’s assume for a moment that
B)-(Ab) C cone({b} + B= (0z)). (5.5)
Then we obtain

z € int (cone({b} + Bg(OZ))) C int (cone(B + Be(Oz))) = int(A-(B)),
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which completes the proof. In order to show (5.5), let x € B)-(Ab) be chosen

arbitrarily, i.e.
|z — Ab||z < Ae.

Then ) \
x £
£ - e
|5 -8l = 3o =200z < 5 =<
yields
ze{py|lly—0blz <e pn>0} =cone({b} + B-(02)).
As a result, (5.5) is satisfied. O

Remark 5.2. The following property, coming from Proposition 5.2, turns out
rather useful: in order to prove z € int(A.(B)), it is sufficient to check whether

A A\ {Oz}.

The following result shows that Henig dilating cones A;(B) possess good
approximation properties.

Proposition 5.3. Let A be a closed ordering cone in a normed space Z, and let
B be an arbitrary closed base of A. Let parameter § be defined as in (5.2), and let

(ex)ken C (0,9) be a monotonically decreasing sequence such that klim er = 0.
— 00

Then the sequence of cones {A., (B)}, oy converges to A in Kuratowski sense with
respect to the norm topology of Z as k tends to infinity, that is

K—liminf A, (B) = A = K—limsup A,, (B),

k—o0 k—o0

where

K—liminf A, (B):= {z€ Z ’ for all neighborhoods N of z there is a

k—o0

ko € N such that NN A, (B) #0 Vk > ko},
K—limsup A, (B) := {z ez ‘ for all neighborhoods N of z and every kg € N

k—o0

there is a k > ko such that NN A, (B) # @}.

Proof. Let z € A be chosen arbitrarily. Then N N A # ( holds true for every
neighborhood N of z, and due to the inclusions A C A., Yk € N, we see that
NNA,, #0for all k€ N. Hence,

A C K—liminf A, (B). (5.6)

k—o0

Taking into account the inclusion (5.6) and the fact that

K—liminf A, (B) C K—limsup A, (B),

k—o0 k—o0
we get
A C K—liminf A, (B) € K—limsup A, (B). (5.7)
k—o0 k—o0
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To show that the sequence {Ac, (B)},cy converges to A in Kuratowski sense, it
remains to show

K—limsup A, (B) C A. (5.8)

k—o0

However, the inclusion (5.8) is equivalent to

(Z\A) C <Z\K— lim sup Aak(B)> : (5.9)
k—o0
Let z € Z\A be an arbitrarily element. Since A is closed, there is an open
neighborhood N of Z with respect to the norm topology of Z such that NNA = ().
By Proposition 5.1 (see item (iv)), there is a sufficiently large index ko € N such
that
NNA, (B)=0 Yk > k.

This implies
z € Z\limsup A, (B).

k—o0

Combining (5.7), (5.8), and (5.9), we arrive at the relation

A C K—likI;ninf A;, (B) C K—limsupA,, (B) C A.
—00

k—o0

Thus, A = K— klim A., (B) and the proof is complete. O
— 00

Taking these results into account, we associate with OCP (3.9) the following
Henig relaxed problem

Minimize {I(u,y) :/ |y—yd]2da:—|—/ \Du!} (5.10)
Q Q
subject to the constraints
foin (G p)", )
%(y) =0 in WY (p),
)=0 in W-V/PP(Ty),

5.11
W) € (L), (B), o4
¢mer—(y) € (LA(Iw)), (B)
u € Uuds
or in a more compact form this problem can be stated as follows
inf  I(u,y), Vee(0,0) (5.12)

(u,y)EE:

where

& = inf {||¢]|rry) : € € B}, (5.13)
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the base B takes the form (5.1), and the set of admissible solutions Z. C L*(£2) x
W, (Q) we define as follows: (u,y) € = if and only if v € Ayq, I(u,y) < +o0,
y € Wp(Q), the pair (u,y) is related by the Minty inequality (3.11), and

(y) € (LE(TN)) (B), ¢ =ly) € (LL(TN)), (B). (5.14)

Here, (L% (FN))E (B) is the corresponding Henig dilating cone.
Since, by Proposition 5.2, the inclusion Z C Z. holds true for all € > 0, it
is reasonable to call the OCP (5.12) a relaxation of OCP (3.9). Moreover, as

obviously follows from Proposition 5.3, the convergence =, “2° = in Kuratowski
sense holds true with respect to the T-topology on L(€2) x W, ().

We are now in a position to show that using the relaxation approach we can
reduce the main suppositions of Theorem 4.2. In particular, we can characterize
Hypothesis (H;) by the regularity properties of the corresponding Henig relaxed
problems.

Theorem 5.1. Let {ep},cy C (0,0) be a monotonically decreasing sequence
converging to 0 as k — oo. Then, for given distributions f € W~14(Q;T'p),
yq € L*(Q), and (™ € LP(00), the Hypothesis (H1) implies that the Henig
relazed problem (5.12) has a nonempty set of admissible solutions Zc for all
€ = ek, k € N. And vice versa, if there exists a sequence {(uk,yk)}keN satisfying
conditions

(u®,y*) € 2., forall k€N, and supl(u® y*) < 400, (5.15)

keN

then each of T-cluster pairs of this sequence is admissible to the original OCP
(3.9).

Proof. Since the implication (2 # 0) = (2. # 0 for all ¢ > 0) is obvious by
Proposition 5.3, we concentrate on the proof of the inverse statement — regularity
of the Henig relaxed problems inf(, y)c=. I(u,y) for all k € N with property (5.15)
implies the existence of at least one pair (u,y) such that (u,y) € E.

Let {(uk, yk)}keN be an arbitrary sequence with property: (u*,y*) € =, for
all & € N. Since the set 2,4 and a priory estimate (3.14) do not depend on
parameter &5 and the condition (5.15) implies supgey [q, [Dux| < oo, it follows
by compactness arguments (see the proof of Theorem 4.2) that there exist a
subsequence of {(uk, y*) }keN (still denoted by the same index) and a pair (u*, y*) €
Agq x W, () such that

(uk,yk) AN (u*,y*) as k — oo.

Closely following the proof of Theorem 4.1, it can be shown that the limit pair
(u*,y*) is such that u* € Ayq, J(u*,y*) < +oo, and function y* € W,(Q) is
a weak solution (in the sense of Minty) to the boundary value problem (3.5)-
(3.6). Moreover, in view of the compactness properties of injections (2.1), we may
suppose that

YoW®) = y0(y) strongly in LP(Ty) as k — oc. (5.16)
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It remains to establish the inclusions

() € LE(Ty), " =(y*) € LE(TN), (5.17)

By contraposition, let us assume that £* := (™% — ~yo(y*) € LP(T'y) \ LA (T'n).
Since the cone L% (T'y) is closed, it follows that there is a neighborhood N (£*) of
€ in LP(T'y) such that NV'(£*) N LA (Iy) = 0. Using the fact that

LA (I'y) C (Lﬁ(FN))Ek (B) C (Lﬂ(FN))El (B), Vk>I,

by Proposition 5.3 and definition of the Kuratowski limit, it is easy to conclude
the existence of an index kg € N such that

N(f*) N (Lii(FN))sk (B) = (Z), Vk> k. (518)

However, in view of the strong convergence property (5.16), there is an index
k1 € N satistying
e NED), Yk>k. (5.19)

Combining (5.18) and (5.19), we finally obtain
€ = (™~ 0(y) € LA(Tn)\ (L2(0)),, (B), Yk > max{ko. k1),
This, however, is a contradiction to
(" —0(y*) € I (Tn), VkeN.

Thus, ("% —~o(y*) € L (T'y). In the same manner it can be shown that o(y*) €
L% (Tn). Hence, the pair (u*,y*) is admissible for OCP (3.9). O

As an obvious consequence of this theorem and Theorem 4.2, we have the
following noteworthy property of the Henig relaxed problems (5.12).

Corollary 5.1. Let f € W=19(Q;Tp), yqg € L*(Q), and (™ € LP(IQ) be given
distribution. Then the Henig relaxed problem (5.12) is solvable for each ¢ € (0,0)
provided Hypothesis (Hy) is satisfied.

The next result is crucial in this section. We show that optimal solutions for
the original OCP (3.9) can be attained by solving the corresponding Henig relaxed
problems (5.10)—(5.11).

Theorem 5.2. Let f € W™19(Q;Tp), yq € L*(Q), and (™ € LP(0Q) be given
distributions. Let {e},cy C (0,6) be a monotonically decreasing sequence such
thate, — 0 ask — oo, where § > 0 is defined by (5.13). Let { (u"°,y*0) € Eﬁk}keN
be a sequence of optimal solutions to the Henig relazed problems (5.10)—(5.11) such
that

sup Huk’OHBV(Q) < +o0. (5.20)
keN
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Then there is a subsequence {(uki’o,yki’ﬂ)}ieN of {(uk’o,yk’o)}keN and a pair
(u®, 4°) such that

(w0, y*%) T (u,y°)  asi— oo, (5.21)
(W’ 4% €=, and I’ y°) = (uig,Ill)fG: I(u,y). (5.22)

Proof. In view of a priory estimate (3.14), the uniform boundedness of optimal
controls with respect to BV-norm (5.20) implies the fulfilment of condition (5.15)s.
Hence, the compactness property (5.21) and the inclusion (u°, ") € = are a direct
consequence of Theorem 5.1. It remains to show that the limit pair (u%,7°) is a
solution to OCP (3.9). Indeed, the condition (u’,y") € = implies regularity of the
original OCP (3.9). Hence, by Theorem 4.2, this problem has a nonempty set of
solutions. Let (u*,y*) be one of them. Then the following inequality is obvious

I(w*,y*) < I(u®,9P). (5.23)

On the other hand, by Proposition 5.1 (see property (iv)), we have (u*,y*) € E,
for every i € N. Since {(uki’o,yki’o)}ieN
relaxed problems (5.12), it follows that

are the solutions to the corresponding

o I(u,y) = I(w"°, g0 < I(u*,y*), VieNl. (5.24)
u,Yy E:aki

As a result, taking into account the relations (5.23) and (5.24), and the lower
semicontinuity property of the cost functional I with respect to the 7-convergence,
we finally get

by

—

5.24)

inf I(u,y)=I(u*,y*) > " limsupI(u*?,y0)
by (5.23)
> liminf [(u"0,y*%) > 1(u®,9°) > I(u*,y").
71— 00
Thus,
inf I(u,y) = lim I(uki’o,yki’o) = I(u°,9°),
(u,y)EE i—00
and we arrive at the desired property (5.22)2. The proof is complete. ]

Remark 5.3. It is worth to note that condition (5.20) can be omitted if the original
OCP (3.9) is regular, that is when Hypothesis (H7) is valid. Indeed, let us assume
that Z # () and (u,y) € = is an arbitrary pair. Then (u,%) is admissible to each
Henig relaxed problems (5.10)-(5.11), and, hence,

( i;nf I(u,y) = I(u®9 %) < I(@,5), VkeN. (5.25)
u,y EEEk
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Since, by Proposition 5.2, the inclusion = C =, holds true for all €, > 0, and the
sequence {Z, } ey is monotone in the following sense (because of the property
(ii) of Proposition 5.1)

[1]
[1]
[1]

e 2E 2 25 2 2EF£,

it follows that

(uvy)eEsl (uvy)EEEk (uvy)EE

As a result, (5.25) leads to the estimate

sup H“k’OHBV(Q) < sup !/ |uk,0‘ drx 4+ inf  I(u,y)
keN keN Q

(uvy) EEEk

< [I€2ll Lo (o[ + 1 (U, ) < +oc.

As was mentioned at the beginning of this section, the main benefit of the
relaxed optimal control problems (5.10)—(5.11) comes from the fact that the
Henig dilating cone (Lﬂ(FN))E (B) has a nonempty topological interior. Hence,
it gives a possibility to apply the Slater condition or the Robinson condition in
order to characterize the optimal solutions for the state constrained OCP (3.9).
On the other hand, this approach provides nice convergence properties for the
solutions of relaxed problems (5.10)-(5.11). However, as follows from Theorems 5.1
and 5.2 (see also Remark 5.3), the most restrictive assumption deals with the
regularity of the relaxed problems (5.10)-(5.11) for all € € (0,9). So, if we reject
the Hypothesis (Hp), it becomes unclear, in general, whether the relaxed sets of
admissible solutions =, are nonempty for all € \, 0. In this case it makes sense to
provide further relaxation for each of Henig problems (5.10)—(5.11).
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