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-------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
One of the most significant problems in the analysis of the reliability of multi-state transportation systems is to find the 

minimal cut sets and minimal edge control sets. For that purpose there are several algorithms that use the minimal path 

and cut sets of such systems. In this paper we give an approach to determine the minimal edge control set. This approach 

directly finds all minimal edge control sets of a transport network. The main aim of the paper is to find optimal locations 

for sensors for detecting terrorists, weapons, or other dangerous materials on roads leading into major cities.   
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1. INTRODUCTION 

One of the most important and successful applications 

of quantitative analysis in solving business problems 

has been in the physical distribution of products, 

commonly referred to as transportation problems. 

Basically, the purpose is to minimize the cost of 

shipping goods from one location to another so that the 

needs of each arrival area are met and every shipping 

location operates within its capacity [1] [2]. 

Transportation problem is one of the subclasses of 

LPP’s in which the objective is to transport various 
quantities of a single homogeneous commodity that are 

initially stored at various sources to different 

destinations in a way to minimize the total 

transportation cost, time, distance etc. These types of 

problems can be solved by general network methods. 

Transportation problems belong to a special class of 

network flow problems. Although these problems can 

be formulated as linear programming models, it is much 

more natural to formulate them in terms of nodes and 

arcs, taking advantage of the special structure of the 

problem. However, quantitative analysis has been used 

for many problems other than the physical distribution 

of goods. For example, it has been used to efficiently 

place employees at certain jobs within an organization, 

called an assignment problem [2]. 

Networks are essential components of our national 

infrastructure. Those networks could be used by 

terrorists seeking to attack dense urban populations with 

weapons of mass destruction. In particular, large urban 

road networks provide many routes that terrorists could 

use to get close enough to a major city to make a 

harmful attack. One approach envisioned for protecting 

urban areas from such attack is to deploy human-

operated or fully automatic sensors on the roads, around 

cities to detect terrorists and their weapons so that they 

can be stopped before they come within range of their 

targets [3]. A key challenge to such an approach 

concerns how many sensors are to buy and where to 

locate them. Indeed, the size and density of road 

networks would seem to make the cost of buying and 

operating these sensors, prohibitive by requiring 

placement of sensors on hundreds if not thousands of 

road segments in order to protect any large city [2]. 

This challenge led to the work reported here, which 

shows that, the number of sensors required to cover 

every possible route into a city is not prohibitively 

large. We apply graph theory to find a minimal edge 

control set for a road network; i.e., to find a smallest set 

of road segments on which sensors must be placed to 

ensure that a terrorist traveling across the road network 

must encounter at least one sensor [4] [5] [6]. There are 

two situations occur when we use minimal edge control 

set to a connected network. For some case if we remove 

the minimal edge control set from the network, the 

remaining graph will be disconnected and for some 

cases it is connected. In this paper both the cases are 

discussed. 

The work reported here specifically concerns finding 

optimal locations for sensors for detecting terrorists, 

weapons, or other dangerous materials on roads leading 

into major cities. However, this work is generally 

applicable to finding minimal edge control sets for any 

large network. It could be used to find optimal sensor 

locations on other transportation networks like railroads 

or subways. It could also be used to support offensive 

operations by locating a smallest set of segments in an 

adversary’s network that would have to be cut in order 
to completely stop the flow through the network. Thus, 

the methodology presented here could have utility in 

other homeland security and military analysis. 
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2. Edge Control Set 

 
To study the transportation problem, it has to be 

modeled mathematically by using a simple graph. The 

set of edges of the underlying graph will represent the 

communication link between the set of nodes. In the 

graph representing the transportation problem, the 

vertices will be joined by an edge if there is a 

communication link between the vertices otherwise not. 

In order to define an edge control set of a graph, we 

consider the underlying graph G = (V, E) where                   

V (G) denotes the set of vertices of G and E (G) denotes 

the set of edges of G. A cut-set F of G is called an edge 

control set of G if every flow of G is completely 

determined by F.A subset F ⊆ E(G) is a cut-set of G if 
the removal of F from G disconnects G [1], [3]. Also it 

results in the increase in the number of components of 

G by one.  

 

3. Minimal Edge Control Set 

 
Let G = (V, E) be a graph and E(G) denotes the set of 

edges of G. An edge control set F is said to be minimal 

if any proper subset of F is not an edge control set of 

the graph G. As the edge control set of a graph is not 

unique, therefore it is important to find the set with the 

minimum number of edges. 

 
Definition 3.1 Let G = (V, E) be a graph, let H be a sub 

graph of G and e ЄE(H).We define  

 

CH (e)= {e}∪ {d ЄE(H) : d is a cut edge of H–{e}}  

 
Then CH ( e ) is called the control of e in H. 

 

Algorithm 3.2 
 

Let G be a graph and a subset F ⊆E(G) is constructed 

by the following steps. 

Step 1: Let F: =Ø and H: = G 
Step 2: While E(H)≠Ø , select any edge e Є E(H) 

F: =F∪ {�},      H: = H - CH (e). 
Then F is the minimal edge control set of the graph G 
[7] [8]. 

 

Proof of the Algorithm 
 

Let G be a graph. Then to prove that the set F 
constructed using the algorithm is the minimal edge 

control set. Let F = { e1, e2, e3, ….et  } be the edges 

which are introduced to the set F in the same order as 

they are labeled and 

 
E(G) = E(H)⊒ E(H1 )⊒ E( H2). . . ⊒ E(Ht ) = Ø 

 

be the sequence of sub graphs as they are generated 

using the algorithm. 

As the removal of the set F disconnects the graph, 

therefore F is an edge control set of G and we are to 

show that F is the minimal edge control set of the graph 

G. 

Let us suppose that there exist a set ⊆ , which is 

also an edge control set of G. Since / ⊆ ,∃ an edge et 

Є F which is not in /. It implies that      �� � , 
which is the smallest sub graph of the sequence of sub 

graph generated using the algorithm. 

Since�� / , then there exists an edge �� of the sub 

graph �  which is connected to somevertices of the 

graph G and the removal of the set will not disconnect 

the graph G. Hence, 

 

E(G) = E(H) ⊃E(H1 )⊃ E(H2). . .⊃ E(Ht) ≠Ø 

 
This implies that there exists at least one edge of G 
which is connected to some vertices of the graph G. 

Therefore / cannot be an edge control set of G which 

is a contradiction to` / ⊆ . Hence F is a minimal edge 

control set of G constructed by the algorithm. 

 
4. EXAMPLES 
 
(i) Disconnected Case: 

 
Let us consider a transportation problem with road 

segments as shown in Fig. 1. Here nodes represent the 

different places of a city and edges represent the roads 

joining them. The corresponding graphs are shown in 

the figures below: 

 

 

 

 
 

 

 
 

 

 

To start with the Algorithm (3.2), we consider      F: = 
Ø and H: = G. Now we select any edge e1 such that  

e1ЄE (H) i.e. E(H) ≠Ø. Thus we have, 

 
CH(e1) = { e1 } U { e2 } 

Fig. 1: A graph with thirteen road segments 



Int. J. Advanced Networking and Applications   

Volume: 08 Issue: 01 Pages: 3003-3008 (2016) ISSN: 0975-0290 3005 

          = {e1, e2 } 
F =F U { e1} ={ e1 } 
H: =H-CH (e1) 
     = { e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13 } 
 
Where the first subgraph H: is as shown in Fig. 2 

below: 

 

 

 
 
 

 
Again since E (H) ≠Ø, let us select any edge   e5ЄE 
(H). Then we obtain 

 

CH  ( e5)= { e5 } U { e4 } 
           = { e4, e5 } 
F ={ e1 } U { e5 } ={ e1, e5 } 
H: =H – CH ( e5 ) 
     = { e3, e6, e7, e8, e9, e10, e11, e12, e13 } 
 
Where the second subgraph H: is as shown in    Fig. 3 

below: 

 

 

 
 

 

Since E (H) ≠Ø, let us select any edge e10ЄE (H). Then 

we obtain 

 

 

CH ( e10 )= { e10 } U { e8, e9, e11, e12 } 
            = { e8, e9, e10, e11, e12 } 
F = { e1, e5 } U { e10 } = { e1, e5 , e10 } 
H: =H – CH ( e10 ) 
    = { e3, e6, e7, e13 } 
 
Where the third subgraph H: is as shown in       Fig. 4 

below: 

 

 
 

 

 

 
Now, let e6 Є E (H), then we obtain 

 

CH ( e6 )= { e6 } U { e7 } 
           = { e6, e7 } 
F  = { e1,e5 ,e10 } U { e6 } ={ e1, e5,e6,e10 } 
H: =H – CH( e6 ) 
     = { e3, e13 } 
 
Where the fourth subgraph H: is as shown in     Fig. 5 
below: 

 

 
 

 

   Fig. 2 : H is the first subgraph obtained  

            applying the Algorithm (3.2) 

Fig. 3 : H is the second subgraph obtained  
           applying the Algorithm (3.2) 

Fig. 4: H is the third subgraph obtained applying  
                        the Algorithm (3.2) 

Fig. 5 : H is the fourth subgraph obtained  
           applying the Algorithm (3.2) 
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Finally, let e3ЄE(H), then we obtain                     CH 

(e3)={ e3, e13 } and F={ e1,e3 e5, e6, e10 }. The new H: 
consists of all isolated vertices, i.e., E (H) =Ø. The fifth 

subgraph with all isolated vertices is shown in   Fig. 6 

 
 

 
 
 
 

 

 

Therefore F= { e1, e3, e5, e6, e10 } is a minimal edge 

control set of G. The graph obtained after removing F 
from G is as shown in Fig.7 below: 

 

 

 

 

 

 
 

 

 

Finally, it is also clear from the above diagram that the 

above graph is disconnected having two components 

and no other set having less number of edges than F 
disconnect the graph, therefore F is a minimal edge 

control set of the graph G constructed using the 

algorithm. From the above discussion it is clear that 

sensors have to be placed in the edges e1, e3, e5, e6 and 

e10 which will provide complete information about the 

whole transportation network. 

 
(ii) Connected Case: 

 
Let us consider a transportation problem with road 

segments as shown in Fig. 8. Here nodes represent the 

different places of a city and edges represent the roads 

joining them. The corresponding graphs are shown in 

figures below: 

 

 

 
 

 
 
 
 
To start with the Algorithm (3.2), we consider      F: = 
Ø and H: = G. Now we select any edge e1 such that 

e1ЄE (H) i.e. E(H) ≠Ø. Thus we have, 

 

CH (e1) = { e1 } U { e6, e7 } 
          = {e1, e6, e8 } 
F = F U { e1 } ={ e1 } 
H: = H-CH ( e1 ) 
     = { e2, e3, e4, e5, e6, e8, e9, e10, e11, e12 } 
 

Where the first subgraph H: is as shown in Fig. 9 

below: 

                           Fig. 6 : H is the fifth and final  subgraph  
                             obtained applying the Algorithm (3.2) 

 

Fig. 8: A graph with twelve road segments 

                Fig. 7:  Graph obtained after removing minimal  

                edge control set 
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Let e2Є E (H), then we obtain 

 

CH ( e2 )= { e2 } U { e9 } 
           = { e2, e9 } 
F ={ e1 } U { e2 } ={ e1, e2 } 
H: =H – CH ( e2 ) 
     = { e3, e4, e, e8, e10, e11, e12 } 
 

Where the second subgraph H: is as shown in    Fig. 10 

below: 

 

 

 
 

 
 

 

 

 

 

Let e3 Є E(H), then we obtain 

CH ( e3)= { e3 } U { e10 } 

          = { e3, e10 } 
F = { e1, e2 } U { e3 } ={ e1, e2, e3 } 
H: =H – CH ( e3 ) 
     = { e4,e5, e8, e11, e12 } 
Where the third subgraph H: is as shown in       Fig. 11 

below: 

 

 
 

 

 

 
Let e4Є E(H), then we obtain 

CH ( e4)= { e4} U { e8} 
           = { e4, e8} 
F = { e1, e2, e3} U { e4 } ={ e1, e2, e3, e4 } 
H: =H – CH( e4 ) 
     = { e5, e11, e12} 
Where the fourth subgraph H: is as shown in Fig.12 

below: 

 
 
 

 

 

Let e5Є E(H), then we obtain 

CH ( e5)= { e5} U { e11, e12} 
           = { e5, e11, e12} 
F = { e1, e2, e3 } U { e5 } ={ e1, e2, e3, e4, e5 } 
H: =Ø 

Fig. 9 : H is the first subgraph obtained  
applying the Algorithm (3.2) 

 

Fig. 12 : H is the fourth subgraph obtained 
 applying the Algorithm (3.2) 

Fig. 10: H is the second  subgraph obtained  
applying the Algorithm (3.2) 

 

Fig. 11 : H is the third subgraph obtained  
applying the Algorithm (4.2) 
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The third subgraph with all isolated vertices is shown in 

Fig. 13 

 

 
 

 

 
Therefore F= { e1,e2 e3, e4, e5 } is a minimal edge control 

set of G. The graph obtained after removing F from G 

is as shown in Fig. 14 below: 

 
 

 

 
 

Finally, it is also clear from the above diagram that F is 

a minimal edge control set of the graph G constructed 

using the algorithm. The graph remains connected even 

after removal of F. From the above discussion it is clear 

that sensors have to be placed in the edges e1, e2, e3, e4 

and e5 which will provide complete information about 

the whole transportation network. 

 

5. CONCLUSION 
 

In this paper we have used minimal edge control set as 

a graph theoretic tool to study the transportation 

problem. Minimal edge control set determines the 

whole transportation flow. This can be achieved by 

placing traffic sensors on each of the minimal edge 

control set of the transportation network which will 

provide complete information of the transport network. 

Here two examples are considered to explain the use of 

minimal edge control set. In one case minimal edge 

control set is used as a cut set whose removal 

disconnects the graph. If terrorist wanted to attack a 

major city, they can be stopped by removing these 

edges. In the other example we consider another 

minimal edge control set whose removal does not 

disconnect the network. The sensors can be placed on 

each edge control set and from the definition of an edge 

control set these sensors will provide complete 

information for the control system. Thus optional 

locations for the traffic sensors can be obtained by 

using edge control set. 
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