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1. Introduction

The aim of this article is to analyze an optimal control problem for a nonlinear
PDE with mixed boundary conditions where the coe�cient of p-Laplacian ope-
rator we take as a control. As for the class of admissible controls, we consider it
as a nonempty subset of L1(Ω) with an empty topological interior. Such choice is
motivated by needs of having good properties of solutions to the corresponding
boundary value problem. Since an important matter for applications is to obtain
a solution to a given boundary problem with desired properties, it leads to the
reasonable questions: can we de�ne an appropriate coe�cient of p-Laplacian
to minimize the discrepancy between a given displacement yd and an expected
solution to such problem.

The characteristic feature of OCP we deal with in this article, is the fact
that the solutions of nonlinear boundary value problem should be restricted by
some pointwise constraints in Lp-spaces. In fact, the ordering cone of positive
elements in Lp-spaces is typically nonsolid, i.e. it has an empty topological interior.
Following Lagrange multiplier rule, which gives a necessary optimality condition
for local solutions to state constrained OCPs, the constraint quali�cations such
as the Slater condition or the Robinson condition should be applied in this case.
However, these conditions cannot be veri�ed for cones such as Lp+(Ω) due to
int
(
Lp+(Ω)

)
= ∅. Therefore, our main intention in this article is to propose a

suitable relaxation of the pointwise state constraints in the form of some inequality
�����������������
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conditions involving a so-called Henig approximation
(
Lp+(Ω)

)
ε

(B) of the ordering
cone of positive elements Lp+(Ω). Here, B is a �xed closed base of Lp+(Ω). Due to
fact that Lp+(Ω) ⊂

(
Lp+(Ω)

)
ε

(B) for all ε > 0, we can replace the cone Lp+(Ω) by

its approximation
(
Lp+(Ω)

)
ε

(B). As a result, it leads to some relaxation of the
inequality constraints of the considered problem, and, hence, to an approximation
of the set of admissible pairs to OCP. The main issue is to show that admissibility
and solvability of a given class of OCPs can be characterized by solving the
corresponding Henig relaxed problems in the limit ε→ 0.

2. De�nitions and Basic Properties

Let Ω be a bounded open connected subset of RN (N ≥ 2). We assume that
the boundary ∂Ω is Lipschitzian so that the unit outward normal ν = ν(x) is
well-de�ned for a.e. x ∈ ∂Ω, where a.e. means here with respect to the (N − 1)-
dimensional Hausdor� measure. We also assume that the boundary ∂Ω consists
of two disjoint parts ∂Ω = ΓD ∪ ΓS , where the sets ΓD and ΓN have positive
(N − 1)-dimensional measures, and ΓN is now C1.

Let p be a real number such that 2 ≤ p < ∞. By W 1,p(Ω) we denote the
Sobolev space as the subspace of Lp(Ω) of functions y having generalized derivative
Dy in Lp(Ω). It is well known that W 1,p(Ω) is a Banach space with respect to the
norm (see [1, Theorem 4.14])

‖y‖W 1,p(Ω) =
(
‖y‖pLp(Ω) + ‖Dy‖pLp(Ω)

)1/p
=

(ˆ
Ω

(|y|p + |Dy|p) dx
)1/p

.

For any y ∈ C1(Ω) we de�ne the traces

γ0(y) = y |∂Ω , and γ1(y) =
∂y

∂ν

∣∣∣∣
∂Ω

.

By [10, Theorem 8.3], these linear operators can be extended continuously to the
whole of space W 1,p(Ω). We set W 1/q,p(∂Ω) := γ0

[
W 1,p(Ω)

]
as closed subspace

of Lp(∂Ω), where q = p/(p− 1) is the conjugate of p. Moreover, the injection

W 1/q,p(∂Ω) ↪→ Lp(∂Ω) (2.1)

is compact.
Let C∞0 (RN ; ΓD) =

{
ϕ ∈ C∞0 (RN ) : ϕ = 0 on ΓD

}
. We de�ne the Banach

spaceW 1,p
0 (Ω; ΓD) as the closure of C∞0 (RN ; ΓD) with respect to the norm ‖y‖W 1,p(Ω).

Let W−1,q(Ω; ΓD) be the dual space to W 1,p
0 (Ω; ΓD).

Throughout this paper, we use the notation Wp(Ω) := W 1,p
0 (Ω; ΓD). Let us

notice that Wp(Ω) equipped with the norm

‖y‖p,∇ := ‖∇y‖Lp(Ω) =

(ˆ
Ω
|∇y|p dx

)1/p

=

(ˆ
Ω

∣∣∣∣∣
N∑
i=1

∂y

∂xi

∣∣∣∣∣
p

dx

)1/p

(2.2)
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is a uniformly convex Banach space [3]. Moreover, the norm ‖ · ‖p,∇ is equivalent
on Wp(Ω) to the usual norm of W 1,p(Ω). By BV (Ω) we denote the space of all
functions in L1(Ω) for which the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

ˆ
Ω
|Df | = ‖f‖L1(Ω)

+ sup
{ˆ

Ω
f divϕdx : ϕ ∈ C1

0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω
}

is �nite.

We recall that a sequence {fk}∞k=1 converges weakly-∗ to f in BV (Ω) if and
only if the two following conditions hold (see [6]): fk → f strongly in L1(Ω) and
Dfk ⇀ Df weakly-∗ in the space of Radon measuresM(Ω), i.e.

lim
k→∞

ˆ
Ω
ϕDfk =

ˆ
Ω
ϕDf ∀ϕ ∈ C0(Ω).

The following compactness result for BV -spaces is well-known (Helly's selection
theorem, see [2]).

Theorem 2.1. If {fk}∞k=1 ⊂ BV (Ω) and supk∈N ‖fk‖BV (Ω) < +∞, then there

exists a subsequence of {fk}∞k=1 strongly converging in L1(Ω) to some f ∈ BV (Ω)

such that Dfk
∗
⇀ Df in the space of Radon measures M(Ω). Moreover, if

{fk}∞k=1 ⊂ BV (Ω) strongly converges to some f in L1(Ω) and satis�es condition

supk∈N
´

Ω |Dfk| < +∞, then

(i) f ∈ BV (Ω) and

ˆ
Ω
|Df | ≤ lim inf

k→∞

ˆ
Ω
|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(2.3)

3. Setting of the Optimal Control Problem

Let ξ1, ξ2 be �xed elements of L∞(Ω) ∩BV (Ω) satisfying the conditions

0 < α ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, (3.1)

where α is a given positive value.

Let F : Ω × R → R be a nonlinear mapping such that F is in the space
Car (Ω× R) of Carath�eodory functions on Ω× R, i.e.

� the function F (x, ·) is continuous in R for almost all x ∈ Ω;

� the function F (·, y) is measurable for each y ∈ R.
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In addition, the following conditions of subcritical growth, monotonicity, and non-
negativity are ful�lled:

|F (x, η)| ≤ C1|η|r−1 for a.e. x ∈ Ω and all η ∈ R, (3.2)(
F (x, η)− F (x, η′)

)
(η − η′) > 0 for a.e. x ∈ Ω and all η, η′ ∈ R, η 6= η′, (3.3)

F (x, η)η ≥ 0 for a.e. x ∈ Ω and all η ∈ R, (3.4)

for some r ∈ (1, p∗), where

p∗ =

{
Np/(N − p), p < N,
+∞, p ≥ N

is the critical exponent for the Sobolev imbeddingW 1,p(Ω) ↪→ Lr(Ω), and C1 > 0.
Let f ∈W−1,q(Ω; ΓD), yd ∈ L2(Ω), and ζmax ∈ Lp(∂Ω) be given distributions.

The optimal control problem we consider in this paper is to minimize the discre-
pancy between yd and the solutions of the following state-constrained boundary
valued problem

−∆p(u(x), y) + F (x, y) = f(x) in Ω, (3.5)

y = 0 on ΓD,
∂y(s)

∂ν
= 0 on ΓN , (3.6)

0 ≤ y(s) ≤ ζmax(s) a.e. on ΓN (3.7)

by choosing an appropriate weight function u ∈ Aad as control. Here,

∆p(u, y) := div(u|∇y|p−2∇y)

is the operator of the second order called the generalized p-harmonic operator,
and the class of admissible controls Aad we de�ne as follows

Aad =
{
u ∈ L1(Ω)

∣∣∣ ξ1(x) ≤ u(x) ≤ ξ2(x) a.e. in Ω
}
. (3.8)

It is clear that Aad is a nonempty convex subset of L
1(Ω) with an empty topological

interior.
More precisely, we are concerned with the following optimal control problem

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|2 dx+

ˆ
Ω
|Du|

}
subject to the constraints (3.5)�(3.8).

(3.9)

Before we will discuss the question of existence of admissible pairs to the
problem (3.9), we note that the function F ∈ Car (Ω×R) can be associated with
operator F : Wp(Ω)→ (Wp(Ω))∗ de�ned by the rule

〈F(y), v〉(Wp(Ω))∗;Wp(Ω) =

ˆ
Ω
F (x, y)v dx, ∀ v ∈Wp(Ω). (3.10)

Moreover, taking into account the growth condition (3.2) and the compactness of
the Sobolev imbedding W 1,p

0 (Ω; ΓD) ↪→ Lr(Ω) for r < p∗ it is easy to show that
operator F : Wp(Ω)→ (Wp(Ω))∗ is compact.
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De�nition 3.1. We say that an element y ∈Wp(Ω) is the weak solution (in the
sense of Minty) to the boundary value problem (3.5)�(3.6), for a given admissible
control u ∈ Aad, if

ˆ
Ω
u|∇ϕ|p−2 (∇ϕ,∇ϕ−∇y) dx+ 〈F(ϕ), ϕ− y〉

W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

≥ 〈f, ϕ− y〉
W−1,q(Ω;ΓD);W 1,p

0 (Ω;ΓD)
, ∀ϕ ∈ C∞0 (Ω; ΓD). (3.11)

Remark 3.1. Since the integrand on the left hand side of inequality (3.11) has,
in view of (3.10), the structure of a composite functions g(x, y,∇y), it follows
from Krasnosel'ski's well-know theorem (see [5] Ch.IV, Proposition 1.1) that ϕ 7→
g(x, y,∇y) is a continuous map Wp(Ω) → Lq(Ω). Using the fact that the set
C∞0 (RN ; ΓD) is dense in Wp(Ω), this allows us to take an arbitrary element ϕ ∈
Wp(Ω) for a test function in (3.11). Therefore, taking ϕ = y+tw with w ∈Wp(Ω)
and t > 0, we obtain

ˆ
Ω
u|∇y + t∇w|p−2 (∇y + t∇w,∇w) dx+

ˆ
Ω
F (x, y + tw)w dx

≥ 〈f, w〉
W−1,q(Ω;ΓD);W 1,p

0 (Ω;ΓD)
, ∀w ∈Wp(Ω).

Passing to the limit as t→ 0 (because F ∈ Car (Ω× R)), we get

ˆ
Ω
u|∇y|p−2 (∇y,∇w) dx+

ˆ
Ω
F (x, y)w dx ≥ 〈f, w〉

W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

for all w ∈Wp(Ω). Hence,

ˆ
Ω
u|∇y|p−2 (∇y,∇w) dx+

ˆ
Ω
F (x, y)w dx = 〈f, w〉

W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

.

(3.12)
It is worth to note that having applied Green's formula to the operator
−div(u|∇y|p−2∇y) tested by v ∈ C∞0 (Ω; ΓD), we arrive at the identity

−
ˆ

Ω
div(u|∇y|p−2∇y)v dx =

ˆ
Ω
u|∇y|p−2 (∇y,∇v) dx

−
ˆ

ΓN

u|∇y|p−2v
∂y

∂ν
dHN−1 ∀ v ∈ C∞0 (Ω; ΓD).

Hence, if y as an element of Wp(Ω) := W 1,p
0 (Ω; ΓD) is the weak solution of the

boundary value problem (3.5)�(3.6) in the sense of De�nition 3.1, then relations
(3.5)�(3.6) are ful�lled as follows

−∆p(u, y) + F(y) = f in (C∞0 (Ω; ΓD))∗ ,

γ0(y) = 0 in W 1/q,p(ΓD),

γ1(y) = 0 in W−1/p,p(ΓN ).
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In particular, taking w = y in (3.12), this yields the relation
ˆ

Ω
u|∇y|p dx+

ˆ
Ω
F (x, y)y dx = 〈f, y〉

W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

, (3.13)

which is usually referred to as the energy equality. As a result, conditions (3.1),
(3.8), and inequality (3.4) lead us to the following a priori estimate

‖y‖p,∇ :=

(ˆ
Ω
|∇y|p dx

)1/p

≤
(
α−1Cp‖f‖W−1,q(Ω;ΓD)

) 1
p−1 ∀u ∈ Aad. (3.14)

The existence of a unique weak solution to the boundary value problem (3.5)�
(3.6) in the sense of De�nition 3.1 follows from an abstract theorem on monotone
operators.

Theorem 3.1 ( [9]). Let V be a re�exive separable Banach space. Let V ∗ be

the dual space, and let A : V → V ∗ be a bounded, hemicontinuous, coercive and

strictly monotone operator. Then the equation Ay = f has a unique solution for

each f ∈ V ∗.

Here, the above mentioned properties of the strict monotonicity, hemicontinuity,
and coercivity of the operator A have respectively the following meaning:

〈Ay −Av, y − v〉V ∗;V ≥ 0, ∀ y, v ∈ V ; (3.15)

〈Ay −Av, y − v〉V ∗;V = 0 =⇒ y = v; (3.16)

the function t 7→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V ; (3.17)

lim
‖y‖V→∞

〈Ay, y〉V ∗;V
‖y‖V

= +∞. (3.18)

In our case, we can de�ne the operator A(u, ·) as a mapping Wp(Ω)→ (Wp(Ω))∗

by

〈A(u, y), w〉(Wp(Ω))∗;Wp(Ω) :=

ˆ
Ω
u|∇y|p−2∇y∇w dx+

ˆ
Ω
F (x, y)w dx. (3.19)

In view of the properties (3.2)�(3.4) and compactness of the Sobolev imbedding
W 1,p

0 (Ω; ΓD) ↪→ Lr(Ω) for r < p∗, it is easy to show that A(u, y) = −∆p(u, y) +
F(y) and A(u, ·) satis�es all assumptions of Theorem 3.1 (for the details we refer
to [9, 11]). Hence, the variational problem

For a given u ∈ Aad, �nd y ∈Wp(Ω) such that
〈A(u, y), ϕ〉(Wp(Ω))∗;Wp(Ω) = 〈f, ϕ〉(Wp(Ω))∗;Wp(Ω) , ∀ϕ ∈Wp(Ω)

(3.20)

for which A(u, y) = f is its operator form, has a unique solution y = y(u) ∈
Wp(Ω). We note that the duality pairing in the right hand side of (3.20) makes a
sense for any distribution f ∈W−1,q(Ω; ΓD) because

W−1,q(Ω; ΓD) :=
(
W 1,p

0 (Ω; ΓD)
)∗
.
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It remains to show that the solution y of (3.20) satis�es the Minty relation (3.11).
Indeed, in view of the monotonicity of A, we have

0 ≤〈A(u, v)−A(u, y), v − y〉(Wp(Ω))∗;Wp(Ω)

= 〈A(u, v), v − y〉(Wp(Ω))∗;Wp(Ω) − 〈A(u, y), v − y〉(Wp(Ω))∗;Wp(Ω)

by (3.20)
= 〈A(u, v), v − y〉(Wp(Ω))∗;Wp(Ω) − 〈f, ϕ〉W−1,q(Ω;ΓD);W 1,p

0 (Ω;ΓD)
.

Thus,

〈A(u, v), v− y〉(Wp(Ω))∗;Wp(Ω) ≥ 〈f, ϕ〉W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

, ∀ v ∈W 1,p
0 (Ω; ΓD),

and, hence, in view of Remark 3.1, the Minty relation (3.11) holds true.
Taking this fact into account, we adopt the following notion.

De�nition 3.2. We say that (u, y) is an admissible pair to the OCP (3.9) if
u ∈ Aad ⊂ L1(Ω), y ∈ Wp(Ω), the pair (u, y) is related by the Minty inequality
(3.11), I(u, y) < +∞, and

γ0(y) ∈ Lp+(ΓN ), ζmax − γ0(y) ∈ Lp+(ΓN ), (3.21)

where Lp+(ΓN ) stands for the natural ordering cone of positive elements in Lp(ΓN ),
i.e.

Lp+(ΓN ) :=
{
v ∈ Lp(ΓN ) | v ≥ 0 HN−1-a.e. on ΓN

}
.

We denote by Ξ the set of all admissible pairs for the OCP (3.9). Let τ be
the topology on the set Ξ ⊂ L1(Ω) ×Wp(Ω) which we de�ne as the product of

the norm topology of L1(Ω) and the weak topology of W 1,p
0 (Ω; ΓD). We say that

a pair (u0, y0) ∈ L1(Ω)×Wp(Ω) is an optimal solution to problem (3.9) if

(u0, y0) ∈ Ξ and I(u0, y0) = inf
(u,y)∈Ξ

I(u, y).

Remark 3.2. Before we proceed further, we need to make sure that minimization
problem (3.9) is meaningful, i.e. there exists at least one pair (u, y) such that (u, y)
satisfying the control and state constraints (3.6)�(3.8), I(u, y) < +∞, and (u, y)
would be a physically relevant solution to the boundary value problem (3.5)�
(3.6)? In fact, one needs the set of admissible solutions to be nonempty. But
even if we are aware that Ξ 6= ∅, this set must be su�ciently rich in some sense,
otherwise the OCP (3.9) becomes trivial. From a mathematical point of view, to
deal directly with the control and especially state constraints is typically very
di�cult [4,8,12]. Thus, the regularity of OCPs with control and state constraints
is an open question even for the simplest situation.

It is reasonably now to make use of the following Hypothesis.

(H1) OCP (3.9) is regular in the following sense � there exists at least one pair
(u, y) ∈ L1(Ω)×Wp(Ω) such that (u, y) ∈ Ξ.
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4. Existence of Optimal Solutions

In this section we focus on the solvability of optimal control problem (3.5)�
(3.9). Hereinafter, we suppose that the space L1(Ω)×Wp(Ω) is endowed with the
norm ‖(u, y)‖L1(Ω)×Wp(Ω) := ‖u‖L1(Ω) + ‖y‖p,∇.

We begin with a couple of auxiliary results.

Lemma 4.1. Let {(uk, yk) ∈ Ξ}k∈N be a sequence such that (uk, yk)
τ−→ (u, y) in

L1(Ω)×Wp(Ω). Then we have

lim
k→∞

ˆ
Ω
uk (∇yk,∇ϕ) dx =

ˆ
Ω
u (∇y,∇ϕ) dx ∀ϕ ∈ C∞0 (Ω; ΓD). (4.1)

Proof. Since uk → u in L1(Ω) and {uk}k∈N is bounded in L∞(Ω), we get that
uk → u strongly in Lr(Ω) for every 1 ≤ r < +∞. In particular, we have that
uk → u in Lq(Ω) and (∇yk,∇ϕ) ⇀ (∇y,∇ϕ) in Lp(Ω). Hence, it is immediate to
pass to the limit and to deduce (4.1).

As a consequence, we have the following property.

Corollary 4.1. Let {(uk, yk) ∈ Ξ}k∈N and
{
ζk ∈W 1,q

0 (Ω; ΓD)
}
k∈N

be sequences

such that (uk, yk)
τ−→ (u, y) in L1(Ω)×Wp(Ω) and ζk → ζ in W 1,q

0 (Ω; ΓD). Then

lim
k→∞

ˆ
Ω
uk (∇yk,∇ζk) dx =

ˆ
Ω
u (∇y,∇ζ) dx.

Our next step concerns the study of topological properties of the set of admissible
solutions Ξ to problem (3.9).

The following result is crucial for our further analysis.

Theorem 4.1. Let {(uk, yk)}k∈N ⊂ Ξ be a bounded sequence in BV (Ω)×Wp(Ω).
Then there is a pair (u, y) ∈ L1(Ω) × Wp(Ω) such that, up to a subsequence,

(uk, yk)
τ−→ (u, y) and (u, y) ∈ Ξ.

Proof. By Theorem 2.1 and compactness properties of the space Wp(Ω), there
exists a subsequence of {(uk, yk) ∈ Ξ}k∈N, still denoted by the same indices, and
functions u ∈ BV (Ω) and y ∈Wp(Ω) such that

uk → u in L1(Ω), yk ⇀ y in W 1,p
0 (Ω; ΓD). (4.2)

Then by Lemma 4.1, we have

lim
k→∞

ˆ
Ω
uk (∇ϕ,∇yk) dx =

ˆ
Ω
u (∇ϕ,∇y) dx, ∀ϕ ∈ C∞0 (Ω; ΓD).

It remains to show that the limit pair (u, y) is related by inequality (3.11) and
satis�es the state constraints (3.21). With that in mind we write down the Minty
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relation for (uk, yk):

ˆ
Ω
uk|∇ϕ|p−2 (∇ϕ,∇ϕ−∇yk) dx+

ˆ
Ω
F (x, ϕ)(ϕ− yk) dx

≥ 〈f, ϕ− yk〉W−1,q(Ω;ΓD);W 1,p
0 (Ω;ΓD)

, ∀ϕ ∈ C∞0 (Ω; ΓD). (4.3)

In view of (4.2) and Lemma 4.1, we have

lim
k→∞

ˆ
Ω
|∇ϕ|puk dx =

ˆ
Ω
|∇ϕ|pu dx,

lim
k→∞

ˆ
Ω
uk|∇ϕ|p−2 (∇ϕ,∇yk) dx =

ˆ
Ω
u|∇ϕ|p−2 (∇ϕ,∇y) dx.

Moreover, due to the compactness of the Sobolev imbedding W 1,p
0 (Ω; ΓD) ↪→

Lr(Ω) for r < p∗, we have

ˆ
Ω
F (x, ϕ)(ϕ− yk) dx =

ˆ
Ω
F (x, ϕ)(ϕ− y) dx+ Jk,

where H�older's inequality yields as k →∞

|Jk| :=
∣∣∣∣ˆ

Ω
F (x, ϕ)(y − yk) dx

∣∣∣∣ by (3.2)
≤

(
C1

ˆ
Ω
|ϕ|r dx

) r−1
r

‖y − yk‖Lr(Ω) −→ 0.

We, thus, can pass to the limit in relation (4.3) as k → ∞ and arrive at the
inequality (3.11), which means that y ∈Wp(Ω) is a weak solution to the boundary
value problem (3.5)�(3.6) in the sense of Minty. Since the injections (2.1) are
compact and the cone Lp+(ΓN ) is closed with respect to the strong convergence
in Lp(ΓN ), it follows that yk → y strongly in Lp(ΓN ) and, hence,

lim
k→∞

γ0(yk) = γ0(y) ∈ Lp+(ΓN ) and γ0(y) ∈ ζmax − Lp+(ΓN ).

This fact together with u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξ, i.e. the limit
pair (u, y) is admissible to optimal control problem (3.9). The proof is complete.

Remark 4.1. Having applied the arguments of Remark 3.1, it is easy to show that
in this case the energy equality (3.13) holds true for every τ -cluster pair (u, y)
mentioned in Theorem 4.1.

In conclusion of this section, we give the existence result for optimal pairs to
problem (3.9).

Theorem 4.2. Assume that, for given distributions f ∈ W−1,q(Ω; ΓD), yd ∈
L2(Ω), and ζmax ∈ Lp(∂Ω), the Hypothesis (H1) is valid. Then optimal control

problem (3.9) admits at least one solution (uopt, yopt) ∈ BV (Ω)×Wp(Ω).
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Proof. Since the set of admissible pairs Ξ is nonempty and the cost functional
is bounded from below on Ξ, it follows that there exists a minimizing sequence
{(uk, yk) ∈ Ξ}k∈N to problem (3.9). Then the inequality

inf
(u,y)∈Ξ

I(u, y) = lim
k→∞

[ˆ
Ω
|yk(x)− yd(x)|2 dx+

ˆ
Ω
|Duk|

]
< +∞,

implies the existence of a constant C > 0 such that

sup
k∈N

ˆ
Ω
|Duk| ≤ C.

Hence, in view of the de�nition of the class of admissible controls Aad and a priori
estimate (3.14), the sequence {(uk, yk) ∈ Ξ}k∈N is bounded in BV (Ω) ×Wp(Ω).
Therefore, by Theorem 4.1, there exist functions u∗ ∈ Aad and y

∗ ∈ Wp(Ω) such
that (u∗, y∗) ∈ Ξ and, up to a subsequence, uk → u∗ strongly in L1(Ω) and
yk ⇀ y∗ weakly in W 1,p

0 (Ω; ΓD). To conclude the proof, it is enough to show that
the cost functional I is lower semicontinuous with respect to the tau-convergence.
Since yk → y∗ strongly in Lp(Ω) by Sobolev embedding theorem, it follows that

lim
k→∞

ˆ
Ω
|yk(x)− yd(x)|2 dx =

ˆ
Ω
|y∗(x)− yd(x)|2 dx and,

lim inf
k→∞

ˆ
Ω
|Duk| ≥

ˆ
Ω
|Du∗| by (2.3).

Thus,
I(u∗, y∗) ≤ lim inf

k→∞
I(uk, yk) = inf

(u, y)∈Ξ
I(u, y).

Hence, (u∗, y∗) is an optimal pair, and we arrive at the required conclusion.

5. Henig Relaxation of State-Constrainted OCP

As was mentioned above, the pointwise inequality constraints

0 ≤ y(s) ≤ ζmax(s) a.e. on ΓN

can be equivalently rewritten as γ0(y) ∈ Lp+(ΓN ) and ζmax − γ0(y) ∈ Lp+(ΓN ),
where Lp+(ΓN ) stands for the natural ordering cone of positive elements in Lp(ΓN ).
From practical point of view it means that we cannot apply to OCP (3.9) any
constraint quali�cations like the Slater condition or the Robinson condition because
each of those approaches is essentially based on non-emptiness of the interiors
of the ordering cone Lp+(ΓN ). However, in our case we have int (Lp+(ΓN )) = ∅.
Therefore, the main goal of this section is to provide a regularization of the
pointwise state constraints by replacing the ordering cone Λ := Lp+(ΓN ) by
its solid Henig approximation (Λ)ε (see [14]) and show that admissibility and
solvability of OCP (3.9) can be characterized by solving the corresponding Henig
relaxed problems in the limit as ε→ 0.

We begin with some formal descriptions and abstract results. Let Z be a real
normed space, and let Λ ⊂ Z be a closed ordering cone in Z.
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De�nition 5.1. A nonempty convex subset B of a nontrivial ordering cone Λ ⊂ Z
(i.e. Λ 6= {0Z}, where 0Z is the zero element in Z) is called base of Λ if for each
element z ∈ Λ\{0Z} there is a unique representation z = µb where µ > 0 and
b ∈ B.

In what follows, we always assume that the ordering cone Λ has a closed base
B ⊂ Λ. We note that, in general, bases are not unique. We denote the norm of Z
by ‖ · ‖Z , and for arbitrary elements z1, z2 ∈ Z we de�ne

z1 ≤Λ z2 ⇔ z2 − z1 ∈ Λ as well as z1 <Λ z2 ⇔ z2 − z1 ∈ Λ\ {0Z} .

In order to introduce a representation for a base of Λ, let Z∗ be the topological
dual space of Z, and let 〈·, ·〉Z∗,Z be the dual pairing. Moreover, by

Λ∗ :=
{
z∗ ∈ Z∗

∣∣ 〈z∗, z〉Z∗,Z ≥ 0 ∀ z ∈ Λ
}

and
Λ# :=

{
z∗ ∈ Z∗

∣∣ 〈z∗, z〉Z∗,Z > 0 ∀ z ∈ Λ\{0Z}
}

we de�ne the dual cone and the quasi-interior of the dual cone of Λ, respectively.
Using the de�nition of the dual cone, the ordering cone Λ can be characterized as
follows (see [7, Lemma 3.21]):

Λ =
{
z ∈ Z

∣∣ 〈z∗, z〉Z∗,Z ≥ 0 ∀ z∗ ∈ Λ∗
}

Due to Lemma 1.28 in [7], we can give the following result.

Lemma 5.1. Let Λ ⊂ Z be a nontrivial ordering cone in a Banach space Z. Then
the set B := {z ∈ Λ | 〈z∗, z〉Z∗,Z = 1} is a base of Λ for every z∗ ∈ Λ#. Moreover,

if Λ is reproducing in Z, i.e. if Λ− Λ = Z, and if B is a base of Λ, then there is

an element z∗ ∈ Λ# satisfying B = {z ∈ Λ | 〈z∗, z〉Z∗,Z = 1}.

Remark 5.1. As follows from Lemma 5.1, the set

B :=
{
ξ ∈ Lp+(ΓN )

∣∣∣ ˆ
ΓN

ξ dHN−1 = 1
}

(5.1)

is a closed base of ordering cone Λ := Lp+(ΓN ).

Now, we are prepared to introduce the de�nition of a so-called Henig dilating

cone (see Zhuang, [14]) which is based on the existence of a closed base of ordering
cone Λ.

De�nition 5.2. Let Z be a normed space, and let Λ ⊂ Z be a closed ordering
cone with a closed base B. Choosing ε > 0 arbitrarily, the corresponding Henig

dilating cone is de�ned by

Λε(B) := cl‖·‖Z

(
cone

(
B +Bε(0Z)

))
:= cl‖·‖Z

({
µz
∣∣µ ≥ 0, z ∈ B +Bε(0Z)

})
,

where 1
εBε(0Z) := {v ∈ Z | ‖v‖Z ≤ 1} is the closed unit ball in Z centered at the

origin.
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It is clear that Λε(B) depends on the particular choice of B. As follows from
this de�nition, int (Λ)ε(B) 6= ∅ for every ε > 0, i.e. Henig dilating cone is proper
solid. Moreover, we have the following properties of such cones (see [13,14]).

Proposition 5.1. Let Z be a normed space, and let Λ ⊂ Z be a closed ordering
cone with a closed base B. Choosing ε ∈ (0, δ), where

δ := inf
{
‖b‖Z

∣∣ b ∈ B} > 0, (5.2)

the following statements hold true.

(i) Λε(B) is pointed, i.e. Λε(B) ∩
(
− Λε(B)

)
= {0Z};

(ii) Λε(B) ⊂ Λε+γ(B) ∀ γ > 0;

(iii) Λε(B) = cone
(

cl‖·‖Z
(
B +Bε(0Z)

))
;

(iv) Λ =
⋂

0<ε<δ

Λε(B);

(v) the implication

ξ ∈ (Λ)ε(B) =⇒ ε

κ+ ε
‖ξ‖Z + ξ 6∈ (−Λ) , (5.3)

i. e. ξ ≮Λ −
ε

κ+ ε
‖ξ‖Z

holds true with κ = sup {‖ζ‖Z : ζ ∈ B}.

In the context of constraint quali�cations problem, the following result plays
an important role.

Proposition 5.2. Let Z be a normed space, and let Λ ⊂ Z be a closed ordering
cone with a closed base B. Choosing ε ∈ (0, δ) arbitrarily, where δ is de�ned by
(5.2), the inclusion

Λ ⊂ {0Z} ∪ int
(
Λε(B)

)
(5.4)

holds true.

Proof. Let z ∈ Λ\ {0Z} be chosen arbitrarily. By the de�nition of a base there is
a unique representation z = λb with λ > 0 and b ∈ B. Obviously,

z ∈ int
(
{λb}+Bλε (0Z)

)
= int

(
Bλε(λb)

)
holds true. Let's assume for a moment that

Bλε(λb) ⊆ cone
(
{b}+Bε (0Z)

)
. (5.5)

Then we obtain

z ∈ int
(
cone

(
{b}+Bε(0Z)

))
⊆ int

(
cone

(
B +Bε(0Z)

))
= int

(
Λε(B)

)
,
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which completes the proof. In order to show (5.5), let x ∈ Bλε(λb) be chosen
arbitrarily, i.e.

‖x− λb‖Z ≤ λε.

Then ∥∥∥x
λ
− b
∥∥∥
Z

=
1

λ
‖x− λb‖Z ≤

λε

λ
= ε

yields
x ∈

{
µy
∣∣ ‖y − b‖Z ≤ ε, µ ≥ 0

}
= cone

(
{b}+Bε(0Z)

)
.

As a result, (5.5) is satis�ed.

Remark 5.2. The following property, coming from Proposition 5.2, turns out
rather useful: in order to prove z ∈ int

(
Λε(B)

)
, it is su�cient to check whether

z ∈ Λ\ {0Z}.
The following result shows that Henig dilating cones Λε(B) possess good

approximation properties.

Proposition 5.3. Let Λ be a closed ordering cone in a normed space Z, and let
B be an arbitrary closed base of Λ. Let parameter δ be de�ned as in (5.2), and let
(εk)k∈N ⊂ (0, δ) be a monotonically decreasing sequence such that lim

k→∞
εk = 0.

Then the sequence of cones {Λεk(B)}k∈N converges to Λ in Kuratowski sense with
respect to the norm topology of Z as k tends to in�nity, that is

K− lim inf
k→∞

Λεk(B) = Λ = K− lim sup
k→∞

Λεk(B),

where

K− lim inf
k→∞

Λεk(B) :=
{
z ∈ Z

∣∣ for all neighborhoods N of z there is a

k0 ∈ N such that N ∩ Λεk(B) 6= ∅ ∀ k ≥ k0

}
,

K− lim sup
k→∞

Λεk(B) :=
{
z ∈ Z

∣∣ for all neighborhoods N of z and every k0 ∈ N

there is a k ≥ k0 such that N ∩ Λεk(B) 6= ∅
}
.

Proof. Let z ∈ Λ be chosen arbitrarily. Then N ∩ Λ 6= ∅ holds true for every
neighborhood N of z, and due to the inclusions Λ ⊂ Λεk ∀ k ∈ N, we see that
N ∩ Λεk 6= ∅ for all k ∈ N. Hence,

Λ ⊆ K− lim inf
k→∞

Λεk(B). (5.6)

Taking into account the inclusion (5.6) and the fact that

K− lim inf
k→∞

Λεk(B) ⊆ K− lim sup
k→∞

Λεk(B),

we get
Λ ⊆ K− lim inf

k→∞
Λεk(B) ⊆ K− lim sup

k→∞
Λεk(B). (5.7)
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To show that the sequence {Λεk(B)}k∈N converges to Λ in Kuratowski sense, it
remains to show

K− lim sup
k→∞

Λεk(B) ⊆ Λ. (5.8)

However, the inclusion (5.8) is equivalent to

(Z\Λ) ⊆
(
Z
∖
K− lim sup

k→∞
Λεk(B)

)
. (5.9)

Let z̄ ∈ Z\Λ be an arbitrarily element. Since Λ is closed, there is an open
neighborhood N̄ of z̄ with respect to the norm topology of Z such that N̄ ∩Λ = ∅.
By Proposition 5.1 (see item (iv)), there is a su�ciently large index k0 ∈ N such
that

N̄ ∩ Λεk(B) = ∅ ∀ k ≥ k0.

This implies

z̄ ∈ Z
∖

lim sup
k→∞

Λεk(B).

Combining (5.7), (5.8), and (5.9), we arrive at the relation

Λ ⊆ K− lim inf
k→∞

Λεk(B) ⊆ K− lim sup
k→∞

Λεk(B) ⊆ Λ.

Thus, Λ = K− lim
k→∞

Λεk(B) and the proof is complete.

Taking these results into account, we associate with OCP (3.9) the following
Henig relaxed problem

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|2 dx+

ˆ
Ω
|Du|

}
(5.10)

subject to the constraints

−∆p(u, y) + F(y) = f in (C∞0 (Ω; ΓD))∗ ,

γ0(y) = 0 in W 1/q,p(ΓD),

γ1(y) = 0 in W−1/p,p(ΓN ),
γ0(y) ∈

(
Lp+(ΓN )

)
ε

(B),

ζmax − γ0(y) ∈
(
Lp+(ΓN )

)
ε

(B)

u ∈ Aad,


(5.11)

or in a more compact form this problem can be stated as follows

inf
(u,y)∈Ξε

I(u, y), ∀ ε ∈ (0, δ) (5.12)

where

δ = inf
{
‖ξ‖Lp(ΓN ) : ξ ∈ B

}
, (5.13)
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the base B takes the form (5.1), and the set of admissible solutions Ξε ⊂ L1(Ω)×
Wp(Ω) we de�ne as follows: (u, y) ∈ Ξε if and only if u ∈ Aad, I(u, y) < +∞,
y ∈Wp(Ω), the pair (u, y) is related by the Minty inequality (3.11), and

γ0(y) ∈
(
Lp+(ΓN )

)
ε

(B), ζmax − γ0(y) ∈
(
Lp+(ΓN )

)
ε

(B). (5.14)

Here,
(
Lp+(ΓN )

)
ε

(B) is the corresponding Henig dilating cone.
Since, by Proposition 5.2, the inclusion Ξ ⊆ Ξε holds true for all ε > 0, it

is reasonable to call the OCP (5.12) a relaxation of OCP (3.9). Moreover, as

obviously follows from Proposition 5.3, the convergence Ξε
ε→0→ Ξ in Kuratowski

sense holds true with respect to the τ -topology on L1(Ω)×Wp(Ω).
We are now in a position to show that using the relaxation approach we can

reduce the main suppositions of Theorem 4.2. In particular, we can characterize
Hypothesis (H1) by the regularity properties of the corresponding Henig relaxed
problems.

Theorem 5.1. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence

converging to 0 as k → ∞. Then, for given distributions f ∈ W−1,q(Ω; ΓD),
yd ∈ L2(Ω), and ζmax ∈ Lp(∂Ω), the Hypothesis (H1) implies that the Henig

relaxed problem (5.12) has a nonempty set of admissible solutions Ξε for all

ε = εk, k ∈ N. And vice versa, if there exists a sequence
{

(uk, yk)
}
k∈N satisfying

conditions

(uk, yk) ∈ Ξεk for all k ∈ N, and sup
k∈N

I(uk, yk) < +∞, (5.15)

then each of τ -cluster pairs of this sequence is admissible to the original OCP

(3.9).

Proof. Since the implication
(
Ξ 6= ∅

)
=⇒

(
Ξε 6= ∅ for all ε > 0

)
is obvious by

Proposition 5.3, we concentrate on the proof of the inverse statement � regularity
of the Henig relaxed problems inf(u,y)∈Ξεk

I(u, y) for all k ∈ N with property (5.15)
implies the existence of at least one pair (u, y) such that (u, y) ∈ Ξ.

Let
{

(uk, yk)
}
k∈N be an arbitrary sequence with property: (uk, yk) ∈ Ξεk for

all k ∈ N. Since the set Aad and a priory estimate (3.14) do not depend on
parameter εk and the condition (5.15) implies supk∈N

´
Ω |Duk| ≤ ∞, it follows

by compactness arguments (see the proof of Theorem 4.2) that there exist a
subsequence of

{
(uk, yk)

}
k∈N (still denoted by the same index) and a pair (u∗, y∗) ∈

Aad ×Wp(Ω) such that

(uk, yk)
τ−→ (u∗, y∗) as k →∞.

Closely following the proof of Theorem 4.1, it can be shown that the limit pair
(u∗, y∗) is such that u∗ ∈ Aad, J(u∗, y∗) < +∞, and function y∗ ∈ Wp(Ω) is
a weak solution (in the sense of Minty) to the boundary value problem (3.5)�
(3.6). Moreover, in view of the compactness properties of injections (2.1), we may
suppose that

γ0(yk)→ γ0(y) strongly in Lp(ΓN ) as k →∞. (5.16)
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It remains to establish the inclusions

γ0(y∗) ∈ Lp+(ΓN ), ζmax − γ0(y∗) ∈ Lp+(ΓN ), (5.17)

By contraposition, let us assume that ξ∗ := ζmax − γ0(y∗) ∈ Lp(ΓN ) \ Lp+(ΓN ).
Since the cone Lp+(ΓN ) is closed, it follows that there is a neighborhood N (ξ∗) of
ξ∗ in Lp(ΓN ) such that N (ξ∗) ∩ Lp+(ΓN ) = ∅. Using the fact that

Lp+(ΓN ) ⊂
(
Lp+(ΓN )

)
εk

(B) ⊆
(
Lp+(ΓN )

)
εl

(B), ∀ k ≥ l,

by Proposition 5.3 and de�nition of the Kuratowski limit, it is easy to conclude
the existence of an index k0 ∈ N such that

N (ξ∗) ∩
(
Lp+(ΓN )

)
εk

(B) = ∅, ∀ k ≥ k0. (5.18)

However, in view of the strong convergence property (5.16), there is an index
k1 ∈ N satisfying

ξk ∈ N (ξ∗), ∀ k ≥ k1. (5.19)

Combining (5.18) and (5.19), we �nally obtain

ξk = ζmax − γ0(yk) ∈ Lp(ΓN ) \
(
Lp+(ΓN )

)
εk

(B), ∀ k ≥ max{k0, k1}.

This, however, is a contradiction to

ζmax − γ0(yk) ∈ Lp+(ΓN ), ∀ k ∈ N.

Thus, ζmax−γ0(y∗) ∈ Lp+(ΓN ). In the same manner it can be shown that γ0(y∗) ∈
Lp+(ΓN ). Hence, the pair (u∗, y∗) is admissible for OCP (3.9).

As an obvious consequence of this theorem and Theorem 4.2, we have the
following noteworthy property of the Henig relaxed problems (5.12).

Corollary 5.1. Let f ∈W−1,q(Ω; ΓD), yd ∈ L2(Ω), and ζmax ∈ Lp(∂Ω) be given
distribution. Then the Henig relaxed problem (5.12) is solvable for each ε ∈ (0, δ)
provided Hypothesis (H1) is satis�ed.

The next result is crucial in this section. We show that optimal solutions for
the original OCP (3.9) can be attained by solving the corresponding Henig relaxed
problems (5.10)�(5.11).

Theorem 5.2. Let f ∈ W−1,q(Ω; ΓD), yd ∈ L2(Ω), and ζmax ∈ Lp(∂Ω) be given
distributions. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence such

that εk → 0 as k →∞, where δ > 0 is de�ned by (5.13). Let
{

(uk,0, yk,0) ∈ Ξεk
}
k∈N

be a sequence of optimal solutions to the Henig relaxed problems (5.10)�(5.11) such
that

sup
k∈N
‖uk,0‖BV (Ω) < +∞. (5.20)
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Then there is a subsequence
{

(uki,0, yki,0)
}
i∈N of

{
(uk,0, yk,0)

}
k∈N and a pair

(u0, y0) such that

(uki,0, yki,0)
τ−→ (u0, y0) as i→∞, (5.21)

(u0, y0) ∈ Ξ, and I(u0, y0) = inf
(u,y)∈Ξ

I(u, y). (5.22)

Proof. In view of a priory estimate (3.14), the uniform boundedness of optimal
controls with respect toBV -norm (5.20) implies the ful�lment of condition (5.15)2.
Hence, the compactness property (5.21) and the inclusion (u0, y0) ∈ Ξ are a direct
consequence of Theorem 5.1. It remains to show that the limit pair (u0, y0) is a
solution to OCP (3.9). Indeed, the condition (u0, y0) ∈ Ξ implies regularity of the
original OCP (3.9). Hence, by Theorem 4.2, this problem has a nonempty set of
solutions. Let (u∗, y∗) be one of them. Then the following inequality is obvious

I(u∗, y∗) ≤ I(u0, y0). (5.23)

On the other hand, by Proposition 5.1 (see property (iv)), we have (u∗, y∗) ∈ Ξεki
for every i ∈ N. Since

{
(uki,0, yki,0)

}
i∈N are the solutions to the corresponding

relaxed problems (5.12), it follows that

inf
(u,y)∈Ξεki

I(u, y) = I(uki,0, yki,0) ≤ I(u∗, y∗), ∀ i ∈ N. (5.24)

As a result, taking into account the relations (5.23) and (5.24), and the lower
semicontinuity property of the cost functional I with respect to the τ -convergence,
we �nally get

inf
(u,y)∈Ξ

I(u, y) = I(u∗, y∗)
by (5.24)
≥ lim sup

i→∞
I(uki,0, yki,0)

≥ lim inf
i→∞

I(uki,0, yki,0) ≥ I(u0, y0)
by (5.23)
≥ I(u∗, y∗).

Thus,

inf
(u,y)∈Ξ

I(u, y) = lim
i→∞

I(uki,0, yki,0) = I(u0, y0),

and we arrive at the desired property (5.22)2. The proof is complete.

Remark 5.3. It is worth to note that condition (5.20) can be omitted if the original
OCP (3.9) is regular, that is when Hypothesis (H1) is valid. Indeed, let us assume
that Ξ 6= ∅ and (û, ŷ) ∈ Ξ is an arbitrary pair. Then (û, ŷ) is admissible to each
Henig relaxed problems (5.10)�(5.11), and, hence,

inf
(u,y)∈Ξεk

I(u, y) = I(uk,0, yk,0) ≤ I(û, ŷ), ∀ k ∈ N. (5.25)
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Since, by Proposition 5.2, the inclusion Ξ ⊆ Ξεk holds true for all εk > 0, and the
sequence {Ξεk}k∈N is monotone in the following sense (because of the property
(ii) of Proposition 5.1)

Ξε1 ⊇ Ξε2 ⊇ · · · ⊇ Ξεk ⊇ · · · ⊇ Ξ 6= ∅,

it follows that

inf
(u,y)∈Ξε1

I(u, y) ≤ · · · ≤ inf
(u,y)∈Ξεk

I(u, y) ≤ · · · ≤ inf
(u,y)∈Ξ

I(u, y) ≤ I(û, ŷ).

As a result, (5.25) leads to the estimate

sup
k∈N
‖uk,0‖BV (Ω) ≤ sup

k∈N

[ˆ
Ω
|uk,0| dx+ inf

(u,y)∈Ξεk

I(u, y)

]
≤ ‖ξ2‖L∞(Ω)|Ω|+ I(û, ŷ) < +∞.

As was mentioned at the beginning of this section, the main bene�t of the
relaxed optimal control problems (5.10)�(5.11) comes from the fact that the
Henig dilating cone

(
Lp+(ΓN )

)
ε

(B) has a nonempty topological interior. Hence,
it gives a possibility to apply the Slater condition or the Robinson condition in
order to characterize the optimal solutions for the state constrained OCP (3.9).
On the other hand, this approach provides nice convergence properties for the
solutions of relaxed problems (5.10)�(5.11). However, as follows from Theorems 5.1
and 5.2 (see also Remark 5.3), the most restrictive assumption deals with the
regularity of the relaxed problems (5.10)�(5.11) for all ε ∈ (0, δ). So, if we reject
the Hypothesis (H1), it becomes unclear, in general, whether the relaxed sets of
admissible solutions Ξε are nonempty for all ε↘ 0. In this case it makes sense to
provide further relaxation for each of Henig problems (5.10)�(5.11).
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