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In this paper we consider an optimal control problem (OCP) for the coupled
system of a nonlinear monotone Dirichlet problem with matrix-valued L (£; RNXN)-
controls in coefficients and a nonlinear equation of Hammerstein type, where solution
nonlinearly depends on L°°-control. Since problems of this type have no solutions
in general, we make a special assumption on the coefficients of the state equations
and introduce the class of so-called solenoidal admissible controls. Using the direct
method in calculus of variations, we prove the existence of an optimal control. We
also study the stability of the optimal control problem with respect to the domain
perturbation. In particular, we derive the sufficient conditions of the Mosco-stability

for the given class of OCPs.
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1. Introduction

The aim of this paper is to prove the existence result for an optimal control
problem (OCP) governed by the system of a nonlinear monotone elliptic equation
with homogeneous Dirichlet boundary conditions and a nonlinear equation of
Hammerstein type, and to provide sensitivity analysis of the considered optimiza-
tion problem with respect to the domain perturbations. As controls we consider
the matrix of coefficients in the main part of the elliptic equation and a coefficient
in the non-linear part of the Hammerstein equation. We assume that admissible
controls are measurable and uniformly bounded functions from L>(€; RY*V) x
L>(Q).

Systems with distributed parameters and optimal control problems for systems
described by PDE, nonlinear integral and ordinary differential equations have
been widely studied by many authors (see for example [17, 21, 22]). However,
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systems which contain equations of different types and optimization problems
associated with them are still less well understood. In general case including as
well control and state constrains, such problems are rather complex and have
no simple constructive solutions. The system, considered in the present paper,
contains two equations: a nonlinear monotone elliptic equation with homogeneous
Dirichlet boundary conditions and a nonlinear equation of Hammerstein type,
which nonlinearly depends on the solution of the first object. The optimal control
problem we study here is to minimize the discrepancy between a given distribution
zq € LP(Q) and a solution of Hammerstein equation z = z(U,v,y), choosing
appropriate coefficients (U,v) € Ugyg X Vg, 1.e.

ol,v,y,z / |z(z) — zq4(x)|P dz — inf (1.1)
subject to constrains
2+ BF(v,y,z) =g in Q, (1.2)
—div (U(@)[(Vy)"*|Vy) + gl Py = f  in Q, (1.3)
(U, v) € Upg X Vg, y € WyP(Q), (1.4)

where Uyg X Vag C L®(Q;RV*N) % L%°(€) is a set of admissible controls, B :
L1(Q) — LP(Q) is a positive linear operator and F' : L>(£2) x Wol’p(Q) x LP(Q) —
L9(Q) is an essentially nonlinear and non-monotone operator.

Since the range of optimal control problems in coefficients is very wide, in-
cluding as well optimal shape design problems, optimization of certain evolution
systems, some problems originating in mechanics and others, this topic has been
widely studied by many authors. Typically (see for instance [22,24]), the most
of optimal control problems in coefficients for linear elliptic equations have no
solution in general. It turns out that this circumstance is the characteristic feature
for the majority of optimal control problems in coefficients. To overcome this
difficulty, in present article, by analogy with [10,18,20], we put some additional
constrains on the set of admissible controls. Namely, we consider the matrix-valued
controls from the so-called generalized solenoidal set. The elements of this set do
not belong to any Sobolev space, but still are a little bit “more regular” then those
from L*°-class. We give the precise definition of such controls in Section 3 and
prove that in this case the original optimal control problem admits at least one
solution. It should be noticed that we do not involve the homogenization method
and the relaxation procedure in this process.

In practice, the equations of Hammerstein type appear as integral or integro-
differential equations. The class of integral equations is very important for theory
and applications, since there are less restrictions put on smoothness of the desired
solutions involved in comparison to those for the solutions of differential equations.
It should be also mentioned here that solution uniqueness is not typical for
equations of Hammerstein type or optimization problems associated with such
objects (see [1]). Indeed, such property would require rather strong assumptions
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on operators B and F', which is rather restrictive in view of numerous applications
(see [25]).

As was pointed above, the principal feature of this problem is the fact that an
optimal solution for (1.1)-(1.4) does not exist in general. So here we have a typical
situation for the general optimal control theory. Namely, the original control object
is described by well-posed boundary value problem, but the associated optimal
control problem is ill-posed and requires relaxation.

Since there is no good topology a priori given on the set of all open subsets
of RV, we study the stability properties of the original control problem imposing
some constraints on domain perturbations. Namely, we consider two types of
domain perturbations: so-called topologically admissible perturbations (see Dancer
[8]), and perturbations in the Hausdorff complementary topology (see Bucur and
Zolesio [5]). The asymptotical behavior of sets of admissible quadruples =, —
controls and the corresponding states — under domain perturbation is described
in detail in Section 4. In particular, we show that in this case the sequences
of admissible solutions to the perturbed problems are compact with respect to
the weak convergence in L®(D;RN*N) x L>2(D) x Wol’p(D) x LP(D). Section
5 is devoted to the stability properties of optimal control problem (1.1)—(1.4)
under the domain perturbation. Our treatment of this question is based on a
new stability concept for optimal control problems (see for comparison [10,11]).
We show that Mosco-stable optimal control problems possess “good” variational
properties, which allow using optimal solutions to the perturbed problems in
“simpler” domains as a basis for the construction of suboptimal controls for the
original control problem. As a practical motivation of this approach we want
to point out that the “real” domain € is never perfectly smooth but contains
microscopic asperities of size significantly smaller than characteristic length scale
of the domain. So a direct numerical computation of the solutions of optimal
control problems in such domains is extremely difficult. Usually it needs a very
fine discretization mesh, which means an enormous computation time, and such
a computation is often irrelevant. In view of the variational properties of Mosco-
stable problems we can replace the “rough” domain 2 by a family of more‘regular”
domains {€2.}.., C D forming some admissible perturbation and to approximate
the original problem by the corresponding perturbed problems [12].

2. Notation and Preliminaries

Throughout the paper D and Q are bounded open subsets of RY, N > 1 and
Q CC D. Let xq be the characteristic function of the set Q and let £V () be the
N-dimensional Lebesgue measure of 2. The space D'(Q2) of distributions in  is
the dual of the space C§°(€2). For real numbers 2 < p < 400, and 1 < ¢ < +00
such that 1/p+1/q = 1, the space Wol’p(Q) is the closure of C§°(€2) in the Sobolev
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space WHP(Q) with respect to the norm

N
Il 1ng, = ( />
Q=1

while W~=14(Q) is the dual space of Wol’p(Q).
For any vector field v € L(Q; RY), the divergence is an element of the space
W~=19(Q) defined by the formula

dy
Bxi

1/p
p
dx —i—/ ly|P dx) , Yy e WiP(), (2.1)
Q

(@ivo Py = [0 90w do, Ve W@, (22

where <',’>W01,p(Q) denotes the duality pairing between W~14(Q) and Wol’p(Q),

and (-, -)g~ denotes the scalar product of two vectors in RY. A vector field v is
said to be solenoidal, if divv = 0.

Weak Compactness Criterion in L*()). Throughout the paper we will often
use the concepts of the weak and strong convergence in L'(Q). Let {a.}.., be
a bounded sequence in L'(Q2). We recall that {ac}.., is called equi-integrable
if for any 6 > 0 there is 7 = 7(0) such that [q|ac|dz < & for every e > 0
and every measurable subset S C € of Lebesgue measure |S| < 7. Then the
following assertions are equivalent: (i) A sequence {ac}, is weakly compact in
L(€). (ii) The sequence {a:},., is equi-integrable. (iii) Given 6 > 0 there exists
A = A(0) such that sup.- f{\as|>/\} lac| dz < 4.

Theorem 2.1 (Lebesgue’s Theorem). If a bounded sequence {a.}..o C L*(2) is
equi-integrable and a: — a almost everywhere on 2, then a. — a in L' ().

PFunctions with bounded variations. Let f : @ — R be a function of L'(£).
Define

TV(f) = /Q Df|

=sup{/Qf(V,<p)RN dz i ¢ € CHURY), [p(@)] < forw € 0,

N Oy

where (V,)py =D ;1,4 Bii'
According to the Radon-Nikodym theorem, if TV (f) < +oo then the distri-
bution Df is a measure and there exist a vector-valued function Vf € L'(Q;RY)

and a measure Dy f, singular with respect to the N-dimensional Lebesgue measure
LN Q restricted to 2, such that Df = VLN [Q + D, f.

Definition 2.1. A function f € L'(f) is said to have a bounded variation in £
if TV (f) < +oco. By BV () we denote the space of all functions in L*() with
bounded variation, i.e. BV(Q) = {f € L'(Q) : TV(f) < +oo} .
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Under the norm || f[| gy (o) = | fllL1) + TV (f), BV(Q) is a Banach space. For
our further analysis, we need the followmg properties of BV -functions (see [13]):

Proposition 2.1. (i) Let {fx}?2, be a sequence in BV (2) strongly converging
to some f in L'(2) and satisfying condition supycy TV (fi) < +00. Then

feBV(Q) and TV(f) < likn_1>infTV(f;€);

(ii) forevery f € BV(Q)NL"(2), r € [1,+00), there exists a sequence { fr}32; C
C*>°(9) such that

lim / |f — fx|"de =0 and lim TV(fx) =TV (f);
k—oco Jo k—o0

(iii) for every bounded sequence {f;}3>, C BV (2) there exists a subsequence,

still denoted by fi, and a function f € BV (Q) such that fi — f in L'().

Monotone operators. Let a and 8 be constants such that 0 < a < 8 < +00. We
define Mﬁ’B(D) as the set of all square symmetric matrices U (x) = [a;;(x)]1<ij<n
in L>®°(D; RY*N) such that the following conditions of growth, monotonicity, and
strong coercivity are fulfilled:

la;j(x)] < B ae.in D, Vi,je{l,...,N}, (2.3)

U@)([¢P2C =[P, ¢ —n)gn =0 ae.in D, V(,neRY, (2.4)
N

U@ ) gy = Y aij@)GIP?¢G G = el aein D, (2.5)
i,j=1

N 1/p
where 7|, = (Z \7];#’) is the Holder norm of n € RY and
k=1

P~%) = diag{|m [P~ |n2[P%, ..., Inw P72}, Vnp e RY. (2.6)

Remark 2.1. Tt is easy to see that Mﬁ’ﬁ(D) is a nonempty subset of L>(D; RVXN),
As the particular representatives of the set M # (D) we can take diagonal matrices
of the form (see [10]), U(z) = diag{d1(z), d2(z),...,dn ()}, where o < 6;(z) < B
ae.in DVie{l,...,N}.
Let us consider a nonlinear operator A : Mg?(D) x WlP(Q) — W—14(Q)
defined as
A, y) = —div U()[(Vy)" | Vy) + [y 2y,

or via the paring

<A(uay)7 117 Q) = Z / (au

i,7=1

p—2
ay>3¢d

83: j Oxj | Ox;

+ / WPy pdz, Ve e WI(Q).
Q
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In view of properties (2.3)—(2.5), for every fixed matrix U € M;’B(D), the operator
A(U,-) turns out to be coercive, strongly monotone and demi-continuous in the
following sense: yr — yo strongly in Wol’p(Q) implies that A(U,yx) — AU, yo)
weakly in W—14(Q) (see [15]). Then by well-known existence results for nonlinear
elliptic equations with strictly monotone demi-continuous coercive operators (see
[15,26]), the nonlinear Dirichlet boundary value problem

AUy =f n Q  yeWy?(Q), (2.7)

admits a unique weak solution in Wg”(Q) for every fixed matrix U € My’ (D)
and every distribution f € W~14(D). Let us recall that a function y is the weak
solution of (2.7) if

y € WyP(Q), (2.8)
x p=2 x P=2y0 dy = x Le(q).
/Q U@y 2V, V) der + /Q P 2ypd /Q fode, Ve, ((;9))

System of nonlinear operator equations with an equation of Hammerstein type.
Let Y and Z be Banach spaces, let Yo C Y be an arbitrary bounded set, and let
Z* be the dual space to Z. Let V' be a dual space to some Banach space B and
Vo C V be a bounded subset. To begin with we recall some useful properties of
non-linear operators, concerning the solvability problem for Hammerstein type
equations and systems.

Definition 2.2. We say that the operator G : D(G) C Z — Z* is radially
continuous if for any z1,22 € X there exist € > 0 such that z; + 722 € D(G)
for all 7 € [0,¢] and the real-valued function [0,e] > 7 — (G(21 + T22), 22)7 is
continuous.

Definition 2.3. An operator G : V XY x Z — Z* is said to have a uniformly
semi-bounded variation (u.s.b.v.) if for any bounded set Vp x Yy C V xY and any
elements z1, z9 € D(G) such that ||z||z < R, i = 1,2, the following inequality

<G(Uay7 Zl) - G(’U,y,ZQ),Zl - 22>Z = — inf Ov,y(R; |||Z1 - 22H|Z) (210)
(’U,y)EV()XYO

holds true provided the function C, , : Ry x Ry — R is continuous for each pair

1
(v,y) € Vo x Yo, and zC’w(r,t) — 0ast— 0,Vr > 0. Here, |||-|||z is a seminorm

on Z such that ||| - |||z is compact with respect to the norm || - || z.

It is worth to mention here that if Cy 4(p,r) = 0, then (2.10) implies the
monotonicity property for the operator G with respect to the third argument.

Remark 2.2. Each operator G : V XY x Z — Z* with u.s.b.v. possesses the
following property (see for comparison Remark 1.1.2 in [1]): if a set K C Z is
such that ||z]|z < k1 and (G(v,y, 2),2)z < ko for all z € K and (v,y) € Vy X Yy,
then there exists a constant C' > 0 such that ||G(v,y,2)|z+ < C, Vz € K and
V(v,y) € Vo X Yp.
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Let B: Z* - Z and F : V XY x Z — Z* be given operators such that the
mapping Z* 3 z* +— B(z*) € Z is linear. Let g € Z be a given distribution. Then
a typical Hammerstein operator equation can be represented as follows

z+ BF(v,y,2) =g, (2.11)
The following existence result is well-known (see |1, Theorem 1.2.1]).

Theorem 2.2. Let B : Z* — Z be a linear continuous positive operator such that
it has the right inverse operator B' : Z — Z*. Let F : V x Y x Z — Z* be an
operator with u.s.b.v such that F(v,y,-): Z — Z* is radially continuous for each
pair (v,y) € Vo x Yy and the following inequality holds true

(F(v,y,2) — B 'g,2)z >0 if only ||z||z > A > 0, X\ = const.
Then the set
H(v,y) ={z€ Z: z+ BF(v,y,z) = g in the sense of distributions }
is non-empty and weakly compact for every fized pair (v,y) € Vo x Yy and g € Z.

Definition 2.4. We say that

(9) the operator F' : V XY x Z — Z* possesses the M-property if for any
sequences {vgtren C V, {yrtreny C Y and {zx}ren C Z such that vy — v
strongly in V', yr — y strongly in Y and z; — 2z weakly in Z as kK — oo, the
condition

lim (F(vk, Yk, 2k), 2k)z = (F(v,y,2),2) 2 (2.12)

k—o0

implies that 2z — 2z strongly in Z.

() the operator F' : V x Y x Z — Z* possesses the A-property if for any
sequences {vgtren C V, {yktreny C Y and {zx}ren C Z such that vy — v
strongly in V', yr — y strongly in Y and z; — 2z weakly in Z as k — oo, the
following relation

1igrlinf<F(Ukaykazk)’Zk>Z = <F(U7yaz)aZ>Z (213)
—00
holds true.

In what follows, we set V = L®(D), Y = W,?(Q), Z = LP(Q), and Z* =
L(Q).

2.1. Capacity

There are many ways to define the Sobolev capacity. We use the notion of
local p-capacity which can be defined in the following way:
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Definition 2.5. For a compact set K contained in an arbitrary ball B, capacity
of K in B, denoted by C, (K, B), is defined as follows

C’p(K,B):inf{/ |DplPdx, YeeCP(B), ¢>1 on K}
B

For open sets contained in B the capacity is defined by an interior approxi-
mating procedure by compact sets (see [16]), and for arbitrary sets by an exterior
approximating procedure by open sets.

It is said that a property holds p-quasi everywhere (abbreviated as p-q.e.) if
it holds outside a set of p-capacity zero. It is said that a property holds almost
everywhere (abbreviated as a.e.) if it holds outside a set of Lebesgue measure
ZEro.

A function y is called p-quasi—continuous if for any & > 0 there exists an open
set As such that Cp(As, B) < 0 and y is continuous in D \ As. We recall that
any function y € WHP(D) has a unique (up to a set of p-capacity zero) p-quasi
continuous representative. Let us recall the following results (see [2,16]):

Theorem 2.3. Ify € WHP(RN), then y|g € Wy () if and only if y = 0 p-q.e.
on Q° for a p-quasi-continuous representative.

Theorem 2.4. Let Q be a bounded open subset of RY | and let y € WHP(Q). If
y=0 a.e. in §, then y =0 p-q.e. in €.

For these and other properties on quasi-continuous representatives, the reader
is referred to |2,13,16,27|.

2.2. Convergence of sets

In order to speak about “domain perturbation”, we have to prescribe a topology
on the space of open subsets of D. To do this, for the family of all open subsets
of D, we define the Hausdorff complementary topology, denoted by H€, given by
the metric:

dpe($h,€02) = sup [d(z, Q) —d(z, Q)]

z€RN

where Qf are the complements of €2; in RN,

Definition 2.6. We say that a sequence {2}, of open subsets of D converges
to an open set Q C D in Htopology, if dge(£2¢, ) converges to 0 as € — 0.

The H¢-topology has some good properties, namely the space of open subsets

of D is compact with respect to H°convergence, and if 2. ELEN Q, then for any
compact K CC 2 we have K CC €, for € small enough. Moreover, a sequence of
open sets {Q:},., C D H¢converges to an open set 2, if and only if the sequence
of complements {2}, ., converges to 2 in the sense of Kuratowski. We recall
here that a sequence {C.}, . of closed subsets of RV is said to be convergent to
a closed set C' in the sense of Kuratowski if the following two properties hold:
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(K1) for every x € C, there exists a sequence {z. € C.},., such that z. — z as
e — 0;

(K32) if {er}jen 18 a sequence of indices converging to zero, {x},cy is a sequence
such that oy € C;, for every k € N, and z, converges to some x € RY | then
xeC.

For these and other properties on Htopology, we refer to [14].

It is well known that in the case when p > N, the H®convergence of open
sets {Q:},oo C D is equivalent to the convergence in the sense of Mosco of the
associated Sobolev spaces.

Definition 2.7. We say a sequence of spaces {Wol’p(Qs)} . converges in the
e>

sense of Mosco to Wol 'P(Q) (see for comparison [23]) if the following conditions
are satisfied:

(M) for every y € Wol’p(Q) there exists a sequence {ye € Wol’p(Qg)} . such
e>
that 7. — ¥ strongly in WHP(RN);

(M3) if {er}en is a sequence converging to 0 and {yk € Wol’p(Qek)}keN is a

sequence such that 7 — 1 weakly in W1 P(RN), then there exists a function
Y€ Wol’p(Q) such that y = 1|g.

Hereinafter we denote by 7. (respect. ) the zero-extension to RY of a function
defined on €. (respect. on ), that is, ¥ = y-xq. and ¥ = yxa.

Following Bucur & Trebeschi (see [4]), we have the following result.

Theorem 2.5. Let {€.},. be a sequence of open subsets of D such that €2, ELN
Q and Qc € Wy (D) for every € > 0, with the class Wy, (D) defined as

Ww(D)={QCD : VzeidQ,VO<r<R<]I,

/R G B, U B, 2)) : dt w(r, R, z) (2.14)
r Cp(B(z,t); B(z,2t)) ;2w Ryx) s (2

where B(x,t) is the ball of radius t centered at x, and the function
w:(0,1) x (0,1) x D — R
s such that
1. lim, o w(r, R, z) = +00, locally uniformly on x € D;

2. w is a lower semicontinuous function in the third argument.
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Then Q € Wy, (D) and the sequence of Sobolev spaces {Wol’p(Qg)} , conver-
e>
ges in the sense of Mosco to Wol’p(Q).

Theorem 2.6. Let N > p > N —1 and let {Q:}.- be a sequence of open subsets

of D such that Q. 5 0 and Q. € Oi(D) for every e > 0, where the class O;(D)
1s defined as follows
OD)={QC D : #Q° <1} (2.15)

(here by & one denotes the number of connected components). Then Q € O)(D) and
the sequence of Sobolev spaces {Wol’p(Qg)} , converges i the sense of Mosco to
e>

W, P ().

In the meantime, the perturbation in Htopology (without some additional
assumptions) may be very irregular. It means that the continuity of the mapping
Q — yq, which associates to every €2 the corresponding solution yq of a Dirichlet
boundary problem (2.8)—(2.9), may fail (see, for instance, [7]). In view of this,
we introduce one more concept of the set convergence. Following Dancer [8] (see
also [9]), we say that

Definition 2.8. A sequence {{).},. , of open subsets of D topologically converges

to an open set @ C D ( in symbols €. OB, Q) if there exists a compact set
Ko C Q of p-capacity zero (Cp(Ko, D) =0) and a compact set K3 C RY of
Lebesgue measure zero such that

(D7) @ cc Q\ Ky implies that Q' CC Q. for € small enough;
(Ds) for any open set U with QU K; C U, we have Q. C U for ¢ small enough.

Note that without supplementary regularity assumptions on the sets, there
is no connection between this type of set convergence and the set convergence in
the Hausdorff complementary topology. Moreover, the topological set convergence
allows certain parts of the subsets (2. degenerating and being deleted in the
limit. For instance, assume that €2 consists of two disjoint balls, and € is a
dumbbell with a small hole on each side. Shrinking the holes and the handle, we
can approximate the set 2 by sets € in the sense of Definition 2.8 as shown
in Figure 1. It is obvious that in this case dgc (€, ) does not converge to 0 as

=0 =0 O

o) Q

3

Fig. 1: Example of the set convergence in the sense of Definition 2.8

€ — 0. However, as an estimate of an “approximation” of 2 by elements of the
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above sequence (). tor, ), we can take the Lebesgue measure of the symmetric
set difference Q.AQ, that is, u(Q, Q) = LY(Q\ Q. UQ. \ Q). It should be noted
that in this case the distance p coincides with the well-known Ekeland metric in
L*>(D) applied to characteristic functions:

dp(xa,xa.) =LY {z €D : xal) # xa.(2)} = (2, Q).

As an example of subsets which are H-convergent but have no limit in the sense
of Definition 2.8, let us consider the sets {€:},., containing an oscillating crack
with vanishing amplitude € (see Figure 2).

Q Q

€

Fig. 2: The p-unstable sets which are compact with respect to the Htopology

3. Setting of the Optimal Control Problem and Existence Result

Let &1, & be given functions of L°°(D) such that 0 < & (x) < &(x) ae.
in D. Let {Q1,..., @n} be a collection of nonempty compact convex subsets of
W=14(D). To define the class of admissible controls, we introduce two sets

Uy = {Ll = [aij] € M;"B(D) &i(x) < agi(x) < &(z)ae. inD, Vi, j=1,... ,N},
(3.1)

Usol = {u = [ur,...,uy] € M&B(D)| divu; € @i, Vi= 1,...,N}, (3.2)

assuming that the intersection U, N Usy C L(D; RV*N) is nonempty. We say
that a matrix U = [a;;] is of solenoidal type if U € Upq := Up N Usyy

Definition 3.1. We say that a pair (U, v) is an admissible control if
(Z/l, U) € Uga X Vg,
where V4 C L*°(D) is an appropriate bounded subset.

Remark 3.1. As it was shown in [10] the set U,q is compact with respect to the
weak-* topology of the space L™ (D;RN*N) as well as V,q is obviously weakly-x
compact in L*(D).
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Let us consider the following optimal control problem:
Minimize {IQ U,v,y, 2 / |z(x) — zq(x \pd:r} (3.3)

subject to the constraints

/Q(Z/{[(Vy)p 2]Vyav90)RN dx—f—/ ly[? 2 pdx = (f,p) Lp(Q) V€ W()’p(Q)a
(3.4)

U€e Uiy, yeW," ), (3.5)
/quﬁdx—i—/QBF(U,y,z)qux:/Qg¢>dx, (3.6)

NS Vad- (37)

where f € W=14(D), g € LP(D), and z4 € LP(D) are given distributions.
Hereinafter, Sy, C L°(D; RY*N) x L®°(D) x Wol’p(Q) x LP(§2) denotes the
set of all admissible quadruples to the optimal control problem (3.3)—(3.7). Let 7
be the topology on the set L>(D; RN*N) x L>®(D) x Wol’p(Q) x LP(§2) which we
define as a product of the weak-* topology of L>®(D;RN*N) x L°(D), the weak
topology of Wol’p(Q), and the weak topology of LP(£2).
Further we use the following result (see [10,19]).

Proposition 3.1. For each U € U,q and every f € W—19(D), a weak solution y
to variational problem (3.4)-(3.5) satisfies the estimate

111510y < CUFN-1.0 (3.8)

where C is a constant depending on p and « only.
Proposition 3.2. Let B : LY(Q) — LP(Q) and F : L=(D) x W P(Q) x LP(Q) —
L%(Q)) be operators satisfying all conditions of Theorem 2.2. Then the set
Esol = {(U,v,y,2) € L®(D;RV*N) x L®(D) x Wy () x LP(Q) :
AU,y) = f, 2+ BF(v,y,2) = 9)}
is nonempty for every f € W=14(D) and g € LP(D).

Proof. Let (U,v) € Uzq X Voyq be an arbitrary admissible control. Then for a
given f € W14(D), the Dirichlet boundary problem (3.4)—(3.5) admits a unique
solution vy = y(U, f) € Wol’p for which the estimate (3.8) holds true. It remains
to remark that the corresponding Hammerstein equation

Z+BF(vayZ/{aZ):g (39)

has a nonempty set of solutions H (v, y) for every g € LP(D) by Theorem 2.2. [
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Theorem 3.1. Assume the following conditions hold:

e the operators B : L1(Q) — LP(Q) and F : L>*(D) x Wol’p(Q) x LP(Q)) —
L(Q) satisfy conditions of Theorem 2.2;

e the operator F(-,-,z) : L>(D) x Wol’p(Q) — L9(Q) is compact in the
following sense: if v, — v weakly-* in L>°(D) and yr, — yo weakly in
W&’p(ﬂ), then F(vk,yk, z) — F(vo, Yo, 2) strongly in LI(2).

Then for every f € W=19(D) and g € LP(D), the set Z4,; is sequentially T-closed,
i.e. if a sequence {(Uy, Vi, Yk, 2k) € Esolfken is such that Uy — Uy weakly-* in
L®(Q; RVXNY o — v weakly-* in L=(D), yr, = y(Uy) — yo weakly in Wol’p(Q),
and 2z = z(vk, yr) — 20 weakly in LP(Q), then (Uy,vo) € Uaa X Vaa, yo = y(Up),
20 € H(vo, y0), and, therefore, (U, vo, Yo, 20) € Esol-

Proof. Let {(Uy, vk, Yk, 2k) then C Zsor be any 7-convergent sequence of admissible
quadruples to the optimal control problem (3.3)-(3.7), and let (U, vo, Yo, 20) be
its 7-limit. Since the controls {Uy}ren belong to the set of solenoidal matrices
Usol (see (3.2)), it follows from [18,20] that Uy € Uyq and yo = y(Up). It remains
to show that zg € H(vo,yo). To this end, we have to pass to the limit in equation

2k + BF (v, Yk, 2) = ¢ (3.10)

as k — oo and get the limit triplet (vo, o, 20) is related by the equation zy +
BF(vo,y0,20) = g. With that in mind, let us rewrite equation (3.10) in the
following way

B*wy, + BF (vg, yx, B wy,) = g,

where wy, € L1(Q), B* : L1(Q) — LP() is the conjugate operator for B, i.e.
(B, w)paq) = (B*w, V) () and B*wy, = 2;. Then, for every k € N, we have the
equality

(B*w, wi) () + (F (v, Yr, B wy), B*wg) po(q) = (9, Wk) 1p()- (3.11)
Taking into account the transformation
(g, wr) o () = (BB, g, wi) o) = (By "9, B*wi) 1o ()
we obtain
(wg, Bwy) £o(a) + (F (vg, yo, B wy,) — By g, B*wg) o) = 0. (3.12)

The first term in (3.12) is strictly positive for every wy # 0, hence, the second
one must be negative. In view of the initial assumptions, namely,

(F(v,y,2) — By g, @) o) 2 0 if only [|z]| o) > A,

we conclude that
| B wi |l o) = 12kl r(0) < A (3.13)
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Since the linear positive operator B* cannot map unbounded sets into bounded
ones, it follows that [Jwy||za) < A1. As a result, see (3.11), we have

(F'(vky Yk, B*wy), B wi) po() = —(Bwg, wk) pr() + (9, Wk) 1r(0) (3.14)

and, therefore, (F(vg, yx, B*wi), B*wi) rr(0) < c1. Indeed, all terms in the right-
hand side of (3.14) are bounded provided the sequence {wy}reny C L4(R2) is
bounded and operator B is linear and continuous. Hence, in view of Remark
2.2, we get

| F(vk, s B*wi) | o) = 1 F 0k, Yks 21) | Loy < 2 as |lzellor) < A

Since the right-hand side of (3.14) does not depend on vy and yy, it follows that
the constant co > 0 does not depend on v; and y; either.

Taking these arguments into account, we may suppose that up to a subsequence
we have the weak convergence F'(vg,yk,2k) — vo in L4(Q). As a result, passing
to the limit in (3.10), by continuity of B, we finally get

20 + By = g. (3.15)

It remains to show that vy = F(vo,yo0,20). Let us take an arbitrary element
z € LP(2) such that [|z][zr) < A. Using the fact that [' is an operator with
u.s.b.v., we have

F ) ) - F ) ) ) - P 2 - i f Cv )‘7 - P )
(F(vks Yks 2) — F(Vk, Yk 2k)5 2 — 21) 1 (Q) ool Nz = 2kl e (o))

where Yy = {y € Wol’p(Q) . y satisfies (3.8)}, or, after transformation,

(F'(Vk, Yks 2)5 2 — 21) Lo() — (F (Vs Ys 28)5 2) Lo (@)

> (F(Vk, Yk 2k)s —2k) Lr(Q) — " y)eil‘l/fdxyo Co,y(N; ||z = 2kl p(@))- (3.16)

Since —z = BF (v, Yk, 21) — g, it follows from (3.16) that

(F(0ks Yrs 2)5 2 = 21) Lo () — (F (Vi Y> 28)5 2) o) + (F(Vk, Yk 21), 9) 1o ()

> (F(vk, Yk» 2k) BE (Vg Yk 21)) Lo () - y)él‘ﬂ/f oy CovKilllz = zilllzr(e)).
v, ad 0
(3.17)

In the meantime, due to the weak convergence F(zg, yk, 2i) — vp in L1(Q) as
k — oo, we arrive at the following obvious properties

lim inf(F (or, yi, 2), BE (0k, i, 21)) o () = (0, Bro) Lr (@), (3.18)
Jim (F vk, yrs k), 2) o) = (100 2) 10 (0 (3.19)

Hm (EF(vg, Y, 2), 9) £r(@) = (v0, 9) Lr(62)- (3.20)
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Moreover, the continuity of the function C, , with respect to the second argument
and the compactness property of operator F', which means that F(vg,yg,z) —
F(vo,yo, 2) strongly in L(Q2), lead to the conclusion

Tim Coy O 12— 2llzr@) = Cory 5 llz = 20ll o). ¥ (v, 3) € Vo x Yo,
(3.21)
kli_}r{)l()(F(vk, Yk»2), 2 — 2k) 1r() = (F(v0, Y0, 2), 2 — 20) 1p(Q)- (3.22)

As a result, using the properties (3.18)—(3.22), we can pass to the limit in
(3.17) as k — oo. One gets

(F(v0,0,2), 2 = 20) Lr() — (0, 2 + Bro — ) o()
> - inf Gy (Alz — . (323
(0,0) &V Vo w2 = 20lllr()- (3:23)

Since Bry — g = —zp by (3.15), we can rewrite the inequality (3.23) as follows

F(vo,y0,2) — g, 2 — > — inf Co.y(N ||z — .
(F(vo, 90, 2) = 0, 2 = 20) Lr(02) e vy(As 12 = 20lll o))
It remains to note that the operator F is radially continuous for each pair (v,y) €
Vaa X Yo, and F' is the operator with u.s.b.v. Therefore, the last relation implies
that F'(vo, Yo, 20) = o (see [1, Theorem 1.1.2|) and, hence, equality (3.15) finally
takes the form

20 + BF (vo, Yo, 20) = g- (3.24)
Thus, zo € H(vo,yo) and the triplet (Uy, vo, Yo, 20) is admissible for OCP (3.3)—
(3.7). The proof is complete. O

Remark 3.2. In fact, as immediately follows from the proof of Theorem 3.1, the
set of admissible solutions = to the problem (3.3)—(3.7) is sequentially 7-compact.

The next observation is important for our further analysis.

Corollary 3.1. Assume that all preconditions of Theorem 3.1 hold true. Assume
also that the operator F : L*(D) X Wol’p(Q) x LP(Q) — L1(Q) possesses (M)
and () properties. Let {vy},cn be a strongly convergent sequence in L>(D) and
{Ur}ren be a strongly convergent sequence in Wol’p(Q). Then an arbitrary chosen
sequence {zx € H(vk, yx)}pen s relatively compact with respect to the strong to-
pology of LP(RY), i.e. there exists an element zo € H(vo,yo) such that within a
subsequence
2z — 2o strongly in LP(Q) as k — oc.

Proof. Let {vr}ren C L>(D) and {yi}peny C Wol’p(Q) be given sequences, and
let vg € L*°(D) and gy € Wol’p(ﬂ) be their strong limits. Let {zx € H(vk, Y&)}pen

be an arbitrary sequence of corresponding solutions to the Hammerstein equation
(3.6)—(3.7).
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As follows from the proof of Theorem 3.1, the sequence {zi, € H (v, yi) tren 1S
uniformly bounded in LP(2) and, moreover, there exist a subsequence of {zx }ken
still denoted by the same index and an element zy € LP(2) such that zp — 2
weakly in LP(2) and zg € H(vo, yo). Our aim is to show that in this case z — zo
strongly in LP(Q2). Indeed, as follows from (3.10) and (3.24), we have the following
equalities

(F (v, Yr» 21) Zk)LP(Q) + (F(vk, Yk, 2k ), BF (v, Yk, Zk)>Lp(Q)
= (F(vk, Yk 2k), 9) Lo()» VE €N, (3.25)

<F('l)07 Yo, ZO), ZO>LP(Q) + <F('l)0, Y0, ZO), BF(UO’ Y0, ZO)>LP(Q)
= <F(’U07y0720)79>L1’(Q)- (326)

Taking into account that F'(vg, yk, zx) — F(vo, yo, 2z0) weakly in L4(€2) (see Theo-
rem 3.1), the limit passage in (3.25) leads us to the relation
Jim (CF (v Yk 28), 20) Lo (@) + (F (ks Yks 22), BE (ks Yy 2)) 1o(0))
= (F(vo, %0, 20), 9) () (3.27)

Since the right-hand sides of (3.26) and (3.27) coincide, the lower semicontinuity
of the functional (Bv,v)r»q) with respect to the weak topology of LP(£2) and

(20)-property of operator F : L*°(D) x Wol’p(Q) x LP(Q) — L4(2) imply
(F(v0,90,20), 9) Lr(0)
= (F'(vo, Y0, 20), z0) Lr(2) + (F' (0, Yo, 20), BF (v, Yo, 20)) Lr(02)

= lim [<F(Uk,yk, 2k)s 2k) pe() + (F (i, Yk, 21), BE (Vg yi, Zk))LP(Q)}
> lim inf [(F(Uk,yk, 2k)s 2k) pe() + (F (Ui, Yk 21), BE (Vg yi, Zk)>LP(Q)}

= (F(v0, Y0, 20), 20) Lr(2) + (F(v0; Y0 20)s BF (vo, Yo, 20)) 1o () -

Hence,

kli_)rg()(F(vk, Yks 2k)s 2k) L () = (F(v0, Y0, 20), 20) Lr (02)

JHm (F (g, ye, 2k), BE(0k, Yy 26)) 10(0) = (F'(v0, Y0, 20), BE (v0, Y0, 20)) Lr (52)-

To conclude the proof, it remains to apply the (90t)-property of operator F' :
L®(D) x WyP(Q) x LP() — LI(Q). O

Remark 3.3. It is worth to emphasize that Corollary 3.1 leads to the following
important property of Hammerstein equation (3.6)—(3.7): if the operator F' :
L>(D) x Wol’p(Q) x LP(Q)) — L4(Q) is compact and possesses () and (2A)



SHAPE STABILITY OF OCPS FOR SYSTEMS OF HAMMERSTEIN TYPE 71

properties, then the solution set H(v,y) of (3.6)—(3.7) is compact with respect to
the strong topology in LP(2) for every pair (v,y) € L*°(D) x Wol’p(Q). Indeed,
the validity of this assertion immediately follows from Corollary 3.1 if we apply
it to the sequence {(vk,yr) = (v,y)}reny and make use of the weak compactness
property of H(v,y).

Now we are in a position to prove the existence result for the original optimal
control problem (3.3)—(3.7).

Theorem 3.2. Assume that Uyg X Vg # O and operators B : L1(Q) — LP(Q)
and F : L*®(D) x Wol’p(Q) x LP(Q)) — L9(QY) are as in Theorem 3.1. Then the
optimal control problem (3.3)-(3.7) admits at least one solution

(uoptjvoptjyopazopt) c Esol C LOO(D;RNXN) % LOO(D) % WOLP(Q) % LP(Q),
I (UOPE P 40Pt 0Pty — inf IoU,v,y,2)
(U,v,y,z)eEsol
for each f € W=H4(D), g € LP(D), and z4 € LP(D).

Proof. Since the cost functional in (3.3) is bounded from below and, due to Theo-
rem 2.2, the set of admissible solutions =g, is nonempty, it follows that there
exists a sequence {(Uy, Vg, Yk, 2k) tren C Eso such that

lim Iﬂ(uk>vkaykazk) = inf _ IQ(Z/{,’U,y,Z)-

k—ro0 U,0,y,2)EE o1
As it was mentioned in Remark 3.2 the set of admissible solutions =, to the
problem (3.3)—(3.7) is sequentially 7-compact. Hence, there exists an admissible
solution (U, vo, Yo, z0) such that, within a subsequence, we have (Ug, Vg, Yi, 25) —
(U, vo, Y0, 20) as k — oo. In order to show that (Uy,vo,yo,20) is an optimal
solution of problem (3.3)—(3.6), it remains to make use of the lower semicontinuity
of the cost functional with respect to the 7-convergence

IQ(Z/[(); V0, Yo, ZO) g lim inf IQ(Z/{km, Uk s Ykrn » ka)
m—0o0

= lim IoUgk, vk, Yk, 2k) = inf In(U,v,y,z2).
k—o0 7U9yvz)€Esol

The proof is complete. O

3.1. Example

In this subsection we give an example of the set V4 C L (D) and operator
F for which all preconditions of Theorems 3.1,3.2 and Corollary (3.1) hold true.

Let 7, and m be given positive constants such that «|D| < m < B|D|. We
define the set V4 as follows

Vo = {v € BV(D)n L®(D)

N

TV (v) <, |vllpipy =m, a <v(r) < S ae. in D}. (3.28)
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It is clear that V4 is a nonempty convex subset of L!(D) with empty topological
interior.

Proposition 3.3. If {v}, oy C Vaa and vy — v strongly in L'(D), then vy — v
strongly in L"(D) for any r € [1,+00) and vy — v weakly-* in L>°(D).

Proof. Since vy — v in L'(D) and
/kadx =m, TV(v) <7y, and a<v,<f ae in D, VkeN,
by Proposition 2.1(i) it follows that
TV (v) < v, /Dvdx:m, and a<v <8 ae in Q.

Hence, v € V4. Moreover, for any r € [1,400), the estimate
o1 = vl oy < vraisup o () — (@)~ o = vl a0y < (8=) o= vl
x

implies that vy — v strongly in L"(D).

To end the proof, it is enough to note that strong convergence vy — v in L(D)
implies, up to a subsequence, convergence vi(z) — v(z) almost everywhere in D.
Hence, by Lebesgue Theorem, we have

/(vk —v)pdr =0, YeeL'(Q),
Q

that is vy — v weakly-* in L°°(D). Since this conclusion is true for any weakly-x
convergent subsequence of {vy},y, it follows that w is the weak-* limit for the
whole sequence {vy};cn- O

Proposition 3.4. V.4 is a sequentially compact subset of L"(D) for any r €
[1,+00), and it is a sequentially weakly-* compact subset of L>°(D).

Proof. Let {v}},c be any sequence of Voq. Then {vg },cy is bounded in BV (D)N
L>(D). As a result, the statement immediately follows from Propositions 3.3 and
2.1(iii). O

As an example of the nonlinear operator F' : L*(D) x Wol’p(Q) x LP(Q) —
L1(Q) satisfying all conditions of Theorem 3.1 and Corollary 3.1, we can consider
the following one

F(v,y,2) = [yP2y + v(z)|z[P>2.

Indeed, this function is obviously radially continuous with respect to the third
argument and it is also strictly monotone by z

<F(U7 Y, Zl) - F(/Ua Y, 22), 21— 22>LP(Q)
= / v(z) (|21 P=22 — |22|p_222) (21 — 2z2) dx
Q

> a2%7P||z — 22||I£p(m >0, Vz1,20 € LP(Q), 21 # 22.



SHAPE STABILITY OF OCPS FOR SYSTEMS OF HAMMERSTEIN TYPE 73

This implies that F'is an operator with u.s.b.v. It is also easy to see that mapping
F:V,x Wol’p(ﬂ) x LP(Q2) — L1(Q) is compact in a way pronounced by Theorem
3.1.

Indeed, let yx — yo weakly in Wol’p(Q) and vy — vo weakly in L*°(D). Then,
in view of the Sobolev embedding theorem, we have y; — yo strongly in LP(£2).
Combining this fact with the convergence of norms

-2 -2
I |yk|p yk:Hqu(Q) = ||l/k:HI£p(Q) - ||y0”1[),p(ﬂ) = | |Z/0‘p yOH%q(Q)

we arrive at the strong convergence |yi|P~2yr — |yolP2yo in LI(Q).

Also, due to Proposition 3.4, we get that within a subsequence still denoted
by the same index vy — vg strongly in L'(D), vy — vo a.e. in D and {vg }ren is
equi-integrable on Q C D. Further, the sequence {vy(z)|2|P"22}ken is bounded
in L4(Q) and hence weakly compact, namely vy (z)|z|[P~22 — vo(z)|2|P~22 weakly
in L1(Q). Moreover, by Lebesgue Theorem we have the following convergence of
norms

/UZ($)|‘Z|p_2Z‘qd$:/’Ug(SC)|Z|pdSU—)/’Ug(l')’2|pdﬂj,
Q Q Q

since the sequence {vf(z)|z[P}xen is obviously bounded in L'(Q), equi-integrable
and converges a.e. in ) C D.

As a result, we have F'(vg, yk, z) = F(vo, Yo, z) strongly in LI(Q).

Now let us show that F' possesses the (9t) and (2() properties. Let vy — v
strongly in L*°(D), yr — y strongly in Wol’p(Q) and z; — z weakly in LP(Q).
First, let us prove that condition (2.13) holds true. Indeed, the following chain of
relations

lim inf (2g, F (vk, Yk 2k)) Lo (0)
k—o00

> lim (]yk|p*2yk, Zk>Lp(Q) + lim inf(vk|zk|p*22k, Zk>Lp(Q)
k—o0 k—o0
> (|lyP2y, 2)pp(@) + lim /(vk — )|zl dx + liminf/ v|zk|P dx
k—oco Jo k—oo  Jo
> <|y|p_2y7 Z>LF(Q) + /Q U|Z|p dx = <F(U7y7 Z)a Z>LP(Q)3 (329)

takes place in view of Lebesgue Theorem (since the sequence { (v —v)|2k|P }ren is
equi-integrable and converges to zero a.e. in §2) and the fact that the expression

H’f”hp(g) = (/Q”(x)\{(a:ﬂp dx> 1/p

can be taken as an equivalent norm of element £ in LP(2). Hence the () property
holds true for operator F.

Taking into account condition (2.12) let us prove the strong convergence
zi — z in LP(Q). It is easy to see, that changing everywhere in (3.29) liminfy_,
into limg_,o, and 7 > 7 to —”, we obtain the relation which implies the norm
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convergence ||[zx|/|r) = ll[2ll|zr(@)- Since zx — 2z weakly in LP(€2), we finally
conclude: the sequence {zj}ren is strongly convergent to z in LP(9).

4. Domain Perturbations for Optimal Control Problem

The aim of this section is to study the asymptotic behavior of solutions

( OPE )OPt 40Pt z;”’t) to the optimal control problems

To (Useyve,Ye, 2:) = / |ze(z) — z4(x)|P doz — inf, (4.1)

—div (Ue(@)[(Vye)P 2IVye) + |y’ 2ye = f in Q,
y- € Wy'P(Qe), Ue € Uga,
Ze + BF (e, Ye, 2:) = g in Qe, 2. € LP(),
ve € Vad,

as € — 0 under some appropriate perturbations {€2.}.., of a fixed domain Q C
D. As before, we suppose that f € W~14(D), g € L?(D), and z4 € LP(D)
are given functions. We assume that the set of admissible controls U,q X Vgq
and, hence, the corresponding sets of admissible solutions Z. C L (D; RN*N) x
L>(D) x Wol’p(QE) x LP(€.) are nonempty for every ¢ > 0. We also assume that
all conditions of Theorem 3.1 and Corollary 3.1 hold true for every open subset
Qof D.
The following assumption is crucial for our further analysis.

(°B) The Hammerstein equation
/zd)dx—l—/BF(U,y,Z)d)d:c:/ggf)dx, (4.6)
D D D

possesses property (98), i.e. for any triplet (v,y,2) € L*(D) x W&’p(D) X
LP(D) such that z € H(v,y) and any sequence {yx }ren C Wol’p(D), strongly
convergent in Wol’p(D) to the element y, there exists a sequence {zj}ren C
LP(D) such that

zi € H(v,yr), VkeN and 2z, — z strongly in LP(D).

Remark 4.1. As we have already mentioned in Remark 3.3, under assumptions of
Corollary 3.1, the set H(v,y) is non-empty and compact with respect to strong
topology of LP(D) for every pair (v,y) € L*(D) x Wol’p(D). Hence, the (B)-
property obviously holds true provided H(v,y) is a singleton (even if each of the
sets H(v,y) contains more than one element).

Before we give the precise definition of the shape stability for the above
problem and admissible perturbations for open set {2, we remark that neither

the set convergence (). M5 Q in the Hausdorff complementary topology nor
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the topological set convergence (2. YR 0 is a sufficient condition to prove the
shape stability of the control problem (3.3)—(3.7). In general, a limit quadruple

t t t
EOP ,UOP op

for the sequence {( Ve 3 Ye ,zgpt)} o under HCperturbations of €2, can
e>

be non-admissible to the original problem (3.3)—(3.7). We refer to [6] for simple
counterexamples. So, we have to impose some additional constraints on the moving
domain. In view of this, we begin with the following concepts:

Definition 4.1. Let Q and {€2.},., be open subsets of D. We say that the sets
{Qc}.o( form an H°-admissible perturbation of €, if:

(i) 2 55 Qase—0;
(ii) Qe € Wy(D) for every € > 0, where the class Wy, (D) is defined in (2.4).

Definition 4.2. Let € and {€2.}.., be open subsets of D. We say that sets
{Qc},5 form a topologically admissible perturbation of € (shortly, t-admissible),

if Q. YR 0) in the sense of Definition 2.8.

Remark 4.2. As Theorem 2.5 indicates, a subset {2 C D admits the existence of
H¢-admissible perturbations if and only if ©Q belongs to the family W, (D). It
turns out that the assertion:

“ye WHP(RY), Q € W, (D), and suppy C Q, imply y € Wol’p(Q) K

is not true, in general. In particular, the above statement does not take place in
the case when an open domain  has a crack. So, W,,(D) is a rather general class
of open subsets of D.

Remark 4.3. The remark above motivates us to say that we call 2 C D a p-stable
domain if for any y € WHP(RY) such that y = 0 almost everywhere on int Q°,
we get ylg € Wol 'P(Q). Note that this property holds for all reasonably regular
domains such as Lipschitz domains for instance. A more precise discussion of this
property may be found in [8].

Hereinafter, we denote by 7. the zero-extension of y. to RY. We begin with
the following result.

Proposition 4.1. Let Q € W, (D) be a fixed subdomain of D, and let {Q2.}_. be
an H°admissible perturbation of . Let {(Us, ve, ¥e, 2:) € Ec},-( be a sequence of
admissible quadruples to problems (4.1)—(4.5). Then sequence {(Uz, Ve, Ye, Ze) } .5
is uniformly bounded in L>(D; RV*N) x L>°(D) x Wol’p(D) x LP(D) and for each
its 7-cluster quadruple (U*,v*,y*, z*) € L®(D;RN*N) x L>®(D) x Wol’p(D) X
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LP(D), we have
U* € Uy, (4.7)

/D (U (VY )P 2IVY* V@) gy da + /D ly* [P 2y* 5 dx
= ([, SE>W0LP(D)> Vi € C5o (), (4.8)

/ e+ (BF(W 5%, 2), D) gy = / gdde, Yo eOPQ),  (4.9)
D D
v* € V. (4.10)

Proof. Since each of the quadruples (U, ve, ye, z¢ ) is admissible to the correspond-
ing problem (4.1)—(4.5), the uniform boundedness of sequence { (U, ve, ¥e, Z=) } .o
with respect to the norm of L®(D;RN*N) x L=(D) x Wy'P(D) x LP(D) is a
direct consequence of (3.2), Proposition 3.1, and Theorem 3.1. So, we may assume
that there exists a quadruple (U*,v*,y*,z*) such that (within a subsequence
still denoted by suffix €) (Us, v, 7, 22) — (U*,v*,y*, 2*) in L®°(D;RV*N) x
L>(D) x Wol’p(D) x LP(D). Then, in view of Remark 3.1, we have U* € U,4 and
v* € Vyq.

Let us take as test functions ¢ € C§°(Q2) and ¢ € C5°(£). Since Q. RilN Q,
then by Theorem 2.5, the Sobolev spaces {W&’p(QE)}DO converge in the sense

of Mosco to W, ?(€2). Hence, for the functions ¢, € W, ?(Q) fixed before, there
exist sequences {905 € Wol’p(Qg)} . and {@Z)E € Wol’p(QE)} . such that . — @
e> e>

and 1. — 1 strongly in WLP(D) (see property (M)). Since (Us, ve, ye, 2) is an
admissible triplet for the corresponding problem in )., we can write

/ (usKvye)p_z]Vyea V‘PE)RN dx + /Q ’ya‘p_zys e dr = <f> QOE>W017P(Q€)7

€

/ 2ee dx + <BF(’U€)y€7Z€)7w€>Lq(Qe) = /S; g Y. du,

Qe

and, hence,

/ (ua[(Vye)piﬂvﬂaav{ﬁa)RN dx +/ ‘g6’p72ga Pedx = <f’ SAD/E)WOL”(D)’ Ve >0,
D D
(4.11)

/ 2o dx + (BF (ve, e, 22), We) La(D) :/ gedr, Ve > 0. (4.12)
D D

To prove the equalities (4.8)—(4.9), we pass to the limit in the integral identities
(4.11)—(4.12) as € — 0. Using the arguments from [18,20] and Theorem 3.1, we
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have

divu;. — divu) strongly in W—b9(D), Vi=1,.
{[(VE)P"2Vi:} .., is bounded in LI(D;RY), ¢ =p/(p— 1),
{l7:/P%5:}_, is bounded in L%(D),
{Z:}.~o is bounded in LP(D),
{F(ve,Uey 22) } o is bounded in LP(D),
ve — v* weakly — % in L*°(D),

con,

e > y* in LP(D), ye(z) = y"(z)ae z€D,
517725 — |y*[P~2y* weakly in LI(D),
Ze — 2% weakly in LP(D),
Jv € LYD) such that F(ve,ye, 2:) — v weakly in LP(D)

where Ue = [U1c,...,une] and U* = [uf, ..., u}y].

As for the sequence {fE = f - |§g|p_2§5}8>0, it is clear that

fe= fo=f—y*P"%y* stronglyin W1 (D).

In view of these observations and a priori estimate (3.8), it is easy to see that the
sequence {MS[(Vﬂg)p_z]V§5}€>0 is bounded in L(D;R™). So, up to a subsequence,
we may suppose that there exists a vector-function & € LI(D;R™) such that

U[(VT)P 2|V — € weakly in LY(D;RY).

As a result, using the strong convergence ¢. — @ in WHP(D) and the strong
convergence 1. — ¢ in LP(D), the limit passage in the relations (4.11)—(4.12) as
e — 0 gives

[ (€9 = [ (1P G (413)
D D
/ 2 dr + (B, J)LQ(D) = / g da. (4.14)
D D
To conclude the proof it remains to note that the validity of equalities
E=U[(Vy )P VY, (4.15)
v=F(@*",y", 2" (4.16)
can be established in a similar manner as in [18,20] and Theorem 3.1. O

Our next intention is to prove that every 7-cluster quadruple

U* ¥y, 2*) € L2(D; RY*N) x L2°(D) x Wy'P(D) x LP(S)
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of the sequence {(Uz, ye, 2:) € Ec},- is admissible to the original optimal control
problem (3.3)—(3.7). With that in mind, as follows from (4.7)—(4.10), we have to
show that y*|q, € Wol’p(Q) and z* € H(v*, y*|g), i.e.,

/glz*¢dx + <BF(U*,y*,Z*),¢>Lq(Q) - /anpda:, Vi e WOI’P(Q).
To this end, we give the following result (we refer to [4] for the details).

Lemma 4.1. Let Q,{Q:},. o € Wy(D), and let Q. A Qase — 0. Let Uy €
ME(D) be a fived matriz. Then

VQ., h — Vo strongly in Wol’p(D), Vhe Wol’p(D), (4.17)

where vo_ p and v, are the unique weak solutions to the boundary value problems

_div (UO[(V’U)I)_Q]VU) + "U|p_2’1) =0 i Qe, (4 18)
v—he€ Wol’p(Qs) |
and
—div (Up[(Vo)P~?]) + olP 20 = 0 in Q, (4.19)
Q}—hEWOLp(Q)a |

respectively. Here, Vq_ 1, and Vg ), are the extensions of v, n and vq p, such that
they coincide with h out of Q. and €Y, respectively.

Remark 4.4. In general, Lemma 4.1 is not valid if Q. B Q.

We are now in a position to prove the following property.

Proposition 4.2. Let {(Us,v:,ye,2:) € Ec}.o be an arbitrary sequence of ad-
missible solutions to the family of optimal control problems (4.1)-(4.5), where
{Qc},oo is some Hadmissible perturbation of the set Q@ € W, (D). If for a
subsequence of {(Us,ve, e, 2:) € Ec},o (still denoted by the same index ) we

have (u€7v87g67g8) L> (U*7v*7y*72*)7 then

y* = gQ,M*a Z*‘Q € H(v*ayﬂ,u*)7 (420)
/Q gda+ (BF(" yo,u, ), U)o = /Q g dn, Vo € WP(Q),  (421)
(U*7U*7 y*| Q> Z*’Q) € ESOZ’ (422)

where by ¥, 1+ we denote the weak solution of the boundary value problem (3.4)—
(3.5) with U = U"*.
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Proof. To begin with, we note that, by Propositions 3.1 and 4.1, we can extract
a subsequence of {(Ue, ve,Ye, z) € e} (still denoted by the same index) such
that

U — U =[u},...,ul] € Uy weakly-+ in L(D;RV*N) (
ve = V" € Vgg weakly-*x in L(D), (4.24
Je —y" weakly in W, P(D), (
Ze = 2% weakly in LP(Q), (
y € WyP(Q), 7€ W, (D).
Since (4.21)-(4.22) are direct consequence of (4.20), we divide the proof into two
steps.
Step 1. We prove that y* = y. Following Bucur & Trebeschi [4], for every
€ > 0, we consider the new boundary value problem
—div (u*[(vws)p—ﬂvws) + |50€|p_2§06 =0 in Q. }

. (4.27)
we=—y" in D\ Q..

Passing to the variational statement of (4.27), we have
* ~\p—21 = i
[ (@ivay29e.vi), a

+/ 5P 25 e dz =0, Vip € CF(Q), Ve > 0.
D

(4.28)
Taking in (4.28) as the text function IZE = ¢ +Y* — Y, we obtain
[ (@ vEr 1969 @+ - @)) Lo
D R
/ |GelP 23 (e +y* — ) due =0, Ve >0. (4.29)

Let ¢ € W1 P(Q) be the weak solution to the problem

—div (U [(Ve)P?|Ve) + |pP?9=0 in Q,
p=—y" in D\Q. }
Then by Lemma 4.1, we have . — @ strongly in Wol’p(D). Hence,
V3. — V@ strongly in LP(D; RY),
VB9 ey = I8l s = IV

ST =TT,
Ve (x) = Vo(z) ae.in D,
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and

Y — ¢ strongly in LP(D),
~ p—2 ~ ~ ~ ip—D ~
1 Bl ai) = 18y = 132y = 1B L
Oe(x) = o(z) ae. in D.

Since the norm convergence together with pointwise convergence imply the
strong convergence, it follows that

[(Vfﬁe)p_z]v(ﬁs — [(V(ﬁ)p_Q]V(ﬁ strongly in Lq(D;RN)7
‘st‘p_g D — |<Z]p_2 ¢ strongly in L4(D),
V(P +y" — ) = V@ weakly in LP(D;RY) ( see (4.25)),
(e +y" —ye) > ¢ strongly in LP(D),

Hence, the integral identity (4.29) contains only the products of weakly and
strongly convergent sequences. So, passing to the limit in (4.29) as ¢ tends to
zero, we get

[ @58 96.98) 0 do+ [ [girds =0,

Taking into account the properties of U* prescribed above, we can consider the
left-hand side of the above equation as a p-th power of norm in Wol’p(Q), which is
equivalent to (2.1). Hence, it implies that ¢ = 0 a.e. in D. However, by definition
¢ =—y*in D\ Q. So, y* = 0in D\ Q, and we obtain the required property
yur.a = y'lo € Wy P(Q).

Step 2. Our aim is to show that 2z*|, € H(v*,yy= o). In view of (4.9), from
Proposition (4.1), we get

/z*1/1dx—i—/BF(U*,y*,z*)wdm—/gwdsc, Vi € C§O(Q).
Q Q Q

As was shown at the first step, y* = yy+ o on Q, and, therefore, we can rewrite
the above equality in the following way

/ 2" dx +/ BF(v*,yu~ q,2" )¢ de = / gdr, Ve CP(Q),

Q Q Q

which implies the inclusion z*|, € H(v*, yy=, o). The proof is complete. O
The results given above suggest us to study the asymptotic behavior of the

sequences of admissible quadruples {(Uz,ve,¥e, 2:) € Ec},( for the case of t-
admissible perturbations of the set 2.
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Proposition 4.3. Let  C D be some p-stable open domain. Assume that
{(Ueyve,Ye, 22) € EE}€>0 is a sequence of admissible quadruples for the family
(4.1)-(4.5), where {Q.}.., C D forms a t-admissible perturbation of Q. Then
{(Ue, ve, e 22) } oo is uniformly bounded in L (D; RN*N) x L®(D) x Wy P (D) x
LP(D) and for every T-cluster triplet (U*,v*,y*, 2*) € L®(D;RN*N) x L>®°(D) x
W, (D) x LP(S2) of this sequence, we have

(j) the quadruple (U*,v*, y*, 2*) satisfies the relations (4.7)-(4.10);

(jj) the quadruple (U*,v*, y*|, 2¥| ) is admissible to the problem (3.3)-(3.7),
Le., ¥* = Yau+, 2'lg € H(*, ya u+), where yq i+ stands for the weak
solution of the boundary value problem (3.4)—(3.5) under U = U*.

Proof. Since €. Y% in the sense of Definition 2.8, it follows that for any
w, Y € C°(Q\ Ky) we have suppyp C Qg supptyp C 2 for all € > 0 small
enough. Moreover, since the set Ky has zero p-capacity, it follows that C5°(£2\ Ko)
is dense in WO1 'P(Q). Therefore, the verification of item (j) can be done in an
analogous way to the proof of Proposition 4.1 replacing therein the sequences

{tpg € W()Lp(QE)}DO and {ws € W()l’p(Qs)}E>0 by the still functions ¢ and ¥. As

for the rest, we have to repeat all arguments of that proof.

To prove the assertion (jj), it is enough to show that y*|, € Wol’p(Q). To do
s0, let By be an arbitrary closed ball not intersecting QUK7. Then from (4.2)—(4.3)
it follows that y. = yqo. . = 0 almost everywhere in By whenever the parameter
¢ is small enough. Since by (j) and Sobolev Embedding Theorem . converges to
y* strongly in LP(D), it follows that the same is true for the limit function y*. As
the ball By was chosen arbitrary, and K is of Lebesgue measure zero, it follows
that supp y* C Q. Then, by Fubini’s Theorem, we have supp * C Q. Hence, using
the properties of p-stable domains (see Remark 4.3), we just come to the desired
conclusion: y*|q € WO1 'P(Q2). The rest of the proof should be quite similar to the
one of Proposition 4.2, where we showed, that z*|, € H(v*, y*|g). The proof is
complete. O

Corollary 4.1. Let {(Uz,ve,ye, 2¢) € Ecteso be a sequence such that (Us,v:) =
U*,v*) Ye > 0, where (U*,v*) € Uzg X Vaa, is an admissible control. Let the

sequence {yﬂs,u* € Wol’p(Qg)} . be the corresponding solutions of (4.2)—(4.3)

e>

and let ze € H(v*,yq. u+) be any solution of (4.4)—(4.5) for each € > 0. Then,
under assumptions of Proposition 4.2 or Proposition 4.3, we have that, within
a subsequence still denoted by the same index €, the following convergence takes
place

Yoo, u = yao,u+ strongly in Wol’p(D),
Ze = 2% strongly in LP(D), and z%|q € H(v",yq,ux).

Proof. As follows from Propositions 4.2 and 4.3, the sequence of admissible quad-
ruples {(U*,v*,ye, 2:) € B}, is relatively 7-compact, and there exists a 7-limit
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quadruple (U*,v*,y*,2*) such that y*|, = you+ and 2*|q € H(V*, yo,u).
Having set y = yq,u~, we prove the strong convergence of y. to ¥ in Wol’p(D).
Then the strong convergence of z. to z* in LP(D) will be ensured by Corollary
3.1.

To begin with, we prove the convergence of norms of ¥,

Tellwr.ppy = 19llwrpp) as € — 0. (4.30)

As we already mentioned, since U* € U,qy, we can consider as an equivalent
norm in W, (D) the following one

1/p
u* _ * —2
10y = [ @OUT07 290 V) o+ [ pirac)

As aresult, the space <W&’p( ), || - ”u*l »(D)

convex. Hence, instead of (4.30), we can establish that

> endowed with this norm is uniformly

714 )y = [olks p(p) as €—0. (4.31)

Using the equations (3.4) and (4.2), we take as test functions y and e,
respectively. Then, passing to the limit in (4.2), we get

i ([ @059, Vi) o+ [ (il )

e—0

p . ~
= 1im (1l sn)) = B (F Bodyror o) = (F Do)

/D (L[*[(V?J)P 2]Vy, Vy)RN d;[;-|—/ 7P dz = (HyHWl o) )p'

Since (4.31) together with the weak convergence in Wol’p(D) imply the strong
convergence, we arrive at the required conclusion. O

5. Mosco-Stability of Optimal Control Problems

We begin this section with the following concept.

Definition 5.1. We say that the optimal control problem (3.3)-(3.7) in € is
Mosco-stable in L>®(D; RV*N)x (D) x Wol’p(D) x LP(D) along the perturbation
{Q:},o of Q, if the following conditions are satisfied

) if { 0, E, ys, E €= } is a sequence of optimal solutions to the per-
turbed problems (4.1)— (4 ) then this sequence is relatively 7-compact in
L=(D;RY*N) x L*(D) x Wo1 (D) x LP(D);

(ii) each 7-cluster quadruple of { (U2, 2,42, 20) € E.} .~ i an optimal solution
to the original problem (3.3)7(3.7).
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Moreover, if
~ ~ T
U2,02,52,20) — U°,°,y°,29), (5.1)
then (U°, 09, yO‘Q , ZO}Q € By and

inf IToU,v,y,2) =
(U,v,y,z)EEsol Q( Y )

0,0 ,0 0 _1; :
IQ(Z/{ YUY ‘Q?Z ‘Q) - il_rf(l] (ue,Ue:,;/Ialis)EEE IQE(UE,Us,ysaZs)- (52)

Our next intention is to derive the sufficient conditions for the Mosco-stability
of optimal control problem (3.3)—(3.7).

Theorem 5.1. Let 0, {2}, be open subsets of D, and let
2. C L(D;RVN) 5 L%(D) x WaP(Q.) x LP(2,)

and
Zeot C LO(D;RMNY 5 L®(D) x WP () x LP(Q)

be the sets of admissible solutions to optimal control problems (4.1)-(4.5) and
(3.3)—(3.7), respectively. Assume that operator F : L>°(D) x Wol’p( ) x LP(D) —
LY(D) satisfies the condition

F(v,y-xq,z-xq) =0 for a.a. x € D\ Q,

and the distributions zq € LP(D) in the cost functional (3.3) and g € LP(D) in
(3.6) are such that

za(x) = zq(x)x o(z), g(x)=g(@)xa(x) forae z€D. (5.3)

Assume also that Hammerstein equation (4.6) possesses property (B) and at least
one of the suppositions

1. Q€ Wy(D) and {Q.},. is an H°-admissible perturbation of Q;
2. Q1 is a p-stable domain and {Q:},- is a t-admissible perturbation of Q;

holds true.
Then the following assertions are valid:

(MS1) if {ex}ren @5 a numerical sequence converging to 0, and {(Uy, Uk, Yk, 2&) } pen
1S a sequence satisfying

(uk?7vk’7yk‘7zkj) € EEk’ Vk S N, and
(ukkavgk;gk) l> (U>U7¢af) mn
L®(D;RN*NY 5 L®(D) x Wy'?(D) x LP(D),

then there exist functions y € Wol’p(ﬂ) and z € LP(Q) such that y = 9|,
z=¢€lg, 2 € H(v,y), (U,v,y,2) € Eq, and

hmlnf[ﬂgk (Uk7vk7yka Zk) 2 IQ(U7U7 y|Q ) Z|Q)a
k—o0
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(M Ss) for any admissible solution (U,v,y, z) € g1, there exists a realizing sequence
{(u&‘a Ve Yes Z{;‘) S Ea}s>0 such that

U. — U strongly in L= (D; RVN*N),
ve — v strongly in L (D),
Ye — Y strongly in Wol’p(D),
Ze — z strongly in LP(D),
limsup Lo, (Ue, ve, Ye, 2:) < T, v,y, 2).

e—0

Proof. To begin with, we note that the first part of property (M S7) is the direct
consequence of Propositions 4.2 and 4.3. So, it remains to check the corresponding
property for cost functionals. Indeed, since z — z weakly in LP(D), in view of
lower weak semicontinuity of norm in LP(D), we have

hmmfIQE (U, Vi, Yky 2k) —hmlnf/ |zk—zd|pd:ﬂ>/ |z — zq4|P dx
2/|z—zd|pdx:/\z|9—zd|p de =IoU,v, Y| g, 2| o)
Q Q

Hence, the assertion (M .S7) holds true.

Further, we prove (M .S2). In view of our initial assumptions, the set of admis-
sible quadruples Z,; to the problem (3.3)—(3.7) is nonempty. Let (U, v,y, z) € Ego
be an admissible quadruple. Since the control (U, v) is admissible to problem
(4.1)-(4.5) for every € > 0, we construct the sequence {(Uz, Ve, Ye, 2e) € Ec}.o a8
follows: (Uz,v:) = (U,v), Ve > 0 and y. = yq_y is the corresponding solution of
boundary value problem (4.2)-(4.3). As for the choice of elements z., we make it
later on.

Then, by Corollary 4.1, we have

- - . 1
Yo.,u — Yo,u strongly in Wo’p(D),

where yq i is a unique solution for (3.4)—(3.5). Then the inclusion (U, v,y, 2) €
Hsor implies y = yo, y.

By the initial assumptions g(z) = g(z)x(z) and F(v,y,z) = 0 a.e. in D \ Q.
Hence,

[ mvans [ BRO.GDwd = [ gude. Vo e D),
D D D

ie. Z € H(v,y) C LP(D). Then, in view of (*B)-property, for the given triplet
(v,9, Z) there exists a sequence {z: € H(v, Y., u)}e>o0 such that zZ. — Z strongly in
LP(€2). As aresult, we can take {(Us, ve, Ue, 22) } as a realizing sequence. Moreover,
in this case the desired property of the cost functional seems pretty obvious.
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Indeed,

limsup I o, (Uz, ve, Ye, 2¢) —hmsup/ \ze—zd]pd:v—/ |z — zq|P dzx

e—0 e—0

= / |z — zqlP de = T1q(U,y, z).
Q
The proof is complete. [

Theorem 5.2. Under the assumptions of Theorem 5.1 the optimal control prob-
lem (3.3)-(3.7) is Mosco-stable in L>°(D; RN*N) x L®(D) x Wy'P(D) x LP(D).

Proof. In view of a priory estimates (2.3), (3.8) and (3. 13) we can immediately
conclude that any sequence of optimal quadruples {(UO, s,ye, E) € HE}DO to
the perturbed problems (4.1)—(4.5) is uniformly bounded and, hence, relatively
T-compact in

L®(D; RN*NY x L®(D ) X W1 (D ) x LP(D). So, we may suppose that there

exist a subsequence { (U, k, gk,ysk, Ze, }keN and a quadruple (U*,v*, y*, z*) such
that (U2 z0) s (U, v*,y*, 2*) as k — oo. Then, by Theorem 5.1 (see

k? Ek)yEkJ €k

property (MS1)), we have (U*,v*, y*|q , 2*|q) € Esor and

. . R TIN 0 0 0
bmint 005 o, o, @ v02) = lpintIn,, U, ve e, 22,)
2 IQ(Z/{*’U*a y*‘Q ) z*|Q)

min IoU,v,y,2) = ToUP" 0Pt Pt 2°Ph) (5.4)
(u7 v, Y, Z)E Esol

WV

However, due to condition (M Ss), for the optimal quadruple (P, vOPt, Pt zoPt) €

Esol there exists a realizing sequence {(L{g, Ve, Ye, 2) € EE} such that
e>0

(2:1\57 Ve, ;:Jav g\é‘) — (uopt? ,Uopt7 gopt7 gopt)a and

t t t t . 77 ~ =~
IQ(qu 7U0p 7y0p ,Zop ) 2 hmsupIQE(Z/{E7U€7yéaze)~

e—0
Using this fact, we have
min _ IoU,v,y,2) = IQ(uopta UOpta ?fpt, Zopt) > limsup I o, (Z;{\sa Ve, Ye,s 22)
(Z/{,U,y, z)ezsol e—0

>limsup  min _ Tq (U,v,y,2)
e—=0 (U, v,y,2)€Ee

> limsup min _ Io,_ U,v,y,z)
k—oo U, vy, )E:sk

= limsup Io,, (Z/{O 0. (5.5)

9 Ek ’ y5k7 £k
k—o0

From this and (5.4), we deduce

limsup Io,, u° 0y,

hmlnf[ﬂek(uka sk7y5k7 z—:k) ek skvyskv ek

k—o0 k—o0
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Thus, combining the relations (5.4) and (5.5), and rewriting them in the form of
equalities, we finally obtain

IoU™,v*, y"lg, 2"|q) = IQ(U"pt,v(’pt,yOpt,zom) = min IoU,v,y,2),
(u» v,Y, Z)G Escol

t . opt ,opt opt : :
ToUOP* 0P P 2%P") = lim min I, (U, v,y,2).
k—oo (U, v,y,2)€Ee,

Since equalities (5.6)—(5.7) hold true for every 7-convergent subsequence of the
original sequence of optimal solutions {(UY,v?,y2,20) € EE}E>07 it follows that
the limits in (5.6)—(5.7) coincide and, therefore, I (U, voPt y°Pt, 2°Pt) is the limit

of the whole sequence of minimal values

{Igg(ug,vg,yf,zf) = inf IQE(U,U,y,Z)}
(u7v7y7z)€:8 8>0

This concludes the proof. O

Remark 5.1. Tt is worth to emphasize that without (B)-property, the original
optimal control problem can lose the Mosco-stability property with respect to the
given type of domain perturbations. In such case there is no guarantee that each
of optimal triplets to the OCP (3.3)-(3.7) can be attained through some sequence
of optimal triplets to the perturbed problems (4.1)—(4.5).
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