
Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2862

Tracing out Cross Site Scripting Vulnerabilities in
Modern Scripts

Haneet Kour

M.Tech. Student (4th Sem)

Department of Computer Science & IT, University of Jammu, J & K

Email: haneetkour9@gmail.com

Lalit Sen Sharma

Professor

Department of Computer Science & IT, University of Jammu, J & K

Email: lalitsen.sharma@gmail.com
---ABSTRACT---
Web Technologies were primarily designed to cater the need of ubiquitousness. The security concern has been

overlooked and such overlooks resulted in vulnerabilities. These vulnerabilities are being highly exploited by

hackers in various ways to compromise security. When vulnerability is blocked, the attacker traces out a different

mechanism to exploit it. Cross site scripting (XSS) attack is also an exploitation of one of the vulnerabilities

existing in the web applications. This paper traces out the vulnerability in functions and attributes of modern

scripts to carry out cross site scripting attack and suggests preventive measures.

Keywords - Cookie, Persistent XSS, Reflected XSS, Web vulnerability.

--
Date of Submission: March 21, 2016 Date of Acceptance: April 22, 2016
--

1. INTRODUCTION

Web Technology has become lingua-franca for

companies in software development that allows the design
of pervasive applications. Thousands of web applications
are developed and accessed by millions of users. Security
of these websites is becoming an important concern to
ensure the user’s authentication and privacy. For this
reason, the invention of effective security mechanisms on
the web applications has been an increasing concern.
Gartner group has noted that almost 75 percent of attacks
are tunneled through web applications. According to the
Tower Group, nearly 26 percent of customers don’t use
online banking services for security fears and 6 percent do
not use due to privacy issues. Over 70% of organizations
reported of having been compromised by a successful
cyber attack [1]. In June/July 2006, the e-payment web
application PayPal had been exploited by the attackers to
steal sensitive data (e.g., credit card numbers) from its
members during more than two years until Paypal’s
developers fixed the XSS vulnerability [2][3]. Cross-
Site Scripting attack (XSS) is a code injection attack
performed to exploit the vulnerabilities existing in the web
application by injecting html tag / javascript functions into
the web page so that it gets executed on the victim’s
browser when one visits the web page and successfully
accesses to any sensitive victim’s browser resource
associated to the web application (e.g. cookies, session
IDs, etc.). By exploiting XSS vulnerabilities in the scripts
(mainly javascript since it is highly used scripting
language on the client side by web developers), the
attacker targets the organizations that accommodate large
online communities of users (i.e. social networking sites,
blogs and online news sites) or the organizations that rely
on web technology to generate revenue (i.e. providers of

online services, services that store personal or financial
information such as online payment, banking services,
etc.). The time gap between identifying an XSS attack and
resolving it, is found to be crucial. According to a study by
the Ponemon Institute on the Cost of Cyber Crime, the
average time taken to resolve a cyber attack was 32 days
with an average cost of $1,035,769 (that is $32,469 per
day) for the participating sample of organizations [4].

1.1 Types of XSS attack
The main goal of an XSS attack is to execute malicious
JavaScript in the victim's browser to steal victim’s
authentication details. It is done in following ways:

 Persistent XSS or Type 2:
The Persistent or Stored XSS attack executed when the
malicious code submitted by attacker is saved by the
server in the web application repository, and then
permanently it will be run in the normal page in victim’s
browser. A persistent XSS attack against Hotmail was
found on October 2001. In this attack, the remote attacker
was allowed to steal .NET Passport identifiers of
Hotmail’s users by stealing their associated browser’s
cookies [5].

 Reflected XSS or Type 1:

Reflected or non-persistent XSS attack is executed in
websites when data submitted by the client is immediately
processed by the server to generate results that are then
sent back to the browser on the client system. The attacker
crafts a url link (containing malicious javascript to redirect
the victim’s authentication details to attacker domain) and
sends it to the victim. By using social engineering
techniques, he provokes the victim to follow this malicious
link.

 DOM-based XSS or Type 0:

In this case, the vulnerability exists on the client-side code
rather than on the server-side code. It is a case of reflected

http://www.ponemon.org/

Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2863

XSS where no malicious script inserted as part of the page,
the only script that is automatically executed during page
load is a legitimate part of the page i.e. legitimate
JavaScript and careless usage of client-side data result in
XSS conditions [6].

2. AIMS AND OBJECTIVES
The objective of this paper is to trace out the cross site
scripting vulnerabilities in the web application to steal
user’s authentication details (i.e. cookies, session ID etc).
This paper also aims to study how this XSS attack can be
mitigated.

3. RELATED WORK
The main goals of XSS attacks are stealing the victim
user’s sensitive information and invoking malicious acts
on the user’s behalf. A survey has been done on detection
and prevention techniques proposed by various researchers
to mitigate XSS risks. XSS vulnerabilities can be detected
by performing static and dynamic analysis on web
application. Many researchers are carrying out their study
in this domain [7][8]. Some of them are listed as:
 M.T. Louw et. al. [9] introduced a server side
prevention technique against XSS attacks. This technique
known as BEEP (browser enforced embedded policies)
modifies the browser so that it can’t excute the malicious
script. Security policies dictate what the server sends to
BEEP enabled browser.
 O.Hallaraker and G.Vigna [10] proposed a
mechanism for detecting malicious javascript. The system
consists of browser embedded script auditing component
and IDS to process the audit logs and compare them to
signature of already known malicious behaviour or
attacks.
 Shasank Gupta et. al. [11] introduced a novel
technique called Dynamic Hash Generation Technique
that makes cookies worthless for the attackers. This
technique is implemented on the server side and its main
task is to generate a hash value of name attribute in the
cookie and send this hash value to the web browser. With
this technique, the hash value of name attribute in the
cookie which is stored on the browser’s database is no
more valid for the attackers to exploit the vulnerabilities of
XSS attacks.
 Shasank Gupta and Lalitsen Sharma [12] introduced
a technique to mitigate XSS vulnerability by introducing a
Sandbox environment on the web browser. Client's web
browser under the protection of a sandbox submits the
user-id and password to a web server. Web server will
generate the cookie and send this cookie to client's web
browser which is sandbox protected. Now this cookie
value will neither leak into the windows nor it can be
grabbed by any attacker. On the other hand, sandbox
allows the execution of malicious script on the client's web
browser but it cannot give the authority to simply leak the
cookie out of this protected environment and hence bye-
pass the XSS attack.
 S.Shalini and S.Usha [13] provided a client-side
solution to mitigate XSS attack that employs a three step
approach to protect cross site scripting. This technique
found to be platform independent and it blocks suspected

attacks by preventing the injected script from being passed
to the JavaScript engine rather than performing risky
transformations on the HTML.
 Engin Kirda et. al. [14] presented Noxes, a client-side
solution to mitigate cross-site scripting attacks. Noxes acts
as a web proxy and uses both manual and automatically
generated rules to mitigate possible cross-site scripting
attempts.
 Dr R.P. Mahapatra et. al. [15] presented a technique
to protect java web applications from Cross Site Scripting
attack (XSS) by applying a framework based on pattern
matching approach. The proposed approach consists of
Request/Response Analyser and Modifier modules. The
Request Analyser/Modifier Module decides whether
request is malicious or not and takes decision accordingly.
Response analyser and Modifier module deals with the
data to be returned the client, it modifies the malicious
response to harmless data. Attack Recorder and Response
Rejecter Module records the malicious Request/Response
for future use. The authors had employed Java Regex for
pattern generation and matching the malicious attack
signatures.
 Kieyzun et. al. [16] devised an automatic technique
for creating inputs that expose SQLI and XSS
vulnerabilities. The technique generates sample inputs,
symbolically tracks tainted data through execution
(including through database accesses), and mutates the
inputs to produce concrete exploits. This technique creates
real attack vectors, has few false positives, incurs no
runtime overhead for the deployed application, works
without requiring modification of application code, and
handles dynamic programming-language constructs. The
author also implemented the technique in php, a tool
Ardilla. This approach was implemented in a tool called
BLUEPRINT that was integrated with several popular web
applications.
 Stefano Di Paola and Giorgio.F [17] described a
universal XSS attack against the Acrobat PDF plugin.
When the client clicks the link and the data is processed by
the page (typically by a client side HTML-embedded
script such as JavaScript), the malicious JavaScript
payload gets embedded into the page at runtime.
 Shashank Gupta and B.B. Gupta [18] proposed a
security model called Browser Dependent XSS Sanitizer
(BDS) on the client-side Web browser for mitigating the
effect of XSS vulnerability. The authors used a three-step
approach to eliminate the XSS attack without degrading
much of the user’s Web browsing experience on various
modern browsers.

4. EXPERIMENTAL SET UP
In this study, a website in php has been developed and
hosted on the local host (XAMPP server). The experiments
to exploit XSS vulnerabilities in the website have been
performed to steal user’s cookies. The study is focused on
persistent and reflected attacks on the websites that
maintain user’s authentication state by using cookies.
These experiments have been performed on modern
browsers (Google Chrome49, IE11, Opera15 and
Firefox44.0.2). The Fig. 1 shows the architecture for
exploiting XSS vulnerabilities in the local host.

Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2864

The vulnerabilities in the web application through tags and
attributes in HTML and the functions in javascript are
traced out to perform XSS attack by injecting malicious
javascript to steal victim’s cookies . The overall analysis
of these experiments has been summarized in Table 1. The
following javascript code (that provides a hyperlink to
redirect the victim’s cookie) is inserted to steal user’s
cookie (by getCookie.php file in the attacker domain):

Fig.1 The architecture for exploiting XSS vulnerabilities

5. MITIGATING XSS ATTACK
XSS attack is a type of code injection where user input is
misinterpreted as program code rather than data, thus
secure input handling is needed to prevent this code
injection. To mitigate XSS attack, the following methods
have been used in the study:

 Fig. 2 Flow chart for encoding

 Fig.2 Flow chart for encoding

Table 1: XSS Attack Vectors

XSS attack vectors Attack

performed

<script>---malicious javascript code---</script> Yes

<script src=http://localhost/attacker/xss.js>
</script>

Yes

 No

<img src=path event-attribute=malicious
 javascript >

Yes

 No

<body background=javascript:malicious code > No

<div style="background : url (malicious
javascript)" >

No

<iframe src=javascript:malicious code>
</iframe>

In IE and
Opera,
cookies are not
stolen. But in
chrome and
 firefox, attack
is performed.

<iframe src=http://localhost/attacker/xss.html>
 </iframe>
This html file contains malicious javascript

Script is
executed but
cookies of
victim
aren’t stolen

<iframe src=html file path
 event-attribute =malicious javascript >

Yes

<link rel=stylesheet href = javascript:malicious
code >

No

<object data=”javascript:malicious code”> No

<object type = "x-scriptlet" data =
"http://localhost/attacker/xss.html">

This html file contains malicious javascript

No attack in IE

In other
browsers,
script is
executed but
victim’s
cookies are not
 stolen

 Yes

<div style="width:expression(malicious
javascript;">

No

<input type=image src=javascript:malicious
code>

No

<script>----- XMLHttpRequest object code----
</script>

Cookies are
retrieved by
attacker

Encoding: Encoding of the user input is done by the
function htmlspecialchars(‘user-input’) in php to mitigate
XSS attack. It escapes user input so that the browser
interprets it only as data, not as code. This function
converts characters like < and > into < and >
respectively. Although, the attacker posts the malicious
code, but htmlspecialchars() encodes all the code before
inserting it into the database of web application. Thus, the
script does not get executed.

document.location="http://localhost/attacker/getCookie.

php?cookie="+document.cookie

Attacker
Domain

(getCookie
php file)

Attacker
Browser

Website
vulnerable

to XSS
attack

Victim

Browser

1. Attacker login into the website

2. Post malicious javascript:
document.location=“http://loca
lhost/attacker/getCookie.php?c
ookie=”+document.cookie

3. Victim login: Submit userId &
password

4. Web server sends the ‘cookie=12345’ to
victim’s browser
5. Victim’s browser executes the malicious script

6. Cookie is sent to the attacker
domain:
document.location=http://localho
st/attacker/getCookie.php?cookie
=12345

Attacker posts malicious script

htmlspecialchars()

Web server inserts encoded input

into web repository

The browser interprets this input as

data, not code. Thus, script is not

executed

<script>--- malicious code ----</script>

<script>--- malicious code ----</script>

Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2865

Sanitization: Sanitization function (that removes all the
html tags from the user input) filter_var(“user-

input”,FILTER_SANITIZE_STRING) in php is used to
prevent the insertion of malicious code into the database of
web application, thus mitigating XSS attack.

 Fig.3 Flow chart for sanitization
Regular Expressions Matching: The regular expressions
for the possible malicious javascript code (to carry out
XSS) have been defined. When the user enters the input,
then it is matched with all predefined regular expressions
to check whether it is valid or not. The function
ereg(“predefined regular expression”, “user-input”) is
used to perform validation of user input. This method
employs black listing techniques.

Fig.4 Flow chart for regular expressions matching

6. RESULT AND DISCUSSION

By performing these experiments on the local host, various
ways have been traced out to execute javascript in victim’s
browser. The value of event attributes, in html tags, has
been set to malicious javascript code to carry out XSS
attack and the attack became successful. Also, the ‘src’
attribute of some html tags (,
<iframe src=javascript:code>, <input type=image

src=javascript:code>, <object data=javascript:code>)
set to malicious javascript. The script does not get
executed in case of , <input type=image> and

<object> tag in modern browsers. But these browsers
support the execution of javascript through ‘src’ attribute
in <iframe> tag. Although IE11 and opera15 allow the
execution of javascript yet the XSS attack is denied but
the attack becomes successful in case of chrome and
firefox. It occurs due to DOM issues.

Fig.5 Malicious script (<iframe src=javascript:code>)
posted by the attacker into web repository to carry out
persistent XSS attack

Fig.6 Cookies of victim stolen by attacker as a result of
XSS attack by executing malicious script (<iframe
src=javascript:code>) in google chrome and firefox

Attacker posts malicious script

filter_var(“input”, FILTER_SANITIZE_STRING)

Web server inserts input (without

any html tag) into web repository

The browser interprets this sanitized

input as data, not code. Thus, script

is not executed

<script>--- malicious code ----</script>

Only content inside the html tag (not tag itself)

Attacker posts malicious script

Web server

inserts the

input

(without

any change)

into the web

repository

The browser

recognizes

this script

input as code

and execute

it

htmlspecial

chars()

Web server inserts

encoded input into web

repository

The browser interprets this

input as data, not code. Thus,

script is not executed

ereg(pre

defined

maliciou

s

expressi

on,

“input”)

 User input

 Perform Validation

 False True

Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2866

Fig.7 Script is executed by <iframesrc=javascript:code>
tag in opera15

Fig.8 Script is executed by <iframe src=javascript:code>
tag in IE11

Fig.9 Cookies of victim are not stolen by the attacker by
executing malicious script (<iframe src=javascript:code>)
in IE11 and opera15

It has been found in the experiments that the attack was
performed successfully by injecting malicious javascript in
various ways. The preventive measures were then
deployed and also evaluated for their merits and demerits
which are as under:
Merits:

 Encoding, sanitization and regular expressions
matching successfully mitigate XSS attack risks.

 These techniques have no effect on the performance
of client’s web browser.
 These techniques are compatible with modern
browsers(Google Chrome49, IE11, Opera15 and
Firefox44)

Demerits:

 By adopting encoding and sanitization, users are not
allowed to post their inputs in html format. They can
post input only in data format.

 Although, regular expressions matching allow valid
html input to be posted but the developers have to
predefine the regular expressions for the malicious

code (that can be misused by hackers to steal user’s
authentication details). It causes overburden on the
developer’s side.
 If the attacker inserts the malicious code that is not in
the list of predefined regular expressions templates,
then this code can be bypassed and it gets executed on
the victim’s browser.

7. CONCLUSION

By now there have been a variety of defensive techniques
to prevent XSS. These techniques are implemented on the
client-side or server-side to protect web users from XSS
injection attack. Still XSS is emerging as one of the top 10
web application vulnerabilities leading to security breach.
A weak input validation on the web application causes the
stealing of cookies from the victim’s web browser. The
hackers are becoming powerful day by day to develop new
approaches to carry out XSS attack. Cross-site Scripting
(XSS), the top most vulnerability in the web applications,
demands an efficient approach on the server side as well
as client side to protect the users of the web application.

REFERENCES

[1] https://www.netiq.com/promo/security-management/
2015-cyberthreat-defense-report.html.

[2] Mutton, P. PayPal Security Flaw allows Identity
Theft. June 2006.http://news.netcraft.com/ archives/
2006/06/16/paypal_security_flaw_allows_identity_the
ft.html

[3] Mutton, P. PayPal XSS Exploit available for two
years? July 2006. http://news.netcraft. com/archives/
2006/07/20/paypal_xss_exploit_available_for_
two_years.html

[4] http://www.acunetix.com/blog/articles/return-on-
investment - protecting-cross-site-scripting.

[5] JoaquinGA and GuillermoN.A, “A Survey on
Detection Techniques to Prevent XSS attacks on
Current Web Application”, Springer, CRITIS
proceedings 287-298, 2007.

[6] Ankita Singh and Amit Saxena, “Cross site scripting-
A survey”, IJCAER, Vol 1,Issue 2,August 2014

[7] Isatou Hydara and et. al. “Current state of research on
cross-site scripting (XSS) – A systematic literature
review”, ELSEVIER Information and Software
Technology 58 (2015) 170–186

[8] Amit Singh and S Sathappan “A Survey on XSS web-
attack and Defense Mechanisms”, IJARCSSE, Vol 3
issue 4, March 2014

[9] M. T. Louw and V N. Venkatakrishnan, "Blueprint:
Robust Prevention of Cross-Site Scripting Attacks for
existtng browser" Proc. 30th IEEE Symp Security and
Privacy (SP 09), IEEE CS, 331-346, 2009.

[10] O.Hallaraker and G.Vigna, “Detecting Malicious
JavaScript Code in Mozilla”, In Proceedings of the

https://www.netiq.com/promo/security-management/%202015-cyberthreat-defense-report.html
https://www.netiq.com/promo/security-management/%202015-cyberthreat-defense-report.html
http://news.netcraft.com/%20archives/%202006/06/16/
http://news.netcraft.com/%20archives/%202006/06/16/

Int. J. Advanced Networking and Applications
Volume: 07 Issue: 05 Pages: 2862-2867 (2016) ISSN: 0975-0290

2867

IEEE International Conference on Engineering of
Complex Computer Systems, 2005.

[11] Shasank Gupta et. al., “Prevention of XSS
vulnerabilities using dynamic hash generation
technique on the server side”, IJACR, Vol 2 No. 3,
September 2012.

[12] Shasank Gupta and Lalitsen Sharma, “Exploitation of
XSS vulnerabilities on real world web applications
and its defense”, IJCA, Volume 60- No.14, December
2012.

[13] S.Shalini and S.Usha, “Prevention of XSS attacks on
web applications in the client side”, IJCSI, Vol. 8,
Issue 4, No1, July 2011.

[14] Engin Kirdaa, Nenad Jovanovicb, Christopher
Kruegelc, Giovanni Vignac, “Client-side cross-site
scripting protection”, ELSEVIER, Computers &
security 28 592 – 604, 2009.

[15] Dr R.P Mahapatra, Ruchika Saini, Neha Saini
“Pattern Based Approach to Secure Web Applications
from XSS Attacks”, IJCTEE Volume 2, Issue 3, June
2012 ISSN 2249-6343.

[16] A.Kieyzun, P.J. Guo,K. Jayaraman, and M.D. Ernst,
"Automatic Creation of SQL Injection And Cross-Site
Scripting Attacks", ICSE '09 Proceedings of the 31st
International Conference on Software Engineering,
199-209, May 2009.

[17] SubvertingAjax StefanoDiPaola, GiorgioFedonhttp
://events.ccc.de/congress/2006/ Fahrplan/ attachments
/1158- Subverting_Ajax.pdf.

[18] Shasank Gupta and B.B. Gupta, “BDS: Browser
Dependent XSS Sanitizer”, IGI-Global, Handbook of
Research, 174-191 NOV 2014.

	1. INTRODUCTION
	2. AIMS AND OBJECTIVES
	3. RELATED WORK
	4. EXPERIMENTAL SET UP
	5. MITIGATING XSS ATTACK
	References

