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In this paper we consider an optimal control problem (OCP) for the coupled

system of a nonlinear monotone Dirichlet problem with matrix-valued L∞(Ω;RN×N )-

controls in coe�cients and a nonlinear equation of Hammerstein type, where solution

nonlinearly depends on L∞-control. Since problems of this type have no solutions

in general, we make a special assumption on the coe�cients of the state equations

and introduce the class of so-called solenoidal admissible controls. Using the direct

method in calculus of variations, we prove the existence of an optimal control. We

also study the stability of the optimal control problem with respect to the domain

perturbation. In particular, we derive the su�cient conditions of the Mosco-stability

for the given class of OCPs.
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1. Introduction

The aim of this paper is to prove the existence result for an optimal control
problem (OCP) governed by the system of a nonlinear monotone elliptic equation
with homogeneous Dirichlet boundary conditions and a nonlinear equation of
Hammerstein type, and to provide sensitivity analysis of the considered optimiza-
tion problem with respect to the domain perturbations. As controls we consider
the matrix of coe�cients in the main part of the elliptic equation and a coe�cient
in the non-linear part of the Hammerstein equation. We assume that admissible
controls are measurable and uniformly bounded functions from L∞(Ω;RN×N ) ×
L∞(Ω).

Systems with distributed parameters and optimal control problems for systems
described by PDE, nonlinear integral and ordinary di�erential equations have
been widely studied by many authors (see for example [17, 21, 22]). However,
�����������������
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systems which contain equations of di�erent types and optimization problems
associated with them are still less well understood. In general case including as
well control and state constrains, such problems are rather complex and have
no simple constructive solutions. The system, considered in the present paper,
contains two equations: a nonlinear monotone elliptic equation with homogeneous
Dirichlet boundary conditions and a nonlinear equation of Hammerstein type,
which nonlinearly depends on the solution of the �rst object. The optimal control
problem we study here is to minimize the discrepancy between a given distribution
zd ∈ Lp(Ω) and a solution of Hammerstein equation z = z(U , v, y), choosing
appropriate coe�cients (U , v) ∈ Uad × Vad, i.e.

IΩ(U , v, y, z) =

ˆ
Ω
|z(x) − zd(x)|p dx −→ inf (1.1)

subject to constrains

z +BF (v, y, z) = g in Ω, (1.2)

−div
(
U(x)[(∇y)p−2]∇y

)
+ |y|p−2y = f in Ω, (1.3)

(U , v) ∈ Uad × Vad, y ∈W 1,p
0 (Ω), (1.4)

where Uad × Vad ⊂ L∞(Ω;RN×N ) × L∞(Ω) is a set of admissible controls, B :
Lq(Ω) → Lp(Ω) is a positive linear operator and F : L∞(Ω)×W 1,p

0 (Ω)×Lp(Ω) →
Lq(Ω) is an essentially nonlinear and non-monotone operator.

Since the range of optimal control problems in coe�cients is very wide, in-
cluding as well optimal shape design problems, optimization of certain evolution
systems, some problems originating in mechanics and others, this topic has been
widely studied by many authors. Typically (see for instance [22, 24]), the most
of optimal control problems in coe�cients for linear elliptic equations have no
solution in general. It turns out that this circumstance is the characteristic feature
for the majority of optimal control problems in coef�cients. To overcome this
di�culty, in present article, by analogy with [10, 18, 20], we put some additional
constrains on the set of admissible controls. Namely, we consider the matrix-valued
controls from the so-called generalized solenoidal set. The elements of this set do
not belong to any Sobolev space, but still are a little bit �more regular� then those
from L∞-class. We give the precise de�nition of such controls in Section 3 and
prove that in this case the original optimal control problem admits at least one
solution. It should be noticed that we do not involve the homogenization method
and the relaxation procedure in this process.

In practice, the equations of Hammerstein type appear as integral or integro-
di�erential equations. The class of integral equations is very important for theory
and applications, since there are less restrictions put on smoothness of the desired
solutions involved in comparison to those for the solutions of di�erential equations.
It should be also mentioned here that solution uniqueness is not typical for
equations of Hammerstein type or optimization problems associated with such
objects (see [1]). Indeed, such property would require rather strong assumptions
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on operators B and F , which is rather restrictive in view of numerous applications
(see [25]).

As was pointed above, the principal feature of this problem is the fact that an
optimal solution for (1.1)�(1.4) does not exist in general. So here we have a typical
situation for the general optimal control theory. Namely, the original control object
is described by well-posed boundary value problem, but the associated optimal
control problem is ill-posed and requires relaxation.

Since there is no good topology a priori given on the set of all open subsets
of RN , we study the stability properties of the original control problem imposing
some constraints on domain perturbations. Namely, we consider two types of
domain perturbations: so-called topologically admissible perturbations (see Dancer
[8]), and perturbations in the Hausdor� complementary topology (see Bucur and
Zolesio [5]). The asymptotical behavior of sets of admissible quadruples Ξε �
controls and the corresponding states � under domain perturbation is described
in detail in Section 4. In particular, we show that in this case the sequences
of admissible solutions to the perturbed problems are compact with respect to
the weak convergence in L∞(D;RN×N ) × L∞(D) ×W 1,p

0 (D) × Lp(D). Section
5 is devoted to the stability properties of optimal control problem (1.1)�(1.4)
under the domain perturbation. Our treatment of this question is based on a
new stability concept for optimal control problems (see for comparison [10, 11]).
We show that Mosco-stable optimal control problems possess �good� variational
properties, which allow using optimal solutions to the perturbed problems in
�simpler� domains as a basis for the construction of suboptimal controls for the
original control problem. As a practical motivation of this approach we want
to point out that the �real� domain Ω is never perfectly smooth but contains
microscopic asperities of size signi�cantly smaller than characteristic length scale
of the domain. So a direct numerical computation of the solutions of optimal
control problems in such domains is extremely di�cult. Usually it needs a very
�ne discretization mesh, which means an enormous computation time, and such
a computation is often irrelevant. In view of the variational properties of Mosco-
stable problems we can replace the �rough� domain Ω by a family of more�regular�
domains {Ωε}ε>0 ⊂ D forming some admissible perturbation and to approximate
the original problem by the corresponding perturbed problems [12].

2. Notation and Preliminaries

Throughout the paper D and Ω are bounded open subsets of RN , N > 1 and
Ω ⊂⊂ D. Let χΩ be the characteristic function of the set Ω and let LN (Ω) be the
N -dimensional Lebesgue measure of Ω. The space D′(Ω) of distributions in Ω is
the dual of the space C∞

0 (Ω). For real numbers 2 6 p < +∞, and 1 < q < +∞
such that 1/p+1/q = 1, the spaceW 1,p

0 (Ω) is the closure of C∞
0 (Ω) in the Sobolev
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space W 1,p(Ω) with respect to the norm

∥y∥
W 1,p

0 Ω
=

(ˆ
Ω

N∑
k=1

∣∣∣∣ ∂y∂xi
∣∣∣∣p dx+

ˆ
Ω
|y|p dx

)1/p

, ∀ y ∈W 1,p
0 (Ω), (2.1)

while W−1,q(Ω) is the dual space of W 1,p
0 (Ω).

For any vector �eld v ∈ Lq(Ω;RN ), the divergence is an element of the space
W−1, q(Ω) de�ned by the formula

⟨div v, φ⟩
W 1,p

0 (Ω)
= −

ˆ
Ω

(v,∇φ)RN dx, ∀φ ∈W 1,p
0 (Ω), (2.2)

where ⟨·, ·⟩
W 1,p

0 (Ω)
denotes the duality pairing between W−1,q(Ω) and W 1,p

0 (Ω),

and (·, ·)RN denotes the scalar product of two vectors in RN . A vector �eld v is
said to be solenoidal, if divv = 0.

Weak Compactness Criterion in L1(Ω). Throughout the paper we will often
use the concepts of the weak and strong convergence in L1(Ω). Let {aε}ε>0 be
a bounded sequence in L1(Ω). We recall that {aε}ε>0 is called equi-integrable
if for any δ > 0 there is τ = τ(δ) such that

´
S |aε| dx < δ for every ε > 0

and every measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Then the
following assertions are equivalent: (i) A sequence {aε}ε>0 is weakly compact in
L1(Ω). (ii) The sequence {aε}ε>0 is equi-integrable. (iii) Given δ > 0 there exists
λ = λ(δ) such that supε>0

´
{|aε|>λ} |aε| dx < δ.

Theorem 2.1 (Lebesgue's Theorem). If a bounded sequence {aε}ε>0 ⊂ L1(Ω) is
equi-integrable and aε → a almost everywhere on Ω, then aε → a in L1(Ω).

Functions with bounded variations. Let f : Ω → R be a function of L1(Ω).
De�ne

TV (f) :=

ˆ
Ω
|Df |

= sup
{ ˆ

Ω
f(∇, φ)RN dx : φ ∈ C1

0 (Ω;RN ), |φ(x)| 6 1 forx ∈ Ω
}
,

where (∇, φ)RN =
∑N

i=1
∂φi

∂xi
.

According to the Radon-Nikodym theorem, if TV (f) < +∞ then the distri-
bution Df is a measure and there exist a vector-valued function ∇f ∈ L1(Ω;RN )
and a measure Dsf , singular with respect to the N -dimensional Lebesgue measure
LN⌊Ω restricted to Ω, such that Df = ∇fLN⌊Ω +Dsf.

De�nition 2.1. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if TV (f) < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation, i.e. BV (Ω) =

{
f ∈ L1(Ω) : TV (f) < +∞

}
.
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Under the norm ∥f∥BV (Ω) = ∥f∥L1(Ω)+TV (f), BV (Ω) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [13]):

Proposition 2.1. (i) Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging
to some f in L1(Ω) and satisfying condition supk∈N TV (fk) < +∞. Then

f ∈ BV (Ω) and TV (f) 6 lim inf
k→∞

TV (fk);

(ii) for every f ∈ BV (Ω)∩Lr(Ω), r ∈ [1,+∞), there exists a sequence {fk}∞k=1 ⊂
C∞(Ω) such that

lim
k→∞

ˆ
Ω
|f − fk|r dx = 0 and lim

k→∞
TV (fk) = TV (f);

(iii) for every bounded sequence {fk}∞k=1 ⊂ BV (Ω) there exists a subsequence,
still denoted by fk, and a function f ∈ BV (Ω) such that fk → f in L1(Ω).

Monotone operators. Let α and β be constants such that 0 < α 6 β < +∞. We
de�neMα,β

p (D) as the set of all square symmetric matrices U(x) = [ai j(x)]16i,j6N
in L∞(D;RN×N ) such that the following conditions of growth, monotonicity, and
strong coercivity are ful�lled:

|aij(x)| 6 β a.e. in D, ∀ i, j ∈ {1, . . . , N}, (2.3)(
U(x)([ζp−2]ζ − [ηp−2]η), ζ − η

)
RN > 0 a.e. in D, ∀ ζ, η ∈ RN , (2.4)(

U(x)[ζp−2]ζ, ζ
)
RN =

N∑
i,j=1

ai j(x)|ζj |p−2 ζj ζi > α |ζ|pp a.e in D, (2.5)

where |η|p =

(
N∑
k=1

|ηk|p
)1/p

is the H�older norm of η ∈ RN and

[ηp−2] = diag{|η1|p−2, |η2|p−2, . . . , |ηN |p−2}, ∀η ∈ RN . (2.6)

Remark 2.1. It is easy to see thatMα,β
p (D) is a nonempty subset of L∞(D;RN×N ).

As the particular representatives of the setMα,β
p (D) we can take diagonal matrices

of the form (see [10]), U(x) = diag{δ1(x), δ2(x), . . . , δN (x)}, where α 6 δi(x) 6 β
a.e. in D ∀ i ∈ {1, . . . , N}.

Let us consider a nonlinear operator A : Mα,β
p (D) ×W 1,p

0 (Ω) → W−1,q(Ω)
de�ned as

A(U , y) = −div
(
U(x)[(∇y)p−2]∇y

)
+ |y|p−2y,

or via the paring

⟨A(U , y), φ⟩
W 1,p

0 (Ω)
=

N∑
i,j=1

ˆ
Ω

(
aij(x)

∣∣∣∣ ∂y∂xj
∣∣∣∣p−2 ∂y

∂xj

)
∂φ

∂xi
dx

+

ˆ
Ω
|y|p−2y φ dx, ∀φ ∈W 1,p

0 (Ω).
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In view of properties (2.3)�(2.5), for every �xed matrix U ∈Mα,β
p (D), the operator

A(U , ·) turns out to be coercive, strongly monotone and demi-continuous in the
following sense: yk → y0 strongly in W 1,p

0 (Ω) implies that A(U , yk) ⇀ A(U , y0)
weakly in W−1,q(Ω) (see [15]). Then by well-known existence results for nonlinear
elliptic equations with strictly monotone demi-continuous coercive operators (see
[15,26]), the nonlinear Dirichlet boundary value problem

A(U , y) = f in Ω, y ∈W 1,p
0 (Ω), (2.7)

admits a unique weak solution in W 1,p
0 (Ω) for every �xed matrix U ∈ Mα,β

p (D)
and every distribution f ∈W−1,q(D). Let us recall that a function y is the weak
solution of (2.7) if

y ∈W 1,p
0 (Ω), (2.8)ˆ

Ω

(
U(x)[(∇y)p−2]∇y,∇φ

)
RN dx+

ˆ
Ω
|y|p−2yφ dx =

ˆ
Ω
fφ dx, ∀φ ∈W 1,p

0 (Ω).

(2.9)

System of nonlinear operator equations with an equation of Hammerstein type.
Let Y and Z be Banach spaces, let Y0 ⊂ Y be an arbitrary bounded set, and let
Z∗ be the dual space to Z. Let V be a dual space to some Banach space B and
V0 ⊂ V be a bounded subset. To begin with we recall some useful properties of
non-linear operators, concerning the solvability problem for Hammerstein type
equations and systems.

De�nition 2.2. We say that the operator G : D(G) ⊂ Z → Z∗ is radially
continuous if for any z1, z2 ∈ X there exist ε > 0 such that z1 + τz2 ∈ D(G)
for all τ ∈ [0, ε] and the real-valued function [0, ε] ∋ τ → ⟨G(z1 + τz2), z2⟩Z is
continuous.

De�nition 2.3. An operator G : V × Y × Z → Z∗ is said to have a uniformly
semi-bounded variation (u.s.b.v.) if for any bounded set V0×Y0 ⊂ V ×Y and any
elements z1, z2 ∈ D(G) such that ∥zi∥Z ≤ R, i = 1, 2, the following inequality

⟨G(v, y, z1) −G(v, y, z2), z1 − z2⟩Z > − inf
(v,y)∈V0×Y0

Cv, y(R; ∥|z1 − z2∥|Z) (2.10)

holds true provided the function Cv, y : R+ ×R+ → R is continuous for each pair

(v, y) ∈ V0×Y0, and
1

t
Cv, y(r, t) → 0 as t→ 0, ∀r > 0. Here, ∥| · ∥|Z is a seminorm

on Z such that ∥| · ∥|Z is compact with respect to the norm ∥ · ∥Z .

It is worth to mention here that if Cv, y(ρ, r) ≡ 0, then (2.10) implies the
monotonicity property for the operator G with respect to the third argument.

Remark 2.2. Each operator G : V × Y × Z → Z∗ with u.s.b.v. possesses the
following property (see for comparison Remark 1.1.2 in [1]): if a set K ⊂ Z is
such that ∥z∥Z 6 k1 and ⟨G(v, y, z), z⟩Z 6 k2 for all z ∈ K and (v, y) ∈ V0 × Y0,
then there exists a constant C > 0 such that ∥G(v, y, z)∥Z∗ 6 C, ∀ z ∈ K and
∀(v, y) ∈ V0 × Y0.
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Let B : Z∗ → Z and F : V × Y × Z → Z∗ be given operators such that the
mapping Z∗ ∋ z∗ 7→ B(z∗) ∈ Z is linear. Let g ∈ Z be a given distribution. Then
a typical Hammerstein operator equation can be represented as follows

z +BF (v, y, z) = g, (2.11)

The following existence result is well-known (see [1, Theorem 1.2.1]).

Theorem 2.2. Let B : Z∗ → Z be a linear continuous positive operator such that
it has the right inverse operator B−1

r : Z → Z∗. Let F : V × Y × Z → Z∗ be an
operator with u.s.b.v such that F (v, y, ·) : Z → Z∗ is radially continuous for each
pair (v, y) ∈ V0 × Y0 and the following inequality holds true

⟨F (v, y, z) −B−1
r g, z⟩Z > 0 if only ∥z∥Z > λ > 0, λ = const.

Then the set

H(v, y) = {z ∈ Z : z +BF (v, y, z) = g in the sense of distributions }

is non-empty and weakly compact for every �xed pair (v, y) ∈ V0 × Y0 and g ∈ Z.

De�nition 2.4. We say that

(M) the operator F : V × Y × Z → Z∗ possesses the M-property if for any
sequences {vk}k∈N ⊂ V , {yk}k∈N ⊂ Y and {zk}k∈N ⊂ Z such that vk → v
strongly in V , yk → y strongly in Y and zk → z weakly in Z as k → ∞, the
condition

lim
k→∞

⟨F (vk, yk, zk), zk⟩Z = ⟨F (v, y, z), z⟩Z (2.12)

implies that zk → z strongly in Z.

(A) the operator F : V × Y × Z → Z∗ possesses the A-property if for any
sequences {vk}k∈N ⊂ V , {yk}k∈N ⊂ Y and {zk}k∈N ⊂ Z such that vk → v
strongly in V , yk → y strongly in Y and zk → z weakly in Z as k → ∞, the
following relation

lim inf
k→∞

⟨F (vk, yk, zk), zk⟩Z > ⟨F (v, y, z), z⟩Z (2.13)

holds true.

In what follows, we set V = L∞(D), Y = W 1,p
0 (Ω), Z = Lp(Ω), and Z∗ =

Lq(Ω).

2.1. Capacity

There are many ways to de�ne the Sobolev capacity. We use the notion of
local p-capacity which can be de�ned in the following way:
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De�nition 2.5. For a compact set K contained in an arbitrary ball B, capacity
of K in B, denoted by Cp(K,B), is de�ned as follows

Cp(K,B) = inf

{ˆ
B
|Dφ|p dx, ∀φ ∈ C∞

0 (B), φ > 1 on K

}
.

For open sets contained in B the capacity is de�ned by an interior approxi-
mating procedure by compact sets (see [16]), and for arbitrary sets by an exterior
approximating procedure by open sets.

It is said that a property holds p-quasi everywhere (abbreviated as p-q.e.) if
it holds outside a set of p-capacity zero. It is said that a property holds almost
everywhere (abbreviated as a.e.) if it holds outside a set of Lebesgue measure
zero.

A function y is called p-quasi�continuous if for any δ > 0 there exists an open
set Aδ such that Cp(Aδ, B) < δ and y is continuous in D \ Aδ. We recall that
any function y ∈ W 1, p(D) has a unique (up to a set of p-capacity zero) p-quasi
continuous representative. Let us recall the following results (see [2, 16]):

Theorem 2.3. If y ∈W 1, p(RN ), then y|Ω ∈W 1, p
0 (Ω) if and only if y = 0 p-q.e.

on Ωc for a p-quasi-continuous representative.

Theorem 2.4. Let Ω be a bounded open subset of RN , and let y ∈ W 1, p(Ω). If
y = 0 a.e. in Ω, then y = 0 p-q.e. in Ω.

For these and other properties on quasi-continuous representatives, the reader
is referred to [2, 13,16,27].

2.2. Convergence of sets

In order to speak about �domain perturbation�, we have to prescribe a topology
on the space of open subsets of D. To do this, for the family of all open subsets
of D, we de�ne the Hausdor� complementary topology, denoted by Hc, given by
the metric:

dHc(Ω1,Ω2) = sup
x∈RN

|d(x,Ωc
1) − d(x,Ωc

2)| ,

where Ωc
i are the complements of Ωi in RN .

De�nition 2.6. We say that a sequence {Ωε}ε>0 of open subsets of D converges
to an open set Ω ⊆ D in Hc-topology, if dHc(Ωε,Ω) converges to 0 as ε→ 0.

The Hc-topology has some good properties, namely the space of open subsets

of D is compact with respect to Hc-convergence, and if Ωε
Hc

−→ Ω, then for any
compact K ⊂⊂ Ω we have K ⊂⊂ Ωε for ε small enough. Moreover, a sequence of
open sets {Ωε}ε>0 ⊂ D Hc-converges to an open set Ω, if and only if the sequence
of complements {Ωc

ε}ε>0 converges to Ωc in the sense of Kuratowski. We recall
here that a sequence {Cε}ε>0 of closed subsets of RN is said to be convergent to
a closed set C in the sense of Kuratowski if the following two properties hold:
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(K1) for every x ∈ C, there exists a sequence {xε ∈ Cε}ε>0 such that xε → x as
ε→ 0;

(K2) if {εk}k∈N is a sequence of indices converging to zero, {xk}k∈N is a sequence
such that xk ∈ Cεk for every k ∈ N, and xk converges to some x ∈ RN , then
x ∈ C.

For these and other properties on Hc-topology, we refer to [14].
It is well known that in the case when p > N , the Hc-convergence of open

sets {Ωε}ε>0 ⊂ D is equivalent to the convergence in the sense of Mosco of the
associated Sobolev spaces.

De�nition 2.7. We say a sequence of spaces
{
W 1, p

0 (Ωε)
}
ε>0

converges in the

sense of Mosco to W 1, p
0 (Ω) (see for comparison [23]) if the following conditions

are satis�ed:

(M1) for every y ∈ W 1, p
0 (Ω) there exists a sequence

{
yε ∈W 1, p

0 (Ωε)
}
ε>0

such

that ỹε → ỹ strongly in W 1, p(RN );

(M2) if {εk}k∈N is a sequence converging to 0 and
{
yk ∈W 1, p

0 (Ωεk)
}
k∈N

is a

sequence such that ỹk → ψ weakly inW 1, p(RN ), then there exists a function
y ∈W 1, p

0 (Ω) such that y = ψ|Ω.

Hereinafter we denote by ỹε (respect. ỹ) the zero-extension to RN of a function
de�ned on Ωε (respect. on Ω), that is, ỹε = ỹεχΩε and ỹ = ỹχΩ.

Following Bucur & Trebeschi (see [4]), we have the following result.

Theorem 2.5. Let {Ωε}ε>0 be a sequence of open subsets of D such that Ωε
Hc

−→
Ω and Ωε ∈ Ww(D) for every ε > 0, with the class Ww(D) de�ned as

Ww(D) = {Ω ⊆ D : ∀x ∈ ∂Ω, ∀ 0 < r < R < 1;

ˆ R

r

(
Cp(Ω

c ∩B(x, t);B(x, 2t))

Cp(B(x, t);B(x, 2t))

) 1
p−1 dt

t
> w(r,R, x)

 , (2.14)

where B(x, t) is the ball of radius t centered at x, and the function

w : (0, 1) × (0, 1) ×D → R+

is such that

1. limr→0w(r,R, x) = +∞, locally uniformly on x ∈ D;

2. w is a lower semicontinuous function in the third argument.
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Then Ω ∈ Ww(D) and the sequence of Sobolev spaces
{
W 1, p

0 (Ωε)
}
ε>0

conver-

ges in the sense of Mosco to W 1, p
0 (Ω).

Theorem 2.6. Let N > p > N −1 and let {Ωε}ε>0 be a sequence of open subsets

of D such that Ωε
Hc

−→ Ω and Ωε ∈ Ol(D) for every ε > 0, where the class Ol(D)
is de�ned as follows

Ol(D) = {Ω ⊆ D : ♯Ωc 6 l} (2.15)

(here by ♯ one denotes the number of connected components). Then Ω ∈ Ol(D) and

the sequence of Sobolev spaces
{
W 1, p

0 (Ωε)
}
ε>0

converges in the sense of Mosco to

W 1, p
0 (Ω).

In the meantime, the perturbation in Hc-topology (without some additional
assumptions) may be very irregular. It means that the continuity of the mapping
Ω 7→ yΩ, which associates to every Ω the corresponding solution yΩ of a Dirichlet
boundary problem (2.8)�(2.9), may fail (see, for instance, [7]). In view of this,
we introduce one more concept of the set convergence. Following Dancer [8] (see
also [9]), we say that

De�nition 2.8. A sequence {Ωε}ε>0 of open subsets of D topologically converges

to an open set Ω ⊆ D ( in symbols Ωε
top−→ Ω) if there exists a compact set

K0 ⊂ Ω of p-capacity zero (Cp(K0, D) = 0) and a compact set K1 ⊂ RN of
Lebesgue measure zero such that

(D1) Ω′ ⊂⊂ Ω \K0 implies that Ω′ ⊂⊂ Ωε for ε small enough;

(D2) for any open set U with Ω ∪K1 ⊂ U , we have Ωε ⊂ U for ε small enough.

Note that without supplementary regularity assumptions on the sets, there
is no connection between this type of set convergence and the set convergence in
the Hausdor� complementary topology. Moreover, the topological set convergence
allows certain parts of the subsets Ωε degenerating and being deleted in the
limit. For instance, assume that Ω consists of two disjoint balls, and Ωε is a
dumbbell with a small hole on each side. Shrinking the holes and the handle, we
can approximate the set Ω by sets Ωε in the sense of De�nition 2.8 as shown
in Figure 1. It is obvious that in this case dHc(Ωε,Ω) does not converge to 0 as

Fig. 1: Example of the set convergence in the sense of De�nition 2.8

ε → 0. However, as an estimate of an �approximation� of Ω by elements of the
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above sequence Ωε
top−→ Ω, we can take the Lebesgue measure of the symmetric

set di�erence Ωε△Ω, that is, µ(Ω,Ωε) = LN (Ω \ Ωε ∪ Ωε \ Ω). It should be noted
that in this case the distance µ coincides with the well-known Ekeland metric in
L∞(D) applied to characteristic functions:

dE(χΩ, χΩε) = LN {x ∈ D : χΩ(x) ̸= χΩε(x)} = µ(Ω,Ωε).

As an example of subsets which are Hc-convergent but have no limit in the sense
of De�nition 2.8, let us consider the sets {Ωε}ε>0 containing an oscillating crack
with vanishing amplitude ε (see Figure 2).

Fig. 2: The p-unstable sets which are compact with respect to the Hc-topology

3. Setting of the Optimal Control Problem and Existence Result

Let ξ 1, ξ2 be given functions of L∞(D) such that 0 6 ξ1(x) 6 ξ2(x) a.e.
in D. Let {Q1, . . . , QN} be a collection of nonempty compact convex subsets of
W−1, q(D). To de�ne the class of admissible controls, we introduce two sets

Ub =
{
U = [aij ] ∈Mα,β

p (D)
∣∣∣ ξ1(x) ≤ aij(x) ≤ ξ2(x) a.e. inD, ∀ i, j = 1, . . . , N

}
,

(3.1)

Usol =
{
U = [u1, . . . , uN ] ∈Mα,β

p (D)
∣∣∣div ui ∈ Qi, ∀ i = 1, . . . , N

}
, (3.2)

assuming that the intersection Ub ∩ Usol ⊂ L∞(D;RN×N ) is nonempty. We say
that a matrix U = [ai j ] is of solenoidal type if U ∈ Uad := Ub ∩ Usol

De�nition 3.1. We say that a pair (U , v) is an admissible control if

(U , v) ∈ Uad × Vad,

where Vad ⊂ L∞(D) is an appropriate bounded subset.

Remark 3.1. As it was shown in [10] the set Uad is compact with respect to the
weak-∗ topology of the space L∞(D;RN×N ) as well as Vad is obviously weakly-∗
compact in L∞(D).
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Let us consider the following optimal control problem:

Minimize
{
IΩ(U , v, y, z) =

ˆ
Ω
|z(x) − zd(x)|p dx

}
, (3.3)

subject to the constraints
ˆ
Ω

(
U [(∇y)p−2]∇y,∇φ

)
RN dx+

ˆ
Ω
|y|p−2yφ dx = ⟨f, φ⟩

W 1,p
0 (Ω)

, ∀φ ∈W 1,p
0 (Ω),

(3.4)

U ∈ Uad, y ∈W 1,p
0 (Ω), (3.5)ˆ

Ω
z ϕ dx+

ˆ
Ω
BF (v, y, z)ϕdx =

ˆ
Ω
g ϕ dx, (3.6)

v ∈ Vad. (3.7)

where f ∈W−1,q(D), g ∈ Lp(D), and zd ∈ Lp(D) are given distributions.
Hereinafter, Ξsol ⊂ L∞(D;RN×N ) × L∞(D) ×W 1,p

0 (Ω) × Lp(Ω) denotes the
set of all admissible quadruples to the optimal control problem (3.3)�(3.7). Let τ
be the topology on the set L∞(D;RN×N )×L∞(D)×W 1,p

0 (Ω)×Lp(Ω) which we
de�ne as a product of the weak-∗ topology of L∞(D;RN×N ) × L∞(D), the weak
topology of W 1,p

0 (Ω), and the weak topology of Lp(Ω).
Further we use the following result (see [10, 19]).

Proposition 3.1. For each U ∈ Uad and every f ∈W−1, q(D), a weak solution y
to variational problem (3.4)�(3.5) satis�es the estimate

∥y∥p
W 1,p

0 (Ω)
6 C∥f∥q

W−1, q(D)
, (3.8)

where C is a constant depending on p and α only.

Proposition 3.2. Let B : Lq(Ω) → Lp(Ω) and F : L∞(D)×W 1,p
0 (Ω)×Lp(Ω) →

Lq(Ω) be operators satisfying all conditions of Theorem 2.2. Then the set

Ξsol =
{

(U , v, y, z) ∈ L∞(D;RN×N ) × L∞(D) ×W 1,p
0 (Ω) × Lp(Ω) :

A(U , y) = f, z +BF (v, y, z) = g)
}

is nonempty for every f ∈W−1,q(D) and g ∈ Lp(D).

Proof. Let (U , v) ∈ Uad × Vad be an arbitrary admissible control. Then for a
given f ∈W−1,q(D), the Dirichlet boundary problem (3.4)�(3.5) admits a unique
solution yU = y(U , f) ∈ W 1,p

0 for which the estimate (3.8) holds true. It remains
to remark that the corresponding Hammerstein equation

z +BF (v, yU , z) = g (3.9)

has a nonempty set of solutions H(v, yU ) for every g ∈ Lp(D) by Theorem 2.2.
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Theorem 3.1. Assume the following conditions hold:

• the operators B : Lq(Ω) → Lp(Ω) and F : L∞(D) ×W 1,p
0 (Ω) × Lp(Ω) →

Lq(Ω) satisfy conditions of Theorem 2.2;

• the operator F (·, ·, z) : L∞(D) × W 1,p
0 (Ω) → Lq(Ω) is compact in the

following sense: if vk → v weakly-∗ in L∞(D) and yk → y0 weakly in
W 1,p

0 (Ω), then F (vk, yk, z) → F (v0, y0, z) strongly in Lq(Ω).

Then for every f ∈W−1, q(D) and g ∈ Lp(D), the set Ξsol is sequentially τ -closed,
i.e. if a sequence {(Uk, vk, yk, zk) ∈ Ξsol}k∈N is such that Uk → U0 weakly-∗ in
L∞(Ω;RN×N ), vk → v weakly-∗ in L∞(D), yk = y(Uk) → y0 weakly in W 1,p

0 (Ω),
and zk = z(vk, yk) → z0 weakly in Lp(Ω), then (U0, v0) ∈ Uad × Vad, y0 = y(U0),
z0 ∈ H(v0, y0), and, therefore, (U0, v0, y0, z0) ∈ Ξsol.

Proof. Let {(Uk, vk, yk, zk)}k∈N ⊂ Ξsol be any τ -convergent sequence of admissible
quadruples to the optimal control problem (3.3)�(3.7), and let (U0, v0, y0, z0) be
its τ -limit. Since the controls {Uk}k∈N belong to the set of solenoidal matrices
Usol (see (3.2)), it follows from [18, 20] that U0 ∈ Uad and y0 = y(U0). It remains
to show that z0 ∈ H(v0, y0). To this end, we have to pass to the limit in equation

zk +BF (vk, yk, zk) = g (3.10)

as k → ∞ and get the limit triplet (v0, y0, z0) is related by the equation z0 +
BF (v0, y0, z0) = g. With that in mind, let us rewrite equation (3.10) in the
following way

B∗wk +BF (vk, yk, B
∗wk) = g,

where wk ∈ Lq(Ω), B∗ : Lq(Ω) → Lp(Ω) is the conjugate operator for B, i.e.
⟨Bν,w⟩Lq(Ω) = ⟨B∗w, ν⟩Lq(Ω) and B

∗wk = zk. Then, for every k ∈ N, we have the
equality

⟨B∗wk, wk⟩Lp(Ω) + ⟨F (vk, yk, B
∗wk), B

∗wk⟩Lp(Ω) = ⟨g, wk⟩Lp(Ω). (3.11)

Taking into account the transformation

⟨g, wk⟩Lp(Ω) = ⟨BB−1
r g, wk⟩Lp(Ω) = ⟨B−1

r g,B∗wk⟩Lp(Ω),

we obtain

⟨wk, Bwk⟩Lp(Ω) + ⟨F (vk, yk, B
∗wk) −B−1

r g,B∗wk⟩Lp(Ω) = 0. (3.12)

The �rst term in (3.12) is strictly positive for every wk ̸= 0, hence, the second
one must be negative. In view of the initial assumptions, namely,

⟨F (v, y, x) −B−1
r g, x⟩Lp(Ω) > 0 if only ∥x∥Lp(Ω) > λ,

we conclude that
∥B∗wk∥Lp(Ω) = ∥zk∥Lp(Ω) 6 λ. (3.13)
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Since the linear positive operator B∗ cannot map unbounded sets into bounded
ones, it follows that ∥wk∥Lq(Ω) 6 λ1. As a result, see (3.11), we have

⟨F (vk, yk, B
∗wk), B

∗wk⟩Lp(Ω) = −⟨Bwk, wk⟩Lp(Ω) + ⟨g, wk⟩Lp(Ω), (3.14)

and, therefore, ⟨F (vk, yk, B
∗wk), B

∗wk⟩Lp(Ω) 6 c1. Indeed, all terms in the right-
hand side of (3.14) are bounded provided the sequence {wk}k∈N ⊂ Lq(Ω) is
bounded and operator B is linear and continuous. Hence, in view of Remark
2.2, we get

∥F (vk, yk, B
∗wk)∥Lq(Ω) = ∥F (vk, yk, zk)∥Lq(Ω) 6 c2 as ∥zk∥Lp(Ω) 6 λ.

Since the right-hand side of (3.14) does not depend on vk and yk, it follows that
the constant c2 > 0 does not depend on vk and yk either.

Taking these arguments into account, we may suppose that up to a subsequence
we have the weak convergence F (vk, yk, zk) → ν0 in Lq(Ω). As a result, passing
to the limit in (3.10), by continuity of B, we �nally get

z0 +Bν0 = g. (3.15)

It remains to show that ν0 = F (v0, y0, z0). Let us take an arbitrary element
z ∈ Lp(Ω) such that ∥z∥Lp(Ω) 6 λ. Using the fact that F is an operator with
u.s.b.v., we have

⟨F (vk, yk, z) − F (vk, yk, zk), z − zk⟩Lp(Ω) > − inf
(v,y)∈Vad×Y0

Cv, y(λ; ∥|z − zk∥|Lp(Ω)),

where Y0 = {y ∈W 1,p
0 (Ω) : y satis�es (3.8)}, or, after transformation,

⟨F (vk, yk, z), z − zk⟩Lp(Ω) − ⟨F (vk, yk, zk), z⟩Lp(Ω)

> ⟨F (vk, yk, zk),−zk⟩Lp(Ω) − inf
(v,y)∈Vad×Y0

Cv, y(λ; ∥|z − zk∥|Lp(Ω)). (3.16)

Since −zk = BF (vk, yk, zk) − g, it follows from (3.16) that

⟨F (vk, yk, z), z − zk⟩Lp(Ω) − ⟨F (vk, yk, zk), z⟩Lp(Ω) + ⟨F (vk, yk, zk), g⟩Lp(Ω)

> ⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω) − inf
(v,y)∈Vad×Y0

Cv, y(λ; ∥|z − zk∥|Lp(Ω)).

(3.17)

In the meantime, due to the weak convergence F (zk, yk, zk) → ν0 in Lq(Ω) as
k → ∞, we arrive at the following obvious properties

lim inf
k→∞

⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω) > ⟨ν0, Bν0⟩Lp(Ω), (3.18)

lim
k→∞

⟨F (vk, yk, zk), z⟩Lp(Ω) = ⟨ν0, z⟩Lp(Ω), (3.19)

lim
k→∞

⟨F (vk, yk, zk), g⟩Lp(Ω) = ⟨ν0, g⟩Lp(Ω). (3.20)
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Moreover, the continuity of the function Cv, y with respect to the second argument
and the compactness property of operator F , which means that F (vk, yk, z) →
F (v0, y0, z) strongly in Lq(Ω), lead to the conclusion

lim
k→∞

Cv, y(λ; ∥|z − zk∥|Lp(Ω)) = Cv, y(λ; ∥|z − z0∥|Lp(Ω)), ∀ (v, y) ∈ Vad × Y0,

(3.21)

lim
k→∞

⟨F (vk, yk, z), z − zk⟩Lp(Ω) = ⟨F (v0, y0, z), z − z0⟩Lp(Ω). (3.22)

As a result, using the properties (3.18)�(3.22), we can pass to the limit in
(3.17) as k → ∞. One gets

⟨F (v0, y0, z), z − z0⟩Lp(Ω) − ⟨ν0, z +Bν0 − g⟩Lp(Ω)

> − inf
(v,y)∈Vad×Y0

Cv, y(λ; ∥|z − z0∥|Lp(Ω)). (3.23)

Since Bν0 − g = −z0 by (3.15), we can rewrite the inequality (3.23) as follows

⟨F (v0, y0, z) − ν0, z − z0⟩Lp(Ω) > − inf
(v,y)∈Vad×Y0

Cv, y(λ; ∥|z − z0∥|Lp(Ω)).

It remains to note that the operator F is radially continuous for each pair (v, y) ∈
Vad × Y0, and F is the operator with u.s.b.v. Therefore, the last relation implies
that F (v0, y0, z0) = ν0 (see [1, Theorem 1.1.2]) and, hence, equality (3.15) �nally
takes the form

z0 +BF (v0, y0, z0) = g. (3.24)

Thus, z0 ∈ H(v0, y0) and the triplet (U0, v0, y0, z0) is admissible for OCP (3.3)�
(3.7). The proof is complete.

Remark 3.2. In fact, as immediately follows from the proof of Theorem 3.1, the
set of admissible solutions Ξ to the problem (3.3)�(3.7) is sequentially τ -compact.

The next observation is important for our further analysis.

Corollary 3.1. Assume that all preconditions of Theorem 3.1 hold true. Assume
also that the operator F : L∞(D) × W 1,p

0 (Ω) × Lp(Ω) → Lq(Ω) possesses (M)
and (A) properties. Let {vk}k∈N be a strongly convergent sequence in L∞(D) and

{yk}k∈N be a strongly convergent sequence in W 1,p
0 (Ω). Then an arbitrary chosen

sequence {zk ∈ H(vk, yk)}k∈N is relatively compact with respect to the strong to-
pology of Lp(Ω), i.e. there exists an element z0 ∈ H(v0, y0) such that within a
subsequence

zk → z0 strongly in Lp(Ω) as k → ∞.

Proof. Let {vk}k∈N ⊂ L∞(D) and {yk}k∈N ⊂ W 1,p
0 (Ω) be given sequences, and

let v0 ∈ L∞(D) and y0 ∈W 1,p
0 (Ω) be their strong limits. Let {zk ∈ H(vk, yk)}k∈N

be an arbitrary sequence of corresponding solutions to the Hammerstein equation
(3.6)�(3.7).
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As follows from the proof of Theorem 3.1, the sequence {zk ∈ H(vk, yk)}k∈N is
uniformly bounded in Lp(Ω) and, moreover, there exist a subsequence of {zk}k∈N
still denoted by the same index and an element z0 ∈ Lp(Ω) such that zk → z0
weakly in Lp(Ω) and z0 ∈ H(v0, y0). Our aim is to show that in this case zk → z0
strongly in Lp(Ω). Indeed, as follows from (3.10) and (3.24), we have the following
equalities

⟨F (vk, yk, zk), zk⟩Lp(Ω) + ⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω)

= ⟨F (vk, yk, zk), g⟩Lp(Ω), ∀k ∈ N, (3.25)

⟨F (v0, y0, z0), z0⟩Lp(Ω) + ⟨F (v0, y0, z0), BF (v0, y0, z0)⟩Lp(Ω)

= ⟨F (v0, y0, z0), g⟩Lp(Ω). (3.26)

Taking into account that F (vk, yk, zk) → F (v0, y0, z0) weakly in Lq(Ω) (see Theo-
rem 3.1), the limit passage in (3.25) leads us to the relation

lim
k→∞

(
⟨F (vk, yk, zk), zk⟩Lp(Ω) + ⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω)

)
= ⟨F (v0, y0, z0), g⟩Lp(Ω). (3.27)

Since the right-hand sides of (3.26) and (3.27) coincide, the lower semicontinuity
of the functional ⟨Bν, ν⟩Lp(Ω) with respect to the weak topology of Lp(Ω) and

(A)-property of operator F : L∞(D) ×W 1,p
0 (Ω) × Lp(Ω) → Lq(Ω) imply

⟨F (v0, y0, z0), g⟩Lp(Ω)

= ⟨F (v0, y0, z0), z0⟩Lp(Ω) + ⟨F (v0, y0, z0), BF (v0, y0, z0)⟩Lp(Ω)

= lim
k→∞

[
⟨F (vk, yk, zk), zk⟩Lp(Ω) + ⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω)

]
> lim inf

k→∞

[
⟨F (vk, yk, zk), zk⟩Lp(Ω) + ⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω)

]
> ⟨F (v0, y0, z0), z0⟩Lp(Ω) + ⟨F (v0, y0, z0), BF (v0, y0, z0)⟩Lp(Ω).

Hence,

lim
k→∞

⟨F (vk, yk, zk), zk⟩Lp(Ω) = ⟨F (v0, y0, z0), z0⟩Lp(Ω),

lim
k→∞

⟨F (vk, yk, zk), BF (vk, yk, zk)⟩Lp(Ω) = ⟨F (v0, y0, z0), BF (v0, y0, z0)⟩Lp(Ω).

To conclude the proof, it remains to apply the (M)-property of operator F :
L∞(D) ×W 1,p

0 (Ω) × Lp(Ω) → Lq(Ω).

Remark 3.3. It is worth to emphasize that Corollary 3.1 leads to the following
important property of Hammerstein equation (3.6)�(3.7): if the operator F :
L∞(D) × W 1,p

0 (Ω) × Lp(Ω) → Lq(Ω) is compact and possesses (M) and (A)
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properties, then the solution set H(v, y) of (3.6)�(3.7) is compact with respect to
the strong topology in Lp(Ω) for every pair (v, y) ∈ L∞(D) ×W 1,p

0 (Ω). Indeed,
the validity of this assertion immediately follows from Corollary 3.1 if we apply
it to the sequence {(vk, yk) ≡ (v, y)}k∈N and make use of the weak compactness
property of H(v, y).

Now we are in a position to prove the existence result for the original optimal
control problem (3.3)�(3.7).

Theorem 3.2. Assume that Uad × Vad ̸= ∅ and operators B : Lq(Ω) → Lp(Ω)
and F : L∞(D) ×W 1,p

0 (Ω) × Lp(Ω) → Lq(Ω) are as in Theorem 3.1. Then the
optimal control problem (3.3)�(3.7) admits at least one solution

(Uopt, vopt, yopt, zopt) ∈ Ξsol ⊂ L∞(D;RN×N ) × L∞(D) ×W 1,p
0 (Ω) × Lp(Ω),

IΩ(Uopt, vopt, yopt, zopt) = inf
(U ,v,y,z)∈Ξsol

IΩ(U , v, y, z)

for each f ∈W−1,q(D), g ∈ Lp(D), and zd ∈ Lp(D).

Proof. Since the cost functional in (3.3) is bounded from below and, due to Theo-
rem 2.2, the set of admissible solutions Ξsol is nonempty, it follows that there
exists a sequence {(Uk, vk, yk, zk)}k∈N ⊂ Ξsol such that

lim
k→∞

IΩ(Uk, vk, yk, zk) = inf
(U ,v,y,z)∈Ξsol

IΩ(U , v, y, z).

As it was mentioned in Remark 3.2 the set of admissible solutions Ξsol to the
problem (3.3)�(3.7) is sequentially τ -compact. Hence, there exists an admissible
solution (U0, v0, y0, z0) such that, within a subsequence, we have (Uk, vk, yk, zk)

τ→
(U0, v0, y0, z0) as k → ∞. In order to show that (U0, v0, y0, z0) is an optimal
solution of problem (3.3)�(3.6), it remains to make use of the lower semicontinuity
of the cost functional with respect to the τ -convergence

IΩ(U0, v0, y0, z0) 6 lim inf
m→∞

IΩ(Ukm , vkm , ykm , zkm)

= lim
k→∞

IΩ(Uk, vk, yk, zk) = inf
(U ,v,y,z)∈Ξsol

IΩ(U , v, y, z).

The proof is complete.

3.1. Example

In this subsection we give an example of the set Vad ⊂ L∞(D) and operator
F for which all preconditions of Theorems 3.1,3.2 and Corollary (3.1) hold true.

Let γ, and m be given positive constants such that α|D| 6 m 6 β|D|. We
de�ne the set Vad as follows

Vad =
{
v ∈ BV (D) ∩ L∞(D)

∣∣∣
TV (v) 6 γ, ∥v∥L1(D) = m, α 6 v(x) 6 β a.e. in D

}
. (3.28)
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It is clear that Vad is a nonempty convex subset of L1(D) with empty topological
interior.

Proposition 3.3. If {vk}k∈N ⊂ Vad and vk → v strongly in L1(D), then vk → v
strongly in Lr(D) for any r ∈ [1,+∞) and vk → v weakly-∗ in L∞(D).

Proof. Since vk → v in L1(D) andˆ
Ω
vk dx = m, TV (vk) 6 γ, and α 6 vk 6 β a.e. in D, ∀ k ∈ N,

by Proposition 2.1(i) it follows that

TV (v) 6 γ,

ˆ
D
v dx = m, and α 6 v 6 β a.e. in Ω.

Hence, v ∈ Vad. Moreover, for any r ∈ [1,+∞), the estimate

∥vk−v∥rLr(Ω) 6 vrai sup
x∈D

|vk(x)−v(x)∥r−1∥vk−v∥L1(D) 6 (β−α)r−1∥vk−v∥L1(D)

implies that vk → v strongly in Lr(D).
To end the proof, it is enough to note that strong convergence vk → v in L1(D)

implies, up to a subsequence, convergence vk(x) → v(x) almost everywhere in D.
Hence, by Lebesgue Theorem, we haveˆ

Ω
(vk − v)φdx→ 0, ∀φ ∈ L1(Ω),

that is vk → v weakly-∗ in L∞(D). Since this conclusion is true for any weakly-∗
convergent subsequence of {vk}k∈N, it follows that u is the weak-∗ limit for the
whole sequence {vk}k∈N.

Proposition 3.4. Vad is a sequentially compact subset of Lr(D) for any r ∈
[1,+∞), and it is a sequentially weakly-∗ compact subset of L∞(D).

Proof. Let {vk}k∈N be any sequence of Vad. Then {vk}k∈N is bounded in BV (D)∩
L∞(D). As a result, the statement immediately follows from Propositions 3.3 and
2.1(iii).

As an example of the nonlinear operator F : L∞(D) ×W 1,p
0 (Ω) × Lp(Ω) →

Lq(Ω) satisfying all conditions of Theorem 3.1 and Corollary 3.1, we can consider
the following one

F (v, y, z) = |y|p−2y + v(x)|z|p−2z.

Indeed, this function is obviously radially continuous with respect to the third
argument and it is also strictly monotone by z

⟨F (v, y, z1) − F (v, y, z2), z1 − z2⟩Lp(Ω)

=

ˆ
Ω
v(x)

(
|z1|p−2z1 − |z2|p−2z2

)
(z1 − z2) dx

> α22−p∥z1 − z2∥pLp(Ω) > 0, ∀ z1, z2 ∈ Lp(Ω), z1 ̸= z2.
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This implies that F is an operator with u.s.b.v. It is also easy to see that mapping
F : Vad×W 1,p

0 (Ω)×Lp(Ω) → Lq(Ω) is compact in a way pronounced by Theorem
3.1.

Indeed, let yk → y0 weakly in W
1,p
0 (Ω) and vk → v0 weakly in L∞(D). Then,

in view of the Sobolev embedding theorem, we have yk → y0 strongly in Lp(Ω).
Combining this fact with the convergence of norms

∥ |yk|p−2 yk∥qLq(Ω) = ∥yk∥pLp(Ω) → ∥y0∥pLp(Ω) = ∥ |y0|p−2 y0∥qLq(Ω)

we arrive at the strong convergence |yk|p−2yk → |y0|p−2y0 in Lq(Ω).
Also, due to Proposition 3.4, we get that within a subsequence still denoted

by the same index vk → v0 strongly in L1(D), vk → v0 a.e. in D and {vk}k∈N is
equi-integrable on Ω ⊂ D. Further, the sequence {vk(x)|z|p−2z}k∈N is bounded
in Lq(Ω) and hence weakly compact, namely vk(x)|z|p−2z → v0(x)|z|p−2z weakly
in Lq(Ω). Moreover, by Lebesgue Theorem we have the following convergence of
norms ˆ

Ω
vqk(x)

∣∣|z|p−2z
∣∣q dx =

ˆ
Ω
vqk(x)|z|p dx→

ˆ
Ω
vq0(x)|z|p dx,

since the sequence {vqk(x)|z|p}k∈N is obviously bounded in L1(Ω), equi-integrable
and converges a.e. in Ω ⊂ D.

As a result, we have F (vk, yk, z) → F (v0, y0, z) strongly in Lq(Ω).
Now let us show that F possesses the (M) and (A) properties. Let vk → v

strongly in L∞(D), yk → y strongly in W 1,p
0 (Ω) and zk → z weakly in Lp(Ω).

First, let us prove that condition (2.13) holds true. Indeed, the following chain of
relations

lim inf
k→∞

⟨zk, F (vk, yk, zk)⟩Lp(Ω)

> lim
k→∞

⟨|yk|p−2yk, zk⟩Lp(Ω) + lim inf
k→∞

⟨vk|zk|p−2zk, zk⟩Lp(Ω)

> ⟨|y|p−2y, z⟩Lp(Ω) + lim
k→∞

ˆ
Ω

(vk − v)|zk|p dx+ lim inf
k→∞

ˆ
Ω
v|zk|p dx

> ⟨|y|p−2y, z⟩Lp(Ω) +

ˆ
Ω
v|z|p dx = ⟨F (v, y, z), z⟩Lp(Ω), (3.29)

takes place in view of Lebesgue Theorem (since the sequence {(vk−v)|zk|p}k∈N is
equi-integrable and converges to zero a.e. in Ω) and the fact that the expression

∥|ξ∥|Lp(Ω) =

(ˆ
Ω
v(x)|ξ(x)|p dx

)1/p

can be taken as an equivalent norm of element ξ in Lp(Ω). Hence the (A) property
holds true for operator F .

Taking into account condition (2.12) let us prove the strong convergence
zk → z in Lp(Ω). It is easy to see, that changing everywhere in (3.29) lim infk→∞
into limk→∞ and ” > ” to −”, we obtain the relation which implies the norm
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convergence ∥|zk∥|Lp(Ω) → ∥|z∥|Lp(Ω). Since zk → z weakly in Lp(Ω), we �nally
conclude: the sequence {zk}k∈N is strongly convergent to z in Lp(Ω).

4. Domain Perturbations for Optimal Control Problem

The aim of this section is to study the asymptotic behavior of solutions
(Uoptε , voptε , yoptε , zoptε ) to the optimal control problems

IΩε(Uε, vε, yε, zε) =

ˆ
Ωε

|zε(x) − zd(x)|p dx −→ inf, (4.1)

−div
(
Uε(x)[(∇yε)p−2]∇yε

)
+ |yε|p−2yε = f in Ωε, (4.2)

yε ∈W 1, p
0 (Ωε), Uε ∈ Uad, (4.3)

zε +BF (vε, yε, zε) = g in Ωε, zε ∈ Lp(Ωε), (4.4)

vε ∈ Vad, (4.5)

as ε → 0 under some appropriate perturbations {Ωε}ε>0 of a �xed domain Ω ⊆
D. As before, we suppose that f ∈ W−1,q(D), g ∈ Lp(D), and zd ∈ Lp(D)
are given functions. We assume that the set of admissible controls Uad × Vad
and, hence, the corresponding sets of admissible solutions Ξε ⊂ L∞(D;RN×N ) ×
L∞(D)×W 1, p

0 (Ωε)×Lp(Ωε) are nonempty for every ε > 0. We also assume that
all conditions of Theorem 3.1 and Corollary 3.1 hold true for every open subset
Ω of D.

The following assumption is crucial for our further analysis.

(B) The Hammerstein equation
ˆ
D
z ϕ dx+

ˆ
D
BF (v, y, z)ϕdx =

ˆ
D
g ϕ dx, (4.6)

possesses property (B), i.e. for any triplet (v, y, z) ∈ L∞(D) ×W 1,p
0 (D) ×

Lp(D) such that z ∈ H(v, y) and any sequence {yk}k∈N ⊂W 1,p
0 (D), strongly

convergent in W 1,p
0 (D) to the element y, there exists a sequence {zk}k∈N ⊂

Lp(D) such that

zk ∈ H(v, yk), ∀ k ∈ N and zk → z strongly in Lp(D).

Remark 4.1. As we have already mentioned in Remark 3.3, under assumptions of
Corollary 3.1, the set H(v, y) is non-empty and compact with respect to strong
topology of Lp(D) for every pair (v, y) ∈ L∞(D) × W 1,p

0 (D). Hence, the (B)-
property obviously holds true provided H(v, y) is a singleton (even if each of the
sets H(v, yk) contains more than one element).

Before we give the precise de�nition of the shape stability for the above
problem and admissible perturbations for open set Ω, we remark that neither

the set convergence Ωε
Hc

−→ Ω in the Hausdor� complementary topology nor
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the topological set convergence Ωε
top−→ Ω is a su�cient condition to prove the

shape stability of the control problem (3.3)�(3.7). In general, a limit quadruple

for the sequence
{

(Uoptε , voptε , yoptε , zoptε )
}
ε>0

, under Hc-perturbations of Ω, can

be non-admissible to the original problem (3.3)�(3.7). We refer to [6] for simple
counterexamples. So, we have to impose some additional constraints on the moving
domain. In view of this, we begin with the following concepts:

De�nition 4.1. Let Ω and {Ωε}ε>0 be open subsets of D. We say that the sets
{Ωε}ε>0 form an Hc-admissible perturbation of Ω, if:

(i) Ωε
Hc

−→ Ω as ε→ 0;

(ii) Ωε ∈ Ww(D) for every ε > 0, where the class Ww(D) is de�ned in (2.4).

De�nition 4.2. Let Ω and {Ωε}ε>0 be open subsets of D. We say that sets
{Ωε}ε>0 form a topologically admissible perturbation of Ω (shortly, t-admissible),

if Ωε
top−→ Ω in the sense of De�nition 2.8.

Remark 4.2. As Theorem 2.5 indicates, a subset Ω ⊂ D admits the existence of
Hc-admissible perturbations if and only if Ω belongs to the family Ww(D). It
turns out that the assertion:

� y ∈W 1, p(RN ), Ω ∈ Ww(D), and supp y ⊂ Ω, imply y ∈W 1, p
0 (Ω) �

is not true, in general. In particular, the above statement does not take place in
the case when an open domain Ω has a crack. So, Ww(D) is a rather general class
of open subsets of D.

Remark 4.3. The remark above motivates us to say that we call Ω ⊂ D a p-stable
domain if for any y ∈ W 1, p(RN ) such that y = 0 almost everywhere on intΩc,
we get y|Ω ∈ W 1, p

0 (Ω). Note that this property holds for all reasonably regular
domains such as Lipschitz domains for instance. A more precise discussion of this
property may be found in [8].

Hereinafter, we denote by ỹε the zero-extension of yε to RN . We begin with
the following result.

Proposition 4.1. Let Ω ∈ Ww(D) be a �xed subdomain ofD, and let {Ωε}ε>0 be
an Hc-admissible perturbation of Ω. Let {(Uε, vε, yε, zε) ∈ Ξε}ε>0 be a sequence of
admissible quadruples to problems (4.1)�(4.5). Then sequence {(Uε, vε, ỹε, z̃ε)}ε>0

is uniformly bounded in L∞(D;RN×N )×L∞(D)×W 1, p
0 (D)×Lp(D) and for each

its τ -cluster quadruple (U∗, v∗, y∗, z∗) ∈ L∞(D;RN×N ) × L∞(D) ×W 1, p
0 (D) ×
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Lp(D), we have

U∗ ∈ Uad, (4.7)
ˆ
D

(
U∗[(∇y∗)p−2]∇y∗,∇φ̃

)
RN dx+

ˆ
D
|y∗|p−2y∗φ̃ dx

= ⟨f, φ̃⟩
W 1,p

0 (D)
, ∀φ ∈ C∞

0 (Ω), (4.8)

ˆ
D
z∗ψ̃ dx+ ⟨BF (v∗, y∗, z∗), ψ̃⟩Lq(D) =

ˆ
D
g ψ̃ dx, ∀ψ ∈ C∞

0 (Ω), (4.9)

v∗ ∈ Vad. (4.10)

Proof. Since each of the quadruples (Uε, vε, yε, zε) is admissible to the correspond-
ing problem (4.1)�(4.5), the uniform boundedness of sequence {(Uε, vε, ỹε, z̃ε)}ε>0

with respect to the norm of L∞(D;RN×N ) × L∞(D) × W 1, p
0 (D) × Lp(D) is a

direct consequence of (3.2), Proposition 3.1, and Theorem 3.1. So, we may assume
that there exists a quadruple (U∗, v∗, y∗, z∗) such that (within a subsequence
still denoted by su�x ε) (Uε, vε, ỹε, z̃ε)

τ−→ (U∗, v∗, y∗, z∗) in L∞(D;RN×N ) ×
L∞(D)×W 1, p

0 (D)×Lp(D). Then, in view of Remark 3.1, we have U∗ ∈ Uad and
v∗ ∈ Vad.

Let us take as test functions φ ∈ C∞
0 (Ω) and ψ ∈ C∞

0 (Ω). Since Ωε
Hc

−→ Ω,

then by Theorem 2.5, the Sobolev spaces
{
W 1, p

0 (Ωε)
}
ε>0

converge in the sense

of Mosco to W 1, p
0 (Ω). Hence, for the functions φ,ψ ∈W 1, p

0 (Ω) �xed before, there

exist sequences
{
φε ∈W 1, p

0 (Ωε)
}
ε>0

and
{
ψε ∈W 1, p

0 (Ωε)
}
ε>0

such that φ̃ε → φ̃

and ψ̃ε → ψ̃ strongly in W 1, p(D) (see property (M1)). Since (Uε, vε, yε, zε) is an
admissible triplet for the corresponding problem in Ωε, we can write

ˆ
Ωε

(
Uε[(∇yε)p−2]∇yε,∇φε

)
RN dx+

ˆ
Ωε

|yε|p−2yε φε dx = ⟨f, φε⟩W 1,p
0 (Ωε)

,

ˆ
Ωε

zεψε dx+ ⟨BF (vε, yε, zε), ψε⟩Lq(Ωε) =

ˆ
Ωε

g ψε dx,

and, hence,

ˆ
D

(
Uε[(∇ỹε)p−2]∇ỹε,∇φ̃ε

)
RN dx+

ˆ
D
|ỹε|p−2ỹε φ̃ε dx = ⟨f, φ̃ε⟩W 1,p

0 (D)
, ∀ ε > 0,

(4.11)ˆ
D
z̃εψ̃ε dx+ ⟨BF (vε, ỹε, z̃ε), ψ̃ε⟩Lq(D) =

ˆ
D
g ψ̃ε dx, ∀ ε > 0. (4.12)

To prove the equalities (4.8)�(4.9), we pass to the limit in the integral identities
(4.11)�(4.12) as ε → 0. Using the arguments from [18, 20] and Theorem 3.1, we
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have

div ui ε → div u∗i strongly in W−1, q(D), ∀ i = 1, . . . , n,{
[(∇ỹε)p−2]∇ỹε

}
ε>0

is bounded in Lq(D;RN ), q = p/(p− 1),{
|ỹε|p−2ỹε

}
ε>0

is bounded in Lq(D),

{z̃ε}ε>0 is bounded in Lp(D),

{F (vε, ỹε, z̃ε)}ε>0 is bounded in Lp(D),

vε → v∗ weakly− ∗ in L∞(D),

ỹε → y∗ in Lp(D), ỹε(x) → y∗(x) a.e. x ∈ D,

|ỹε|p−2ỹε → |y∗|p−2y∗ weakly in Lq(D),

z̃ε → z∗ weakly in Lp(D),

∃ ν ∈ Lq(D) such that F (vε, ỹε, z̃ε) → ν weakly in Lp(D)

where Uε = [u1 ε, . . . , uN ε] and U∗ = [u∗1, . . . , u
∗
N ].

As for the sequence
{
fε := f − |ỹε|p−2ỹε

}
ε>0

, it is clear that

fε → f0 = f − |y∗|p−2y∗ strongly in W−1, q(D).

In view of these observations and a priori estimate (3.8), it is easy to see that the
sequence

{
Uε[(∇ỹε)p−2]∇ỹε

}
ε>0

is bounded in Lq(D;RN ). So, up to a subsequence,

we may suppose that there exists a vector-function ξ ∈ Lq(D;RN ) such that

Uε[(∇ỹε)p−2]∇ỹε → ξ weakly in Lq(D;RN ).

As a result, using the strong convergence φ̃ε → φ̃ in W 1, p(D) and the strong
convergence ψ̃ε → ψ̃ in Lp(D), the limit passage in the relations (4.11)�(4.12) as
ε→ 0 gives

ˆ
D

(ξ,∇φ̃)RN dx =

ˆ
D

(
f − |y∗|p−2y∗

)
φ̃ dx, (4.13)

ˆ
D
z∗ψ̃ dx+ ⟨Bν, ψ̃⟩Lq(D) =

ˆ
D
g ψ̃ dx. (4.14)

To conclude the proof it remains to note that the validity of equalities

ξ = U∗[(∇y∗)p−2]∇y∗, (4.15)

ν = F (v∗, y∗, z∗) (4.16)

can be established in a similar manner as in [18,20] and Theorem 3.1.

Our next intention is to prove that every τ -cluster quadruple

(U∗, v∗, y∗, z∗) ∈ L∞(D;RN×N ) × L∞(D) ×W 1, p
0 (D) × Lp(Ω)
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of the sequence {(Uε, yε, zε) ∈ Ξε}ε>0 is admissible to the original optimal control
problem (3.3)�(3.7). With that in mind, as follows from (4.7)�(4.10), we have to
show that y∗|Ω ∈W 1, p

0 (Ω) and z∗ ∈ H(v∗, y∗|Ω), i.e.,

ˆ
Ω
z∗ψ dx+ ⟨BF (v∗, y∗, z∗), ψ⟩Lq(Ω) =

ˆ
Ω
g ψ dx, ∀ψ ∈W 1,p

0 (Ω).

To this end, we give the following result (we refer to [4] for the details).

Lemma 4.1. Let Ω, {Ωε}ε>0 ∈ Ww(D), and let Ωε
Hc

−→ Ω as ε → 0. Let U0 ∈
Mβ
α (D) be a �xed matrix. Then

ṽΩε, h → ṽΩ, h strongly in W 1, p
0 (D), ∀h ∈W 1, p

0 (D), (4.17)

where vΩε, h and vΩ, h are the unique weak solutions to the boundary value problems

−div
(
U0[(∇v)p−2]∇v

)
+ |v|p−2v = 0 in Ωε,

v − h ∈W 1, p
0 (Ωε)

}
(4.18)

and
−div

(
U0[(∇v)p−2]

)
+ |v|p−2v = 0 in Ω,

v − h ∈W 1, p
0 (Ω),

}
(4.19)

respectively. Here, ṽΩε, h and ṽΩ, h are the extensions of vΩε, h and vΩ, h such that
they coincide with h out of Ωε and Ω, respectively.

Remark 4.4. In general, Lemma 4.1 is not valid if Ωε
top−→ Ω.

We are now in a position to prove the following property.

Proposition 4.2. Let {(Uε, vε, yε, zε) ∈ Ξε}ε>0 be an arbitrary sequence of ad-
missible solutions to the family of optimal control problems (4.1)�(4.5), where
{Ωε}ε>0 is some Hc-admissible perturbation of the set Ω ∈ Ww(D). If for a
subsequence of {(Uε, vε, yε, zε) ∈ Ξε}ε>0 (still denoted by the same index ε) we

have (Uε, vε, ỹε, z̃ε)
τ−→ (U∗, v∗, y∗, z∗), then

y∗ = ỹΩ,U∗ , z∗|Ω ∈ H(v∗, yΩ,U∗), (4.20)ˆ
Ω
z∗ψ dx+ ⟨BF (v∗, yΩ,U∗ , z∗), ψ⟩Lq(Ω) =

ˆ
Ω
g ψ dx, ∀ψ ∈W 1,p

0 (Ω), (4.21)

(U∗, v∗, y∗|Ω , z
∗|Ω) ∈ Ξsol, (4.22)

where by yΩ,U∗ we denote the weak solution of the boundary value problem (3.4)�
(3.5) with U = U∗.
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Proof. To begin with, we note that, by Propositions 3.1 and 4.1, we can extract
a subsequence of {(Uε, vε, yε, zε) ∈ Ξε}ε>0 (still denoted by the same index) such
that

Uε → U∗ = [u∗1, . . . , u
∗
N ] ∈ Uad weakly- ∗ in L∞(D;RN×N ), (4.23)

vε → v∗ ∈ Vad weakly- ∗ in L∞(D), (4.24)

ỹε → y∗ weakly in W 1, p
0 (D), (4.25)

z̃ε → z∗ weakly in Lp(Ω), (4.26)

y ∈W 1, p
0 (Ω), ỹ ∈W 1, p

0 (D).

Since (4.21)�(4.22) are direct consequence of (4.20), we divide the proof into two
steps.

Step 1. We prove that y∗ = ỹ. Following Bucur & Trebeschi [4], for every
ε > 0, we consider the new boundary value problem

−div
(
U∗[(∇φε)p−2]∇φε

)
+ |φε|p−2φε = 0 in Ωε,

φε = −y∗ in D \ Ωε.

}
(4.27)

Passing to the variational statement of (4.27), we have
ˆ
D

(
U∗[(∇φ̃ε)p−2]∇φ̃ε,∇ψ̃ε

)
RN

dx

+

ˆ
D
|φ̃ε|p−2φ̃ε ψ̃ε dx = 0, ∀ψ ∈ C∞

0 (Ωε), ∀ ε > 0.

(4.28)

Taking in (4.28) as the text function ψ̃ε = φ̃ε + y∗ − ỹε, we obtainˆ
D

(
U∗[(∇φ̃ε)p−2]∇φ̃ε,∇ (φ̃ε + y∗ − ỹε)

)
RN

dx

+

ˆ
D
|φ̃ε|p−2φ̃ε (φ̃ε + y∗ − ỹε) dx = 0, ∀ ε > 0. (4.29)

Let φ ∈W 1, p(Ω) be the weak solution to the problem

−div
(
U∗[(∇φ)p−2]∇φ

)
+ |φ|p−2φ = 0 in Ω,

φ = −y∗ in D \ Ω.

}

Then by Lemma 4.1, we have φ̃ε → φ̃ strongly in W 1, p
0 (D). Hence,

∇φ̃ε → ∇φ̃ strongly in Lp(D;RN ),

∥[(∇φ̃ε)p−2]∇φ̃ε∥qLq(D;RN )
= ∥∇φ̃ε∥pLp(D;RN )

→ ∥∇φ̃∥p
Lp(D;RN )

= ∥[(∇φ̃)p−2]∇φ̃∥q
Lq(D;RN )

,

∇φ̃ε(x) → ∇φ̃(x) a.e. in D,
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and

φ̃ε → φ̃ strongly in Lp(D),

∥ |φ̃ε|p−2 φ̃ε∥qLq(D) = ∥φ̃ε∥pLp(D) → ∥φ̃∥pLp(D) = ∥ |φ̃|p−2 φ̃∥qLq(D),

φ̃ε(x) → φ̃(x) a.e. in D.

Since the norm convergence together with pointwise convergence imply the
strong convergence, it follows that

[(∇φ̃ε)p−2]∇φ̃ε → [(∇φ̃)p−2]∇φ̃ strongly in Lq(D;RN ),

|φ̃ε|p−2 φ̃ε → |φ̃|p−2 φ̃ strongly in Lq(D),

∇ (φ̃ε + y∗ − ỹε) → ∇φ̃ weakly in Lp(D;RN ) ( see (4.25)),

(φ̃ε + y∗ − ỹε) → φ̃ strongly in Lp(D),

Hence, the integral identity (4.29) contains only the products of weakly and
strongly convergent sequences. So, passing to the limit in (4.29) as ε tends to
zero, we get

ˆ
D

(
U∗[(∇φ̃)p−2]∇φ̃,∇φ̃

)
RN dx+

ˆ
D
|φ̃|p dx = 0.

Taking into account the properties of U∗ prescribed above, we can consider the
left-hand side of the above equation as a p-th power of norm in W 1,p

0 (Ω), which is
equivalent to (2.1). Hence, it implies that φ̃ = 0 a.e. in D. However, by de�nition
φ̃ = −y∗ in D \ Ω. So, y∗ = 0 in D \ Ω, and we obtain the required property
yU∗,Ω = y∗|Ω ∈W 1, p

0 (Ω).
Step 2. Our aim is to show that z∗|Ω ∈ H(v∗, yU∗,Ω). In view of (4.9), from

Proposition (4.1), we get

ˆ
Ω
z∗ψ dx+

ˆ
Ω
BF (v∗, y∗, z∗)ψ dx =

ˆ
Ω
g ψ dx, ∀ψ ∈ C∞

0 (Ω).

As was shown at the �rst step, y∗ = yU∗,Ω on Ω, and, therefore, we can rewrite
the above equality in the following way

ˆ
Ω
z∗ψ dx+

ˆ
Ω
BF (v∗, yU∗,Ω, z

∗)ψ dx =

ˆ
Ω
g ψ dx, ∀ψ ∈ C∞

0 (Ω),

which implies the inclusion z∗|Ω ∈ H(v∗, yU∗,Ω). The proof is complete.

The results given above suggest us to study the asymptotic behavior of the
sequences of admissible quadruples {(Uε, vε, yε, zε) ∈ Ξε}ε>0 for the case of t-
admissible perturbations of the set Ω.
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Proposition 4.3. Let Ω ⊂ D be some p-stable open domain. Assume that
{(Uε, vε, yε, zε) ∈ Ξε}ε>0 is a sequence of admissible quadruples for the family
(4.1)�(4.5), where {Ωε}ε>0 ⊂ D forms a t-admissible perturbation of Ω. Then

{(Uε, vε, ỹε, z̃ε)}ε>0 is uniformly bounded in L
∞(D;RN×N )×L∞(D)×W 1, p

0 (D)×
Lp(D) and for every τ -cluster triplet (U∗, v∗, y∗, z∗) ∈ L∞(D;RN×N )×L∞(D)×
W 1, p

0 (D) × Lp(Ω) of this sequence, we have

(j) the quadruple (U∗, v∗, y∗, z∗) satis�es the relations (4.7)�(4.10);

(jj) the quadruple (U∗, v∗, y∗|Ω , z∗|Ω) is admissible to the problem (3.3)�(3.7),
i.e., y∗ = ỹΩ,U∗ , z∗|Ω ∈ H(v∗, yΩ,U∗), where yΩ,U∗ stands for the weak
solution of the boundary value problem (3.4)�(3.5) under U = U∗.

Proof. Since Ωε
top−→ Ω in the sense of De�nition 2.8, it follows that for any

φ,ψ ∈ C∞
0 (Ω \ K0) we have suppφ ⊂ Ωε, suppψ ⊂ Ωε for all ε > 0 small

enough. Moreover, since the set K0 has zero p-capacity, it follows that C∞
0 (Ω\K0)

is dense in W 1, p
0 (Ω). Therefore, the veri�cation of item (j) can be done in an

analogous way to the proof of Proposition 4.1 replacing therein the sequences{
φε ∈W 1, p

0 (Ωε)
}
ε>0

and
{
ψε ∈W 1, p

0 (Ωε)
}
ε>0

by the still functions φ and ψ. As

for the rest, we have to repeat all arguments of that proof.
To prove the assertion (jj), it is enough to show that y∗|Ω ∈ W 1, p

0 (Ω). To do
so, let B0 be an arbitrary closed ball not intersecting Ω∪K1. Then from (4.2)�(4.3)
it follows that ỹε = ỹΩε,Uε = 0 almost everywhere in B0 whenever the parameter
ε is small enough. Since by (j) and Sobolev Embedding Theorem ỹε converges to
y∗ strongly in Lp(D), it follows that the same is true for the limit function y∗. As
the ball B0 was chosen arbitrary, and K1 is of Lebesgue measure zero, it follows
that supp y∗ ⊂ Ω. Then, by Fubini's Theorem, we have supp y∗ ⊂ Ω. Hence, using
the properties of p-stable domains (see Remark 4.3), we just come to the desired
conclusion: y∗|Ω ∈W 1, p

0 (Ω). The rest of the proof should be quite similar to the
one of Proposition 4.2, where we showed, that z∗|Ω ∈ H(v∗, y∗|Ω). The proof is
complete.

Corollary 4.1. Let {(Uε, vε, yε, zε) ∈ Ξε}ε>0 be a sequence such that (Uε, vε) ≡
(U∗, v∗) ∀ ε > 0, where (U∗, v∗) ∈ Uad × Vad, is an admissible control. Let the

sequence
{
yΩε,U∗ ∈W 1, p

0 (Ωε)
}
ε>0

be the corresponding solutions of (4.2)�(4.3)

and let zε ∈ H(v∗, yΩε,U∗) be any solution of (4.4)�(4.5) for each ε > 0. Then,
under assumptions of Proposition 4.2 or Proposition 4.3, we have that, within
a subsequence still denoted by the same index ε, the following convergence takes
place

ỹΩε,U∗ → ỹΩ,U∗ strongly in W 1, p
0 (D),

z̃ε → z∗ strongly in Lp(D), and z∗|Ω ∈ H(v∗, yΩ,U∗).

Proof. As follows from Propositions 4.2 and 4.3, the sequence of admissible quad-
ruples {(U∗, v∗, yε, zε) ∈ Ξε}ε>0 is relatively τ -compact, and there exists a τ -limit
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quadruple (U∗, v∗, y∗, z∗) such that y∗|Ω = yΩ,U∗ and z∗|Ω ∈ H(v∗, yΩ,U∗).
Having set y = yΩ,U∗ , we prove the strong convergence of ỹε to ỹ in W 1, p

0 (D).
Then the strong convergence of zε to z∗ in Lp(D) will be ensured by Corollary
3.1.

To begin with, we prove the convergence of norms of ỹε

∥ỹε∥W 1, p(D) → ∥ỹ∥W 1, p(D) as ε→ 0. (4.30)

As we already mentioned, since U∗ ∈ Uad, we can consider as an equivalent
norm in W 1, p

0 (D) the following one

∥y∥U∗

W 1, p
0 (D)

=

(ˆ
D

(
U∗[(∇y)p−2]∇y,∇y

)
RN dx+

ˆ
D
|y|p dx

)1/p

.

As a result, the space
⟨
W 1, p

0 (D), ∥ · ∥U∗

W 1, p
0 (D)

⟩
endowed with this norm is uniformly

convex. Hence, instead of (4.30), we can establish that

∥ỹε∥U
∗

W 1, p(D) → ∥ỹ∥U∗

W 1, p(D) as ε→ 0. (4.31)

Using the equations (3.4) and (4.2), we take as test functions ỹ and ỹε,
respectively. Then, passing to the limit in (4.2), we get

lim
ε→0

(ˆ
D

(
U∗[(∇ỹε)p−2]∇ỹε,∇ỹε

)
RN dx+

ˆ
D
|ỹε|p dx

)
= lim

ε→0

(
∥ỹε∥U

∗

W 1, p(D)

)p
= lim

ε→0
⟨f, ỹε⟩W 1,p

0 (D)
= ⟨f, ỹ⟩

W 1,p
0 (D)

=

ˆ
D

(
U∗[(∇ỹ)p−2]∇ỹ,∇ỹ

)
RN dx+

ˆ
D
|ỹ|p dx =

(
∥ỹ∥U∗

W 1, p(D)

)p
.

Since (4.31) together with the weak convergence in W 1, p
0 (D) imply the strong

convergence, we arrive at the required conclusion.

5. Mosco-Stability of Optimal Control Problems

We begin this section with the following concept.

De�nition 5.1. We say that the optimal control problem (3.3)�(3.7) in Ω is
Mosco-stable in L∞(D;RN×N )×L∞(D)×W 1, p

0 (D)×Lp(D) along the perturbation
{Ωε}ε>0 of Ω, if the following conditions are satis�ed

(i) if
{

(U0
ε , v

0
ε , y

0
ε , z

0
ε ) ∈ Ξε

}
ε>0

is a sequence of optimal solutions to the per-
turbed problems (4.1)�(4.5), then this sequence is relatively τ -compact in
L∞(D;RN×N ) × L∞(D) ×W 1, p

0 (D) × Lp(D);

(ii) each τ -cluster quadruple of
{

(U0
ε , v

0
ε , y

0
ε , z

0
ε ) ∈ Ξε

}
ε>0

is an optimal solution
to the original problem (3.3)�(3.7).
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Moreover, if
(U0

ε , v
0
ε , ỹ

0
ε , z̃

0
ε )

τ−→ (U0, v0, y 0, z0), (5.1)

then (U0, v0, y 0
∣∣
Ω
, z 0

∣∣
Ω

) ∈ Ξsol and

inf
(U , v, y, z)∈Ξsol

IΩ(U , v, y, z) =

IΩ(U0, v0, y 0
∣∣
Ω
, z 0

∣∣
Ω

) = lim
ε→0

inf
(Uε,vε,yε,zε)∈Ξε

IΩε(Uε, vε, yε, zε). (5.2)

Our next intention is to derive the su�cient conditions for the Mosco-stability
of optimal control problem (3.3)�(3.7).

Theorem 5.1. Let Ω, {Ωε}ε>0 be open subsets of D, and let

Ξε ⊂ L∞(D;RN×N ) × L∞(D) ×W 1, p
0 (Ωε) × Lp(Ωε)

and
Ξsol ⊂ L∞(D;RN×N ) × L∞(D) ×W 1, p

0 (Ω) × Lp(Ω)

be the sets of admissible solutions to optimal control problems (4.1)�(4.5) and
(3.3)�(3.7), respectively. Assume that operator F : L∞(D)×W 1,p

0 (D)×Lp(D) →
Lq(D) satis�es the condition

F (v, y · χΩ, z · χΩ) = 0 for a.a. x ∈ D \ Ω,

and the distributions zd ∈ Lp(D) in the cost functional (3.3) and g ∈ Lp(D) in
(3.6) are such that

zd(x) = zd(x)χΩ(x), g(x) = g(x)χΩ(x) for a.e. x ∈ D. (5.3)

Assume also that Hammerstein equation (4.6) possesses property (B) and at least
one of the suppositions

1. Ω ∈ Ww(D) and {Ωε}ε>0 is an Hc-admissible perturbation of Ω;

2. Ω is a p-stable domain and {Ωε}ε>0 is a t-admissible perturbation of Ω;

holds true.
Then the following assertions are valid:

(MS1) if {εk}k∈N is a numerical sequence converging to 0, and {(Uk, vk, yk, zk)}k∈N
is a sequence satisfying

(Uk, vk, yk, zk) ∈ Ξεk , ∀ k ∈ N, and

(Uk, vk, ỹk, z̃k)
τ→ (U , v, ψ, ξ) in

L∞(D;RN×N ) × L∞(D) ×W 1, p
0 (D) × Lp(D),

then there exist functions y ∈ W 1, p
0 (Ω) and z ∈ Lp(Ω) such that y = ψ|Ω,

z = ξ|Ω, z ∈ H(v, y), (U , v, y, z) ∈ ΞΩ, and

lim inf
k→∞

IΩεk
(Uk, vk, yk, zk) > IΩ(U , v, y|Ω , z|Ω);



84 P. I. KOGUT, O. P. KUPENKO

(MS2) for any admissible solution (U , v, y, z) ∈ Ξsol, there exists a realizing sequence
{(Uε, vε, yε, zε) ∈ Ξε}ε>0 such that

Uε → U strongly in L∞(D;RN×N ),

vε → v strongly in L∞(D),

ỹε → ỹ strongly in W 1, p
0 (D),

z̃ε → z̃ strongly in Lp(D),

lim sup
ε→0

IΩε(Uε, vε, yε, zε) 6 IΩ(U , v, y, z).

Proof. To begin with, we note that the �rst part of property (MS1) is the direct
consequence of Propositions 4.2 and 4.3. So, it remains to check the corresponding
property for cost functionals. Indeed, since zk → z weakly in Lp(D), in view of
lower weak semicontinuity of norm in Lp(D), we have

lim inf
k→∞

IΩεk
(Uk, vk, yk, zk) = lim inf

k→∞

ˆ
D
|z̃k − zd|p dx >

ˆ
D
|z − zd|p dx

>
ˆ
Ω
|z − zd|p dx =

ˆ
Ω
|z|Ω − zd|p dx = IΩ(U , v, y|Ω , z|Ω).

Hence, the assertion (MS1) holds true.
Further, we prove (MS2). In view of our initial assumptions, the set of admis-

sible quadruples Ξsol to the problem (3.3)�(3.7) is nonempty. Let (U , v, y, z) ∈ Ξsol
be an admissible quadruple. Since the control (U , v) is admissible to problem
(4.1)�(4.5) for every ε > 0, we construct the sequence {(Uε, vε, yε, zε) ∈ Ξε}ε>0 as
follows: (Uε, vε) = (U , v), ∀ ε > 0 and yε = yΩε,U is the corresponding solution of
boundary value problem (4.2)�(4.3). As for the choice of elements zε, we make it
later on.

Then, by Corollary 4.1, we have

ỹΩε,U → ỹΩ,U strongly in W 1, p
0 (D),

where yΩ,U is a unique solution for (3.4)�(3.5). Then the inclusion (U , v, y, z) ∈
Ξsol implies y = yΩ,U .

By the initial assumptions g(x) = g(x)χ(x) and F (v, ỹ, z̃) = 0 a.e. in D \ Ω.
Hence,

ˆ
D
z̃ψ dx+

ˆ
D
BF (v, ỹ, z̃)ψ dx =

ˆ
D
gψ dx, ∀ψ ∈ C∞

0 (D),

i.e. z̃ ∈ H(v, ỹ) ⊂ Lp(D). Then, in view of (B)-property, for the given triplet
(v, ỹ, z̃) there exists a sequence {ẑε ∈ H(v, ỹΩε,U )}ε>0 such that ẑε → z̃ strongly in
Lp(Ω). As a result, we can take {(Uε, vε, ỹε, ẑε)} as a realizing sequence. Moreover,
in this case the desired property of the cost functional seems pretty obvious.
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Indeed,

lim sup
ε→0

IΩε(Uε, vε, yε, zε) = lim sup
ε→0

ˆ
D
|ẑε − zd|p dx =

ˆ
D
|z̃ − zd|p dx

=

ˆ
Ω
|z − zd|p dx = IΩ(U , y, z).

The proof is complete.

Theorem 5.2. Under the assumptions of Theorem 5.1 the optimal control prob-
lem (3.3)�(3.7) is Mosco-stable in L∞(D;RN×N ) × L∞(D) ×W 1, p

0 (D) × Lp(D).

Proof. In view of a priory estimates (2.3), (3.8) and (3.13), we can immediately
conclude that any sequence of optimal quadruples

{
(U0

ε , v
0
ε , y

0
ε , z

0
ε ) ∈ Ξε

}
ε>0

to
the perturbed problems (4.1)�(4.5) is uniformly bounded and, hence, relatively
τ -compact in
L∞(D;RN×N ) × L∞(D) × W 1, p

0 (D) ×  Lp(D). So, we may suppose that there
exist a subsequence

{
(U0

εk
, v0εk , y

0
εk
, z 0
εk

)
}
k∈N and a quadruple (U∗, v∗, y∗, z∗) such

that (U0
εk
, v0εk , ỹ

0
εk
, z̃ 0
εk

)
τ−→ (U∗, v∗, y∗, z∗) as k → ∞. Then, by Theorem 5.1 (see

property (MS1)), we have (U∗, v∗, y∗|Ω , z∗|Ω) ∈ Ξsol and

lim inf
k→∞

min
(U ,v, y, z)∈Ξεk

IΩεk
(U , v, y, z) = lim inf

k→∞
IΩεk

(U0
εk
, v0εk , y

0
εk
, z 0
εk

)

> IΩ(U∗, v∗, y∗|Ω , z
∗|Ω)

> min
(U , v, y, z)∈Ξsol

IΩ(U , v, y, z) = IΩ(Uopt, vopt, yopt, zopt). (5.4)

However, due to condition (MS2), for the optimal quadruple (Uopt, vopt, yopt, zopt) ∈
Ξsol there exists a realizing sequence

{
(Ûε, vε, ŷε, ẑε) ∈ Ξε

}
ε>0

such that

(Ûε, vε, ˜̂yε, ˜̂zε) → (Uopt, vopt, ỹopt, z̃opt), and

IΩ(Uopt, vopt, yopt, zopt) > lim sup
ε→0

IΩε(Ûε, vε, ŷε, ẑε).

Using this fact, we have

min
(U , v, y, z)∈Ξsol

IΩ(U , v, y, z) = IΩ(Uopt, vopt, yopt, zopt) > lim sup
ε→0

IΩε(Ûε, vε, ŷε, ẑε)

> lim sup
ε→0

min
(U , v, y, z)∈Ξε

IΩε(U , v, y, z)

> lim sup
k→∞

min
(U , v, y, z)∈Ξεk

IΩεk
(U , v, y, z)

= lim sup
k→∞

IΩεk
(U0

εk
, v0εk , y

0
εk
, z 0
εk

). (5.5)

From this and (5.4), we deduce

lim inf
k→∞

IΩεk
(U0

εk
, v0εk , y

0
εk
, z 0
εk

) > lim sup
k→∞

IΩεk
(U0

εk
, v0εk , y

0
εk
, z 0
εk

).
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Thus, combining the relations (5.4) and (5.5), and rewriting them in the form of
equalities, we �nally obtain

IΩ(U∗, v∗, y∗|Ω , z
∗|Ω) = IΩ(Uopt, vopt, yopt, zopt) = min

(U , v, y, z)∈Ξsol

IΩ(U , v, y, z),

(5.6)

IΩ(Uopt, vopt, yopt, zopt) = lim
k→∞

min
(U , v, y, z)∈Ξεk

IΩεk
(U , v, y, z). (5.7)

Since equalities (5.6)�(5.7) hold true for every τ -convergent subsequence of the
original sequence of optimal solutions

{
(U0

ε , v
0
ε , y

0
ε , z

0
ε ) ∈ Ξε

}
ε>0

, it follows that
the limits in (5.6)�(5.7) coincide and, therefore, IΩ(Uopt, vopt, yopt, zopt) is the limit
of the whole sequence of minimal values{

IΩε(U0
ε , v

0
ε , y

0
ε , z

0
ε ) = inf

(U ,v,y,z)∈Ξε

IΩε(U , v, y, z)

}
ε>0

.

This concludes the proof.

Remark 5.1. It is worth to emphasize that without (B)-property, the original
optimal control problem can lose the Mosco-stability property with respect to the
given type of domain perturbations. In such case there is no guarantee that each
of optimal triplets to the OCP (3.3)�(3.7) can be attained through some sequence
of optimal triplets to the perturbed problems (4.1)�(4.5).
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