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ABSTRACT 

 

Jiang’s define that prime equations 

1 1 1( , , ), , ( , )n k nf P P f P P
   (5) 

are polynomials (with integer coefficients) irreducible over integers, where 
1, , nP P   are all prime. If Jiang’s 

function  
1( ) 0nJ    then （5）has finite prime solutions. If 

1( ) 0nJ     then there are infinitely many 

primes 
1, , nP P    such that   are  primes. We obtain a unit prime formula in prime distribution 

primes}are,,:,,{)1,( 111 kffNPPnN knk    
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Jiang’s function is accurate sieve function. Using Jiang’s function, we prove about 600 prime theorems Jiang’s 

function provides proofs of the prime theorems which are simple enough to understand and accurate enough to be 

useful. 
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INTRODUCTION  
“Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have 

every reason to believe that there are some mysteries which the human mind will never penetrate”. 

        Leonhard Euler 

“It will be another million years, at least, before we understand the primes”. 

      Paul Erdös 

 

Suppose that Euler totient function 

 as  ，）1（ 

where  is called primordial. 

Suppose that , where . We have prime equations 

）2（ 

where . 

）2（is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We have 

2
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,                  ）3（ 

where denotes the number of primes  in ,  the number of primes less 

than or equal to . 

We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in prime 

distribution. 

Let  and . From (2) we have eight prime equations 

, , , , ,  

, , , 
               

）4（ 

Every equation has infinitely many prime solutions. 

 

THEOREM. We define that prime equation 

                         
）5（ 

are polynomials (with integer coefficients) irreducible over integers, where  are primes. If Jiang’s function 

 then (5) has finite prime solutions. If  then there exist infinitely many primes  

such that each  is prime. 

 

PROOF. Firstly, we have Jiang’s function  

,                   ）6（ 

where  is called sieve constant and denotes the number of solutions for the following congruence 

,                  ）7（ 

where . 

 denotes the number of sets of  prime equations such that  are 

prime equations. If  then (5) has finite prime solutions. If  using  we sift out from 

(2) prime equations which cannot be represented , then residual prime equations of (2) are  prime 

equations such that  are  prime equations. Therefore, we prove that there exist 

infinitely many primes  such that  are primes.  

Secondly, we have the best asymptotic formula  

 

）8（ 

）8（is called a unit prime formula in prime distribution. Let , . From (8) we have prime 

number theorem 

.        ）9（ 

Number theorists believe that there are infinitely many twin primes, but they do not have a rigorous proof of 

this old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because 

they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by 
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this theorem. 

 

Example 1. Twin primes (300BC). 

From (6) and (7) we have Jiang’s function 

. 

Since  in (2) exist infinitely many  prime equations such that  is a prime equation. Therefore, 

we prove that there are infinitely many primes  such that  is prime. 

Let  and . From (4) we have three  prime equations 

. 

From (8) we have the best asymptotic formula 

 

 

In 1996, we proved twin primes conjecture (Chun-xuan & Bingui, 1996) 

Remark.   denotes the number of   prime equations,   the number of solutions of 

primes for every  prime equation. 

Example 2. Even Goldbach’s conjecture . Every even number  is the sum of two primes. 

From (6) and (7) we have Jiang’s function 

. 

Since  as  in (2) exist infinitely many  prime equations such that  is a prime equation. 

Therefore, we prove that every even number  is the sum of two primes. 

From (8) we have the best asymptotic formula 

 

. 

In 1996, we proved even Goldbach’s conjecture (Chun-xuan & Bingui, 1996) 

 

Example 3. Prime equations . 

From (6) and (7) we have Jiang’s function 

, 

  is denotes the number of   prime equations such that   and   are  prime equations. Since 

  in (2) exist infinitely many   prime equations such that   and   are  prime equations. 

Therefore,  we prove that there are infinitely many primes  such that  and  are  primes. 

Let . From (4) we have two  prime equations 

. 

From (8) we have the best asymptotic formula 
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Example 4. Odd Goldbach’s conjecture . Every odd number  is the sum of three primes. 

From (6) and (7) we have Jiang’s function 

  . 

Since   as   in (2) exist infinitely many pairs of   and   prime equations such that 

 is a prime equation. Therefore, we prove that every odd number  is the sum of three primes. 

From (8) we have the best asymptotic formula 

. 

 . 

Example 5. Prime equation . 

From (6) and (7) we have Jiang’s function 

 

  denotes the number of pairs of   and   prime equations such that   is a prime equation. Since 

  in (2) exist infinitely many pairs of   and   prime equations such that   is a prime equation. 

Therefore, we prove that there are infinitely many pairs of primes  and  such that are prime. 

From (8) we have the best asymptotic formula 

 

Note. deg . 

Example 6(Heath-Brown, 2001).  Prime equation . 

From (6) and (7) we have Jiang’s function 

, 

where  if ;  if ;  otherwise. 

Since   in (2) there are infinitely many pairs of   and   prime equations such that   is a prime 

equation. Therefore, we prove that there are infinitely many pairs of primes  and  such that are prime. 

From (8) we have the best asymptotic formula 

 

Example 7 (Friedlander & Iwaniec, 1998).  Prime equation . 

From (6) and (7) we have Jiang’s function 

 

where  if ;  if ;  otherwise. 

Since   in (2) there are infinitely many pairs of   and   prime equations such that   is a prime 

equation. Therefore, we prove that there are infinitely many pairs of primes  and  such that are prime. 

From (8) we have the best asymptotic formula 
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Example 8 (Szemerédi, 1975; Furstenberg, 1977; Gowers, 2001; Kra, 2006; Green & Tao, 2008; Tao, 2006; Green, 

2007). Arithmetic progressions consisting only of primes. We define the arithmetic progressions of length . 

.      ）10（ 

From (8) we have the best asymptotic formula 

 

. 

If  then (10) has finite prime solutions. If  then there are infinitely many primes  such that  

 are  primes.  

To eliminate  from (10) we have 

. 

From (6) and (7) we have Jiang’s function 

 

Since  in (2) there are infinitely many pairs of  and  prime equations such that  are prime 

equations. Therefore, we prove that there are infinitely many pairs of primes   and   such that   are 

primes. 

From (8) we have the best asymptotic formula 

 

. 

Example 9. It is a well-known conjecture that one of  is always divisible by 3. To generalize above 

to the primes, we prove the following conjectures. Let  be a square-free even number. 

1. , 
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From (6) and (7) we have , hence one of  is always divisible by 3. 

2. , 

where  
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3. , 

where  
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4. , 
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From (6) and (7) we have , hence one of  is always divisible by 11. 
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where  

From (6) and (7) we have , hence one of  is always divisible by 13. 

6. , 

where  

From (6) and (7) we have , hence one of  is always divisible by 17. 

7. , 

where  

From (6) and (7) we have , hence one of  is always divisible by 19. 

Example 10. Let  be an even number. 

1. , 

From (6) and (7) we have . Therefore, we prove that there exist infinitely many primes  such that 

 are  primes for any . 

2. . 

From (6) and (7) we have . Therefore, we prove that there exist infinitely many primes  such that 

 are  primes for any . 

Example 11. Prime equation  

From (6) and (7) we have Jiang’s function 

. 

Since   in (2) there are infinitely many pairs of   and   prime equations such that   is prime 

equations. Therefore, we prove that there are infinitely many pairs of primes  and  such that are prime. 

From (8) we have the best asymptotic formula 

 

In the same way, we can prove  which has the same Jiang’s function. 

 

Conclusion  

Jiang’s function is accurate sieve function. Using it we can prove any irreducible prime equations in prime 

distribution. There are infinitely many twin primes but we do not have a rigorous proof of this old conjecture by any 

method (Green, 2007). As strong as the numerical evidence may be, we still do not even know whether there are 

infinitely many pairs of twin primes (Iwaniec & Kowalski, 2004). All the prime theorems are conjectures except the 

prime number theorem, because they do not prove the simplest twin primes. They conjecture that the prime distribution 

is randomness (Heath-Brown, 2001; Friedlander & Iwaniec, 1998; Szemerédi, 1975; Furstenberg, 1977; Gowers, 2001; 

Kra, 2006; Green & Tao, 2008; Tao, 2006; Green, 2007; Iwaniec & Kowalski, 2004; Crandall & Pomerance, 2005; 

Green, 2006; Soundararajan, 2007; Granville, 1995), because they do not understand theory of prime numbers. 
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