Int. J. Advanced Networking and Applications

2347

Volume: 6 Issue: 3 Pages: 2347-2351 (2014) ISSN : 0975-0290

OpenFlow Security Threat Detection and
Defense Services

Wanqing You
Department of Computer Science, Southern Polytechnic State University, Georgia
Email: wyou@spsu.edu
Kai Qian
Department of Computer Science, Southern Polytechnic State University, Georgia
Email: kqian@spsu.edu
Xi He
Department of Computer Science, Georgia State University, Georgia
Email: xhe8@student.gsu.edu
Ying Qian
Department of Computer Science, East China Normal University, China
Email: yqian@cs.ecnu.edu.cn

ABSTRACT

The emergence of OpenFlow-capable switches de- couples control plane from the data flow plane so that they
support programmable network and allow network administrators to have programmable central control of
network traffic via a controller. The controller and its communication with switches and users become a
malicious attack target. This paper explores major possible security threats and attacks on the controller of SDN
and proposes a new approach to automatically and dynamically detect and monitor malicious behaviors on flow
message passing and defend such attacks to ensure the security of SDN. We have built a FlowEye prototype at
service level on Mininet API, and simulation tests are done on two feasible attacks on OpenFlow Beacon
platform. The paper provides the feasibility study of such attacks and defense protection strategies in SDN

security research.

Keywords - OpenFlow; Software Defined Network; security

Date of Submission: September 09, 2014

Date of Acceptance: November 13, 2014

I. INTRODUCTION

The advent of SDN (Software Defined Network) brings
a set of concepts of network organizing techniques. It
breaks up the limitations of traditional network framework
and pulls out the controlled units to a logically centralized
controller plane, which aims to separate control plane from
data plane. While a centralized controller provides great
flexibility to manage the entire network, there are also
many concerns in SDN security. OpenFlow is the
communication protocol between network devices and
controllers. It defines message format and the associated
action upon receiving messages, and is considered an
important implementation of SDN.

The position paper [1] classifies potential SDN threats into
seven categories. Shown in Fig. 1, these SDN threats can
happen on the data plane, on the control plane or the
communication between the data plane and the control
plane. Some of the threats only exist in SDN, while the
impact of the other traditional threats is potentially
augmented in SDN. The dynamic flow tunneling attack we
are discussing in this paper is the attack introduced in
SDN, which attacks on vulnerabilities in controllers.

The advent of SDN has brought the network security
community both opportunities and challenges. On one
hand, the centralized network management offers a
platform for addressing the traditional network concerns.
New approaches to defending network attacks are enabled
with global data collected from the whole network. On the
other hand, the controller components and its connection
with network devices have become the main targets of
new network attacks. Potential software bugs or backdoor
in the controller can make the entire network vulnerable to
network attacks.

In this paper, we discuss two kinds of network attacks,
ARP spoofing and dynamic flow tunneling Attack. We
propose the corresponding detection and defense strategies
for them. ARP spoofing attack is a typical network attack
that also exists in the traditional network. Dynamic flow
tunneling Attack is caused by the malicious software and
is specific to SDN. We design new approaches to
detecting two attacks in the SDN, and implement defense
strategies. The rest of the paper is organized as follows:
Section II briefly reviews the recent work on SDN attack
and defense. Then two kinds of network attacks are
discussed and analyzed in Section III and IV. Detailed
implementation is presented in V. We offer some
conclusions and future roadmap in Section VI.

Int. J. Advanced Networking and Applications

2348

Volume: 6 Issue: 3 Pages: 2347-2351 (2014) ISSN : 0975-0290

g Management connettion i

leg. 55H jﬂ
E o
SON

& 3 SON control pratacel
Controller

(e, OpatFlow |
o \ gontTot
A

Admin
Station ,,qcmT“"

Data plara
physical | lagical
cornectiong

SDN .~
dudw{

Fig. 1. SDN Main Threat Map [1]. Seven types of SDN threats are
identified.

I1. RELATED WORK

While the emergence of SDN brings network operators
more flexibility to program their networks, these
capabilities actually introduce new fault and attack plane
enabling threats that did not exist or were harder to exploit
in the traditional networks. A few related works are
targeting at the prevention and detection of SDN network
attacks.

FortNOX [2] is a security enforcement kernel developed
by extending the NOX [3] controller. It is capable of
prioritizing the flow rule installed on switches according
to different type of applications, and checking flow rule
contradictions in real time. FRESCO [4] is an OpenFlow
security application development framework which can
facilitate the creation and deployment of security service
in SDN. CloudWatcher [5] is a framework that provides
security monitoring services for large and dynamic cloud
networks and detour network packets to be inspected by
pre-installed network security devices automatically.
PermOF [6], a fine-grained permission system on
OpenFlow network, minimizes the privileges applications
to mitigate the privilege abuse problems. A NICE system
[7] presented by Princeton University aims to test
unmodified controller applications in an efficient and
systematic way, which applies the model checking to
explore the state space of the entire network system.

11l. ARP SPOOFING ATTACK AND DETECTION
APPLICATION

An ARP Spoofing or ARP Poisoning attack is the
egression of unsolicited ARP messages. These ARP
messages contain IP addresses of network resources, such
as the default gateway, or a DNS server, and replace the
MAC address of the corresponding network resource with
its own MAC address.

Fig. 2 shows what is ARP and when an ARP spoofing can
happen. In the Fig. 2, Host 1 wants to send packets to Host
2, but without any knowledge of the MAC address of Host

2. It would send out an ARP request in order to get the
MAC address of Host 2. At this time, the attacker in the
network pretends to be Host 2 and sends back its MAC.
Thus the packets from Host 1 would be sent to a wrong
destination. This is ARP spoofing.

We propose a new approach to detect the ARP spoofing,
and a simple defense strategy which prompts an alert when
we can detect the ARP spoofing. More systematical
defense strategies should be designed in the future. A
possible solution (illustrated in Fig. 3) is shown as
follows:

1) ARP Spoofing defense application manages a
buffer which saves the IP addresses and MAC addresses of
all network resources. Let the ARP Spoofing defense
application collect every ARP reply message.

2) ARP Spoofing defense application extracts (IP,
MAC) pair from the ARP reply message. Compare this
pair with buffered (IP, MAC) pairs to check if any two
pairs have same IP address but different MAC addresses.
If'yes, prompt an alert. Otherwise, add the new (IP, MAC)
pair into the buffer.

| Stepd ARP reguest s |

tpd ARP npl\ i85 sunt

i ﬁlﬂﬁ?i

Step Lo ARP vache is cheeked. if no matehed
ARP entry them broadeast ARP roquest.

ast 2: 2408

Arckercan prercnd w he 208 and send
ils MAC W LAET Anaek suegcsstlly!

=
Stepds ARP entry is added.

Fig. 2. ARP Spoofing.

ARP Spgaling Deferse App

[ntract the JIP, WAC) paird
from ARP reply message.
Comparn tham with the
Beaffered |IP, MR&C] pairs.

ARP Reply

—

R messages

Rebwork 0% _‘—EHPFI.EDIE;

Controller

Fig. 3. Simple simulation of ARP Spoofing detection.

Int. J. Advanced Networking and Applications

2349

Volume: 6 Issue: 3 Pages: 2347-2351 (2014) ISSN : 0975-0290

IV. DYNAMIC FLOW TUNNELING ATTACK AND
DETECTION

A new evasion scenario in SDN is described by Porras et
al. in [2]. By injecting fake flow rules into switches via
malicious applications on controllers, hackers can bypass
the firewall, and invade the network system. In an
imaginary network shown in Fig. 4, for example, hacker
computer 4 is trying to illegally access computer C
(10.0.0.2 — 10.0.0.4). Because the firewall prohibits any
packets originally from computer 4 arriving at computer
C, direct communication between these two computers
will be denied by the firewall. One possible strategy for
hacker computer 4 to bypass the firewall is, on one hand,
to send packets to computer B (10.0.0.2 — 10.0.0.3), and
these packets can go through the firewall and reach the
switch. On the other hand, the malicious application on the
controllers has forged rules on the switch’s flow table.
One set of such rules changes the destination IP/MAC
address of the packets that are from computer 4 to
computer B, so that these packets are redirected to
computer C. Once computer C receives packets from
computer A4, it will send reply packets to computer A. The
other set of fake rules are then applied to these reply
packets, and replace the source IP/MAC addresses with
computer B’s. As a result, the reply packets are
camouflaged to be the ones from computer B, and pass
through the firewall.

i
J T - oo
? Wuraen fzg Wy Qe sCennal
= 4T I00ad
T iriFroegior
: [r— MO0} [NO0E SOTACED
; Comtrelier ', -
: Firw anle
CErepane & maade tiwwal .
fabas

e lowe acsow

Wmoa7 Wagd pRoe

(10504

Tzw fakls
Fig. 4. An Evasion Scenario in SDN.

Our basic idea for detecting such network attack is to
maintain an adjacent matrix that keeps track of the
connectivity between any pair of computers in the network
system. If any new rules are about to write to switches,
these rules are intercepted and used to update the adjacent
matrix. By comparing the connectivity information in the
adjacent matrix with the firewall policy, this network
evasion can be detected. In the next paragraph, detailed
algorithm for maintaining the adjacent matrix will be
explained by a concrete example.

In a small network G with computer nodes 4, B, C and D
(left-hand side of Fig. 5), two computer nodes are

connected with a dotted line if they are physically
connected but not allowed to communicate, while nodes
are connected with a solid line if they can communicate
with each other. (We skip switches that connect computer
nodes) The right-hand side of Fig. 5 is the adjacent-list
representation of G, where one computer node is the
neighbor of another computer node if there is a physical
connection between these two computer nodes. The left-
hand side adjacent matrix in Fig. 6 is the initial adjacent
matrix. If at some point the communication path between
B and C is enabled, then the communication paths
between B and C’s neighbors, and between C and B’s
neighbors are also enabled. In this example,
communication paths of (A, C), (B, D), and (A, D) are
connected. For those computer nodes (such as computer
node A and D) involved in the previous update, the
updates also involve their neighbors. The process
continues recursively until all related nodes are visited.
Finally, the changes on node connectivity are updated to
the adjacent matrix. The right-hand side of Fig. 6 is the
updated adjacent matrix after enabling communication

,.®
© O
O

|u | | B
||-|J:n I n:||
=)

Fig. 5. The topology of a sample network and it adjacent-list.

A B C D AB C D
Al%ly|ola| [Alm]a]1]
Bl®(® (00 B/ ®|%[1]1
cld(m(®]1]| [c|n/x|8l1
p (% |nin| [pDinin|nln

Adjacent matrix before and after enabling communication
path (B, C). 1/0 denotes two computer nodes are
connecting/disconnecting.

V. IMPLEMENTATION

A. Environment Setup

We use Mininet as the network simulation tool in our
experiments to build a virtual OpenFlow network, and
interact with it via command line interface or APIs. With
Python scripts specifying the network architecture, a
customized OpenFlow network such as the one shown in
Fig. 2 or Fig. 4 can be constructed in Mininet. Each
computer node in the virtual network can be manipulated
in the same way as in the real network. Moreover, Mininet
not only provides default OpenFlow controller to the

Int. J. Advanced Networking and Applications

2350

Volume: 6 Issue: 3 Pages: 2347-2351 (2014) ISSN : 0975-0290

virtual network, but also allows other controller (POX,
Beacon, Floodlight, Trema) connecting to the virtual
network. In addition, the firewall in Fig. 4 can be also
configured inside a switch in Mininet virtual OpenFlow
network.

We choose Beacon [8], a java-based open source project,
as our OpenFlow controller. Considered as a network
operating system, Beacon not only has implemented
efficient I/O operation, communicating with network
devices, but also integrates seamlessly with Equinox and
Spring framework, providing easy-to-use platform for
developers to develop and deploy applications and
enabling dynamic addition or removal of Beacon
applications. To develop a new Beacon application,
developer usually only need to implement Interface
IOFMessageListener, and handle the incoming messages
from OpenFlow switches in accordance to application-
specific business logic.

B. ARP Spoofing Detection Application

Due to the limitation of Mininet virtual OpenFlow
network, traditional ARP attack tools are not properly
working in the network setting of our experiments. For the
purpose of the demonstration, we simulate ARP attacks by
deploying a special Beacon application, which produces
two ARP messages with same host IP addresses yet
different MAC addresses.

We implement another Beacon application: the ARP
detection program. It overrides the receive() function
declared in the Interface IOFMessageListener, scans all
the ARP-specific OpenFlow messages, and adds the (IP,
MAC) pairs to the global (IP, MAC) table. Once two
pairs in the (IP, MAC) table with same IP address but
different MAC addresses are identified, it will alert the
Beacon system that an ARP spoofing attack is happening.
At the same time, potential hacker hosts, which issue fake
ARP reply messages, are recorded in the log file for
further investigation.

C. Dynamic Flow Tunneling Detection and Defense
Service

The dynamic flow tunneling detection and defense service
is developed inside the Beacon system. Fig. 7 describes
the basic workflow inside the Beacon system. The
Controller class periodically queries if these are incoming
messages. If yes, it will receive message and forward them
to the application if the messages are packet-in messages.
Otherwise, other handlers will process the messages. The
applications process the packet-in messages in some pre-
determined order, and pass the outgoing flow-mod
messages to the OF MessageAsyncStream class, which will
in turn write these messages to the switches. The dynamic
flow tunneling detection and defense service lies inside the
OFMessageAsyncStream class. The write() function inside
the OFMessageAsyncStream is overridden in such a way
that when a new flow-mod message is passed to it, it will
execute the dynamic flow tunneling detection algorithm,
as discussed in Section IV, before actually writing the
message to the switches.

V1. CONCLUSION

In this paper, we examine two important network attacks
in SDN and propose respective detection and defense
strategies. More comprehensive experiments are being
carried out to evaluate the proposed defense strategies.
Other than these two attacks, much more work remains in
building a rich suite of applications that cover a wide
range of security issues. Although dynamic flow tunneling
attack is specific to SDN while ARP Spoofing attack
exists in both SDN and traditional network, we think both
proposed defense approaches rely on SDN’s centralized
controller which can provide network-wise device control
and data access.

We believe that a network security infrastructure built on
the centralized controller would provide a good solution
for defending network attacks in SDN. Therefore,
constructing a network security infrastructure would
become our next step.

| Comirpler i+
[

Incoming
[t LE

§ T
Oihar T

meysages |

| Packet-in
metLigig

Fandbery Applcations

Floris-rmaced
meihigdis

CIFf kg pa b gyt S g m

Switches

Fig.7. The data flow inside the Beacon. The rectangles
represent Beacon class instances.

REFERENCES

(11 D. Kreutz, F. Ramos, and P. Verissimo, Towards
secure and dependable software-defined networks,
Proc. the second ACM SIG- COMM workshop on
Hot topics in software defined networking, ACM,
2013, pp. 55-60.

[2] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M.
Tyson, and G. Gu, A security enforcement kernel for
openflow networks, Proc. the first workshop on Hot
topics in software defined networks, ACM, 2012, pp.
121-126.

31 N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.
Casado, N. McKeown, and S. Shenker, Nox: towards
an operating system for networks, ACM SIGCOMM
Computer Communication Review, vol. 38, no. 3, pp.
105-110, 2008.

[4] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu,
and M. Tyson, Fresco: Modular composable security
services for software-defined networks, Proc.
Network and Distributed Security Symposium, 2013.

Int. J. Advanced Networking and Applications 2351
Volume: 6 Issue: 3 Pages: 2347-2351 (2014) ISSN : 0975-0290

[51 S. Shin and G. Gu, Cloudwatcher: Network security
monitoring using openflow in dynamic cloud
networks gor: How to provide security monitoring as a
service in clouds?), Proc. 2012 20th IEEE
International Conference on Network Protocols
(ICNP), IEEE, 2012, pp. 1-6.

[6] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang,
Towards a secure controller platform for openflow
applications, Proc. the second ACM SIGCOMM
workshop on Hot topics in software defined
networking. ACM, 2013, pp. 171-172.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J.
Rexford, A nice way to test openflow applications,
Proc. the 9th USENIX conference on Networked
Systems Design and Implementation, Apr, 2012.

(8] D. Erickson, The Beacon OpenFlow Controller, Proc.
of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, ACM, 2013,
pp. 13-18

Biographies and Photographs

Wanging You is a graduate student in the department of
computer science & software engineering at Southern
Polytechnic State University. She got her bachelor degree
in software engineering at Xiamen University, China,
2013.

Dr. Kai Qian is a computer science professor in the
department of computer science & software engineering at
Southern Polytechnic State University. He got his Ph.D in
computer science and engineering at University of
Nebraska-Lincoln, 1990. His research areas include
computer network and mobile security, big data analysis
for security, machine learning, and pattern recognition. He
has published about 100 research papers in these areas in
many journals and conferences. He has received a number
of research projects on the cybersecurity from NSF these
years.

Xi He is a CS research assistant and instructor at Georgia
State University. He is specialized in parallel and
distributed computing, network architecture, and grid
computing. He has many year industrial experiences as
a software engineer and has published papers in his
research areas.

Dr. Ying Qian is an Associate Professor in the Department
of Computer Science and Technology, at East China
Normal University, Shanghai, China. She received her
Master and Ph.D. degree in Department of Electrical &
Computer Engineering from Queen’s University,
Kingston, Ontario, Canada. Her research interests include
Software Defined Network, high-performance scientific
computation, and parallel programming. She has published
about 20 research papers in these areas in many journals
and conferences.

