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ABSTRACT

Product quality in mechanical assemblies is determined by the dispersion of manufacturing variance
during the structure building. This paper focuses on straight-build assembly and proposes a probabilistic
approach based on connective assembly model to analyze the effect of individual component variations on
the eccentricity of the straight-build assembly. The probabilistic approach calculates the pdf (probability
density function) of key assembly variation of rotor assembly of high speed rotating machines. The
probabilistic approach considers two straight-build scenarios: (i) Best Build; and (ii) Direct Build, for
2D (Two-Dimensional) "axi-symmetric" assemblies.  Numerical examples are presented to investigate
the probabilistic approach for its efficiency and accuracy in comparison to MCS (Monte Carlo simulation).
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1. INTRODUCTION

result for those occurring in the worst-case combination.
There is still a need of taking account the randomness of
component features for the determination of the probability
of assembly failure.

The MCS method is the most common and popular method
for statistical tolerance analysis, where, the random
dimensions are generated based on known statistical
distributions [1]. The assembly KC (Key Characteristic) is
found for each part values. In MCS, to obtain correct
estimate of potentially small probabilities of failure, a large
number of samples is to be generated. Authors who have
discussed the MCS method include: Grossman [9], Nadler
[10], DeDoncker and Spencer [11], Turner, et. al. [12], Pandit
and Starkey [13], Turner [14], and Hussain, et. al. [15].
Research of these authors reveals that MCS is

Variations always exist in mechanical
components due to imperfections in the
manufacturing process. These variations are

observed as small deviations in the dimensions of
individual components from their nominal design. These
variations disperse and accumulate as components are
assembled together. The accumulated variations result in
incorrect dimensions of the final assembly [1].

Various tools for analyzing tolerance stack-up in an
assembly have been reported in literature. These include
WOW (Worst-on-Worst) [2-4] and RSS (Root Sum Square)
[5-8] methods of assembly tolerance analysis. These
methods are not suitable for geometric tolerances analysis
[8]. In particular, the WOW analysis gives results that are
not optimistic, and RSS analysis gives low probability
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computationally intensive, and if the simulations are
performed with an inadequate number of samples, MCS
method will result in inaccurate estimation. An alternative
approach to using MCS to predict the probability of an
assembly failure is the FORM (First Order Reliability
Method) [16]. This method approximates the probability
of failure by linearising the limit state function at the most
likely failure point. This method is not well suited for
analyzing mechanical assemblies, because the limit state
function is likely to have multiple failure points.

In this paper a probability based analysis for variation
dispersion in straight-build assemblies is proposed.  The
analytical models are developed by reducing connective
assembly model [17] into a linearised form. These models
are used to analyze BBA (Best Build Assembly) and DBA
(Direct Build Assembly) environments.  The BBA minimizes
the eccentricity of the build by taking advantage of the
axi-symmetric property.  The DBA process ignores the
control of the eccentricity of assembly.

To understand the benefits of controlling the eccentricity,
the component variance is considered to be random and
statistical variations in the eccentricity are predicted.
Hussain, et. al. [18] used non-linear connective models in
conjunction with the Monte Carlo simulation method to
investigate different optimization strategies for straight-
build, including BBA, which was referred to as Table axis
based combinatorial approach. In this paper, the linearised
assembly models are used for applying a probability based
approach to determine the pdf for the eccentricity, using
BBA and DBA. The pdf is then used to check that
eccentricity remains below a set value.

Throughout this paper, the components are considered to
be nominally 2D axi-symmetric structures, like those
considered by Hussain, et. al. [18].  This assumption is
made to aid visualisation of the problem and to simplify
the presentation.  Section 2 presents an overview of the
linearised model used in straight build assembly, whilst
Section 3 applies a probabilistic approach to Best Build
and DBA. In Section 4 the proposed probabilistic approach

is compared with MCS, and Section 5 summarises the
conclusions from the study.

2. MODELLING FOR STRAIGHT-
BUILD ASSEMBLY

For 2D components, the transformation matrix T
representing the geometric relationship between mating
features of a 2D component as shown in Fig. 1 is given by:
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Where X and Y defines the translation of upper feature
relative to lower feature along X and Y axis, and θ represents
the orientation of the upper feature relative to the lower
feature.

The assembly model uses the concept of part mating
theory [2]. Fig. 2 shows an example for a two part axi-
symmetric assembly. Here, the mating features are defined
by coordinate reference frames: O0X0Y0, O1X1Y1 and O2X2Y2,
where O0X0Y0 is global reference frame.

FIG. 1. GEOMETRIC RELATIONSHIP BETWEEN MATING
FEATURES OF A 2D COMPONENT.
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Fig. 2 shows the case, when no manufacturing variations
are present.  Therefore, transformation matrix  representing
nominal dimensions of Part-1 can be given as:
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Similarly, transformation matrix N
21−T  representing nominal

dimensions of Component 2 can be expressed as:
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Using part mating theory, two components are assembled
by joining coordinate frame O0X1Y1 on the upper surface
of Part-1 to same coordinate frame on lower surface of
Part-2 (Fig. 2(b)), and transformation matrix N

20−T
expressing the component-to-component relationships is
given by:

NNN
211020 −−=− TTT (6)

N
20−T can be expressed in the same form as Equations

(1,4,5), such that:
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where N
12R  is a 2x2 matrix representing nominal orientation

of frame 2 with respect to frame 0, and   N
12p  represents 2x1

displacement vector having the nominal location of origin
O2 with respect to origin O0.

As Components 1 and 2 are axi-symmetric components,
the nominal assembly is axi-symmetric such that the
nominal orientation of each reference frame is zero (i.e.
θ=0° in Equation (2) and IRR == NN

21 ) and the nominal
horizontal offset between reference frames is zero (i.e. X=0
in Equation (3)).   Hence,  Equations (4,5,7) may be written
as:
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where I is the 2x2 identity matrix and
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Equation (10) for the two-component axi-symmetric
assembly can be generalized readily to n axi-symmetric
components.  Now, the generalized transformation matrix

N
n−0T  for the nominal connecting feature on lower end ofFIG. 2. AN EXAMPLE OF A 2 COMPONENT ASSEMBLY, (i)

UNASSEMBLED, (ii) ASSEMBLED
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the first component and the upper end of nth component
may be written as:

⎥
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The above transformations have been developed for
nominal components, and the nominal assembly.

If manufacturing variations are considered in the assembly
components, the transformation matrix T0-1which relates
frame 1-0 may be written as:

11010 DTT N
−=− (15)

where N
10−T  is given by Equation (4) and Equations (16-

18) are based on Equations (2-3) and make the practical
assumption that the rotation error is little.  Transformation
matrix D1 consider the manufacturing variations present in
Part-1.
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 Likewise, manufacturing variations in Part-2 change frame
2 the orientation and location with respect to frame 1, and
transformation matrix T1-2 relating frame 2-1 may be written
as:

22121 DTT N
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N
21−T  is given by Equation (5) and transformation matrix

D2 is given by:
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If Parts 1 and 2 are assembled, the transformation matrix
T0-2 between feature 0 on Part 1 and feature 2 on Part 2 may
be stated as:

T0-2 = T0-1-T1-2 (23)

Using Equations (15-23), it can be shown that T0-2  can be

expressed in the form:
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Assuming that the dimensional variations (translational
and rotational) are small, such that matrix-vector
multiplications dR1dR2 and dR1dp1 are negligibly small,
and noting that for nominally axi-symmetric components

IRR == NN
21 , Equations (25-26) can be approximated

as:
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Substituting Equations (27-28) into Equation (24) gives:
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Equation (29) is an approximate transformation matrix for
the two-component axi-symmetric assembly including the
presence of dimensional variations, and is based on
neglecting second-order products of dR1,dR2 and dp1

which is consistent with the "small" rotation approximation
made in the definition of Equations (16,20).

The process used to develop the exact transformation
matrix (Equation (24)) and the approximate transformation
matrix (Equation (29)) for the two-component example can
be generalized readily to n axi-symmetric components. The
generalized exact transformation matrix T0-n between the
connecting feature on lower surface of first part and the
upper surface of nth part can be written as:

∏
= −−=−
n

i iin 1 )1(0 TT (30)

where T(i,1)-i is the transformation matrix relating frame (i-1)
to frame i on Component i. In practice, it is easier to
calculate Equation (30) numerically by multiplying together
the transformation matrices describing the mating features
on each component, rather than developing analytical
expressions, as was done for Equation (24).  This approach
is used in the numerical examples section to determine
"exact" results for the eccentricity of the build.

Using the same approach as that to derive Equation (29),
it may be seen readily that generalized approximate
transformation matrix  for an assembly may be written as:
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Here, all products of order greater than one of
dRk(k=1,…,n) and dpl (l=1,..,n) have been neglected.
Equation (31) may now be written as:
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Where dXi and dYi are the translational errors and dθi is

the orientation error for the ith part. By comparing the

entries in matrix Equation (32) with Equations  (1-3,13), it

can be deduced that: (i) the assembly orientation error for

an n part assembly is sum of the component orientation

variations ( )∑
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i id
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θθ ; (ii) the assembly height

error for an n-component assembly is the sum of
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; and

(iii) the assembly horizontal error for an n component
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In this work, the horizontal assembly error governs the

quality of the build, and for an n component assembly this

is given by:
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As expected, this error does not depend on component

height variations dYi. Equation (33) is used as the basis for

predicting the build eccentricity using 3 straight-build

scenarios: (i) Direct Build; and (ii) Best Build.  Each of

these scenarios is described next.

Direct-Build Assembly

Here direct build eccentricity Direct
nε  is obtained by taking

the absolute value of Equation (33), i.e.:
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Best Build Assembly

In BBA method each part is rotated by 180° about its
symmetrical axis and that configuration of assembly is
selected which results in minimum eccentricity. The
operation of rotating a component has the effect of
changing the sign of its contribution to the eccentricity
of the assembly and is equivalent to changing the signs
for  dXi and dθi  simultaneously in Equation (33), where
i=2, 3, …, n-1.  The build eccentricity for one, two, three
and n-component assemblies are considered below.  The
results presented are based on re-ordering Equation (33),
so that the signs of the terms involving dXi and dθi can
be changed easily, and then determining the minimum
absolute value.

For a 1-part assembly, minimum eccentricity is:

1
min
1 dX=ε (35)

This is the same as the result obtained using Direct Build

(Equation (34) with n=1). For a 2-part assembly, the

minimum eccentricity is:
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For a 3 part assembly, the minimum eccentricity is:
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For an n-part assembly, the minimum eccentricity is:
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3. A PROBABILITY BASED METHOD

The dimensional variations dXi and dθi are modeled as
random variables and pdf's are produced from DBA and
BBA. The pdf's so obtained give an insight of
improvements of Best Build over Direct Build approach.

The part variance (dXi and dθi) are considered to be
independent, zero-mean Gaussian random variables having
known standard deviations i.e.
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where σσσσσXi and σσσσσθj are the standard deviations for the
horizontal location of the mating feature.

3.1 Direct Build Assembly

As random part variations are statistically independent
and Gaussian, it can be shown that the horizontal
assembly error (Equation (33)) has standard deviation:
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From Equation (34) the probability density function Direct
nε

for n part axi-symmetric assembly with Direct Build may
be written as:
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This pdf is a half-Gaussian distribution based on standard

deviation  .

3.2. Best Build Assembly

The minimum build eccentricity min
1ε  for 1 part assembly

can be obtained from Equation (35).
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This pdf is a half-Gaussian distribution based on standard
deviation σX1.

For a 2 part assembly, the minimum build eccentricity min
2ε

is obtained from Equation (36).  Noting that dX1-Y2dθ1  is a
zero-mean Gaussian random variable dX1 and dθ1 are
statistically independent, 121 θdYdX −  has a half-Gaussian
distribution based on standard deviation
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may be found as:
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where σ2 is found from Equation (39) with n=2 and Φ is

the cumulative normal distribution [19].

For a 3 -part assembly, the minimum build eccentricity
min
3ε  may be found from Equation (37). As dX1-

(Y2+Y3)dθ1,  dX2-Y2dθ1 and dX3 are zero-mean Gaussian

random variables and dX1, dX2, dX3, dθ1 and dθ2  are

statistically independent random vartiables,
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respectively.  From distributions,  pdf for the minimum
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3ε  may be found [19].  Hence,  pdf for min
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can be found as:
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In practice it is necessary to evaluate the integrals
appearing in Equation (39) numerically.

4. RESULTS

In this section, a three-component assembly example is
investigated to evaluate the efficiency and accuracy of
the proposed probabilistic methods. Each of the three
component is a rectangle having nominal width W and
height H equal to 70 and 100mm [18], respectively, such
that the coordinates of the top mating feature of the
rectangle with respect to its lower mating feature are
[0,70mm]. Location and orientation errors of top surface
relative to its lower surface for each components are
considered to be (dXi and dYi) and (dθi). The tolerances of
errors (dXi,dYi and dθi) are assumed to be normally
distributed random variable with zero mean and standard
deviation (σ) equal to one third of the specified tolerance.
The value of location tolerances for errors dXi and dYi is
chosen to be 0.1mm and the tolerance for orientation error
for each component is taken to be 2hi/W [18].

Results calculated numerically using proposed
probabilistic methods are compared to standard MCS
method. The results calculated by MCS are based on the
Equation (30). Convergence studies for MCS were
conducted to find number of simulations required to
obtain accurate results. In the convergence study, 50,000
simulations were identified based on the predictions of
average, standard deviation, kurtosis, and skewness
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being accurate to 1%. Unlike MCS, the proposed
probability based method does not require convergence
study.

Fig. 3 shows the distributions of eccentricity error arising

from three-component assembly with height and width

tolerances of 0.1mm in linear and logarithmic scale. In
Fig. 3 comparison of the results obtained using the

proposed method (based on Equation (36) for DBA and

Equation (39) for BBA) and MCS method is presented.
Fig. 3 reveals that the probability-based approach

produces results in agreement with MCS and the

obtained statistical distributions are highly non-
Gaussian. At tails of log-pdf for high eccentricities, it

can be seen that the MCS is less accurate as compared

to the proposed method. This shows the competence of
the derived pdf expressions compared to MCS. Also

these results validate the proposed linear approximations

and the derived pdf expressions.

In order to evaluate the effectiveness of the proposed

methods with MCS, comparison of the execution time

required to perform calculations is made for the two
methods. Table 1 shows the timing of the CPU in fractions

of DBA for the proposed method and the MCS for the

results shown in Fig. 3.

Table 1 shows greater efficiency of proposed analytical
method over MCS. This is because, it is easier to calculate
the pdf expression (Equation (40)) than the repetitive
simulations. It is also observed that the results of DBA are
achieved more efficiently than the best-build assembly.
This is because additional integrations are required to
calculate Equation (43).

The expression for calculating the probability P(α) that
the eccentricity ε does not exceed a particular value α is
given by:

ε
α

εα dpP ∫=
0

)()( (44)

FIG. 3. DISTRIBUTION OF ECCENTRICITY ERROR FOR THREE-COMPONENT ASSEMBLY

(b) LOGARITHMIC SCALE(a) LINEAR

TABLE 1. COMPARISON BETWEEN THE MCS AND THE
PROPOSED METHOD FOR THE EXECUTION TIME

Assembly Procedures Execution Time in
Fractions of DBA

Direct Build Assembly (Proposed) 1.0

Best Build Assembly (Proposed) 35.3

Direct Build Assembly (Monte Carlo) 242.6

Best Build Assembly (Monte Carlo) 353.3
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For a three-part assembly, P(ε) is given by Equations
(40,43) respectively, for Direct Build and Best Build
Assembly.

Fig. 4 shows results for the probability that the three-

component build eccentricity does not exceed a value α

when the tolerance is 0.1mm, and compares the results

obtained using MCS and the proposed methods, calculated

using Equation (44). Fig. 4 shows that the probability

results from proposed method are in agreement with MCS.

The comparison of above results for 2D assembly with

those calculated for similar 3D assembly case study

analyzed by the authors of this paper in [20] reveal that

both 2D and 3D assembly analyses give similar trend of

assembly variation. Thus 2D representation of assembly

is equivalently important as 3D assembly analysis.

5. CONCLUSIONS

A Linearised model based on connective assembly model
for straight-build assembly is developed. Eccentricity error
expressions for the assembly of rigid circular components

are derived. The expressions are used to analyse (a) BBA,
and (b) DBA. In BBA, each component is rotated to select
the best orientations for minimum eccentricity. On the other
hand, Direct Build considers the assembly without
optimising orientations. Linearised expressions for the
build eccentricity were developed using linearised model.
The expressions for the pdf's for the build eccentricity are
developed from the derived linearised expressions. An
example of 2D axi-symmetric components is analysed to
investigate the accuracy and efficiency of probability
based approach in comparison to MCS. Numerical results
are calculated for an assembly comprising three 2D axi-
symmetric components with ideally identical dimensions.
The results showed that the derived probabilistic
approach yields accurate and efficient results. The
proposed approach is expected to provide a valuable tool
for tolerance assignment and assembly process design.
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