
Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2682

A Survey of Various Fault Tolerance

Checkpointing Algorithms in Distributed

System

Sudha

Department of Computer Science, Amity University Haryana, India

Email: sudhayadav.91@gmail.com

Nisha

Department of Computer Science, Amity University Haryana, India

Email: yadavnisha021@gmail.com

--ABSTRACT--
A distributed system is a collection of independent entities that cooperate to solve a problem that cannot be

individually solved. Checkpoint is defined as a fault tolerant technique. It is a save state of a process during the

failure-free execution, enabling it to restart from this checkpointed state upon a failure to reduce the amount of

lost work instead of repeating the computation from beginning. The process of restoring form previous

checkpointed state is known as rollback recovery. A checkpoint can be saved on either the stable storage or the

volatile storage depending on the failure scenarios to be tolerated. Checkpointing is major challenge in mobile ad

hoc network. The mobile ad hoc network architecture is one consisting of a set of self configure mobile hosts(MH)

capable of communicating with each other without the assistance of base stations, some of processes running on

mobile host. The main issues of this environment are insufficient power and limited storage capacity. This paper

surveys the algorithms which have been reported in the literature for checkpointing in distributed systems as well

as Mobile Distributed systems.

Keywords – Checkpointing, Distributed systems, Fault tolerance, Mobile computing system, Rollback recovery.

-- -------------------------

 Date of Submission: Sep 04, 2015 Date of Acceptance: Oct 01, 2015

-- -------------------------

I. INTRODUCTION

A distributed system is a collection of computers that are

spatially separated and do not share a common memory.

The processes executing on these computers communicate

with one another by exchanging messages over

communication channels [4]. In a traditional distributed

system all hosts are stationary but recent techniques in

portable computers with wireless communication

interfaces and satellite services have made it possible for

mobile users to execute distributed applications and to

access information anywhere and at anytime [2].This new

computing environment where some hosts are mobile

computers connected via wireless networks and some

hosts are stationary connected via a fixed network is called

a distributed mobile computing environment. The

infrastructure machines that communicate directly with the

MHs are called Mobile Support Stations (MSSs). A

geographical or logical coverage area under an MSS is

called Cell. Distributed computing is being used

extensively as they are cost-effective and scalable, and are

able to meet the demands of high performance computing.

When designing a protocol involving mobile hosts, there

are some issues which have to be taken consideration like

limited and vulnerable mobile host local storage, low

bandwidth and high channel contention and voluntary

disconnection/connection, location cost of mobile help

station and energy consumption. All these issues and

challenges have made those algorithms devised for

traditional distributed system not applicable.

With the increase in the number of components there is an

increase in the failure probability. To provide fault

tolerance it is essential to understand the nature of the

faults that occur in these systems [2].

 Types of faults occur in the system: Faults are mainly

of two types: 1) Permanent 2) Transient. Permanent faults

are caused by permanent damage to one or more

components like hardware failure and transient faults are

caused by changes in environmental conditions.

Permanent faults can be rectified by repair or replacement

of components. Transient faults remain for a short duration

of time and are difficult to detect and deal with but not

lead to a permanent damage. Recovery from permanent

faults must include replacement of the damaged part and

reconfiguration of the system but in case of Recovery from

transient faults, it is comparatively simple as compared to

the permanent faults because reconfiguration of the system

is not needed [5], [26].

 Fault tolerance can be achieved through some kind of

redundancy. Redundancy can be temporal or spatial. In

temporal redundancy, i.e., checkpoint-restart, an

application is restarted from an earlier checkpoint or

recovery point after a fault. This may result in the loss of

some processing and applications may not be able to meet

strict timing targets. In spatial redundancy, many copies of

the application execute on different processors

concurrently and strict timing constraints can be met. But

the cost of providing fault tolerance using spatial

redundancy is quite high and may require extra hardware.

Checkpointing is primarily used to avoid losing all the

useful processing done before a fault has occurred.

mailto:yadavnisha021@gmail.com

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2683

Checkpointing consists of intermittently saving the state of

a program in a reliable storage medium. Upon detection of

a fault, previous consistent state is restored. In case of a

fault, checkpointing enables the execution of a program to

be resumed from a previous consistent state rather than

resuming the execution from the beginning [5].

 During the designing of checkpoint protocols for

distributed mobile systems following features must be take

care into account otherwise the protocol will incur high

overheads or it will not work correctly:

1. Designs of mobile computing need to be very

concerned about bandwidth consumption.

2. Mobility is inherently vulnerable so instead to

store local checkpoints on MH, store them to

MSS to which the mobile host is connected. This

would require each of the mobile hosts to take

their checkpoints and transfer them to their

MSSs.

3. Mobile hosts are often disconnected from the rest

of the system or frequently disconnect by going

into low energy mode. A disconnected mobile

host can neither send nor receive messages, but

can continue an application execution by using its

local data and cashed shared data.

4. The mobility implies that a mobile host may

change its location during distributed

computation because of this they have to be

searched and located before control messages

associated with the checkpointing [2].

II. CHECKPOINT CLASSIFICATION
Processes in a distributed system communicate by sending

and receiving messages. A process can record only its own

state and messages it sends and receives. A global state is

a collection of the local states, one from each process of

the computation, recorded by a process. The global state is

said to be consistent if it looks to all the processes as if it

were taken at the same instant everywhere in the system.

To determine a global system state, a process Pi must

enlist the cooperation of other processes that must record

their own local states and send the recorded local states to

Pi. All processes cannot record their local states at

precisely the same instant unless they have access to a

common clock. We assume that processes do not share

clocks or memory. The problem is to devise algorithms by

which processes record their own states and the states of

communication channels so that the set of process and

channel states recorded form a global system state [5].

 Depending on the programmer’s intervention in process

of checkpointing, the classification can be:

 User-Triggered checkpointing

 Transparent Checkpointing

 User triggered checkpointing [6] schemes require user

interaction and are useful in reducing the stable storage

requirement. These are generally employed where the user

has the knowledge of the computation being performed

and can decide the location of the checkpoints. The main

problem is the identification of the checkpoint location by

a user.

 The transparent checkpointing techniques do not

require user interaction and can be classified into

following categories:

• Uncoordinated Checkpointing

• Coordinated Checkpointing

•Quasi-Synchronous or Communication induced

Checkpointing

• Message Logging based Checkpointing

2.1 Uncoordinated or independent checkpointing [10],

[16], [22], in this, processes do not coordinate their

checkpointing activity and each process records its local

checkpoint independently. It allows each process the

maximum autonomy in deciding when to take checkpoint,

i.e., each process may take a checkpoint when it is most

convenient. It eliminates coordination overhead all

together and forms a consistent global state on recovery

after a fault. After a failure, a consistent global checkpoint

is established by tracking the dependencies. There are

several disadvantages also. First, it may require cascaded

rollbacks that may lead to the initial state due to domino-

effect. Second, it requires multiple checkpoints to be saved

for each process and periodically invokes garbage

collection algorithm to reclaim the checkpoints that are no

longer needed. In this scheme, a process may take a

useless checkpoint that will never be a part of global

consistent state. Useless checkpoints incur overhead

without advancing the recovery line. The main

disadvantage of this approach is the domino-effect [Figure

1]. In this example, processes P1 and P2 have

independently taken a sequence of checkpoints. The

interleaving of messages and checkpoints leave no

consistent set of checkpoints for P1 and P2, except the

initial one at {C10, C20}. Consequently, after P1 fails,

both P1 and P2 must roll back to the beginning of the

computation. It should be noted that global state {C11,

C21} is inconsistent due to orphan message m1. Similarly,

global state {C12, C22} is inconsistent due to orphan

message m4.

 Fig. 1 Domino-effect

2.2 Coordinated Checkpointing [17], [20], [40], in

coordinated or synchronous checkpointing, processes take

checkpoints in such a manner that the resulting global state

is consistent. Mostly it follows two-phase commit

structure. In the first phase, processes take tentative

checkpoints and in the second phase, these are made

permanent. The main advantage is that only one

permanent checkpoint and at most one tentative

checkpoint is required to be stored. In case of a fault,

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2684

processes rollback to last checkpointed state. Permanent

checkpoint cannot be changed it means computation which

have been completed till permanent checkpoint will not

repeat again. Tentative checkpoint can be change. Its main

disadvantage, however, is the large latency involved in

committing output, since a global checkpoint is needed

before messages can be sent to outside world.

 First phase: - A coordinator takes a checkpoint and then

broadcast a request message to all processes, asking them

to take a checkpoint. When a process receives the

message, it stops its executions, flushes all the

communication channels, takes a tentative checkpoint, and

sends an acknowledgement message back to the

coordinator.

 Second phase:-After the coordinator receives

acknowledgements from all processes, it broadcasts a

commit message that completes the two-phase checkpoint

protocol. On receiving commit, a process converts its

tentative checkpoint into permanent one and discards its

old permanent checkpoint, if any. The process is then free

to resume execution and exchange messages with other

processes.

Coordinated checkpointing is of 2 types:-

1. Blocking: - A straightforward approach to coordinated

checkpointing is to block communications while the

checkpointing protocol executes. In this type,

communication will be block between the processes

during execution of checkpoint protocol because prevent a

process from receiving application messages that could

make the checkpoint inconsistent [40].

2. Non-blocking:-It will overcome the drawback of

blocking coordinated checkpointing algorithm. No

blocking required for processes during execution of

checkpointing algorithm. In this protocol, the initiator

takes a checkpoint and broadcasts a marker (a checkpoint

request) to all processes. Each process takes a checkpoint

upon receiving the first marker and rebroadcasts the

marker to all processes before sending any application

message. The protocol works assuming the channels are

reliable and FIFO. If the channels are non-FIFO, the

marker can be piggybacked on every post-checkpoint

message [10], [16].

 Minimum process checkpoint: Normally, a coordinated

checkpointing impose all process to participate in every

checkpointing. It is desirable to reduce the number of

processes involved in a coordinated checkpointing session.

This can be done since only those processes that have

communicated with the checkpoint initiator either directly

or indirectly since the last checkpoint, only those process

need to take new checkpoints not all. In the first phase, the

checkpoint initiator identifies all processes with which it

has communicated since the last checkpoint and sends

them a request. After receiving the request, each process in

turn identifies all processes it has communicated with

since the last checkpoints and sends them a request, and so

on, until no more processes can be identified. During the

second phase, all processes identified in the first phase

take a checkpoint. The result is a consistent checkpoint

that involves only the participating processes. In this

protocol, after a process takes a checkpoint, it cannot send

any message until the second phase terminates

successfully; although receiving a message after the

checkpoint has been taken is allowable [40].

2.3 Quasi-Synchronous or Communication Induced

Checkpointing [12], [35] this type of checkpointing

avoids the domino-effect while allowing processes to take

some of their checkpoints independently without requiring

all checkpoints to be coordinated. In these protocols,

processes take two kinds of checkpoints, local and forced.

Local checkpoints can be taken independently, while

forced checkpoints are taken to guarantee the eventual

progress of the recovery line and to minimize useless

checkpoints. Communication-Induced checkpointing

algorithm piggybacks protocol-related information on each

application message. The receiver of each application

message uses the piggybacked information to determine if

it has to take a forced checkpoint to advance the global

recovery line. The forced checkpoint must be taken before

the application may process the contents of the message,

possibly incurring high latency and overhead. It is

therefore desirable in these systems to reduce the number

of forced checkpoints to the extent possible. Unlike

coordinated checkpointing, no special coordination

messages are exchanged.

2.4 Message logging [8], [9], [15], [33], [39] It is used to

provide fault tolerance in distributed systems in which all

inter-process communication is through messages. Each

message received by a process is saved in message log on

stable storage. When a process crashes, a new process is

created in its place. The new process is given the

appropriate recorded local state, and then the logged

messages are replayed in the order the process originally

received them. All message-logging protocols require that

once a crashed process recovers, its state needs to be

consistent with the states of the other processes [13]. This

consistency obligation is usually expressed in terms of

orphan processes, which are surviving processes whose

states are inconsistent with the recovered states of crashed

processes. Thus, message- logging protocols guarantee

that upon recovery, no process is an orphan. This

requirement can be enforced either by avoiding the

creation of orphans during an execution, as pessimistic

protocols do, or by taking appropriate actions during

recovery to eliminate all orphans as optimistic protocols

do. Bin Yao et al. describes a receiver based message

logging protocol for mobile hosts, mobile support stations

and home agents in a Mobile IP environment, which

guarantees independent recovery. Checkpointing is

utilized to limit log size and recovery latency.

III. CHECKPOINTING ALGORITHMS FOR

DISTRIBUTED MOBILE SYSTEMS
3.1 Chandy and Lamport [CL] proposed an algorithm

for distributed systems which construct a global snapshot

of the system [8]. It is an all-process non-blocking

coordinated checkpointing scheme for distributed systems.

In their algorithm, system messages (markers) are sent

along all channels in the network during checkpointing.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2685

This leads to a message complexity of O (N
2
). Moreover,

it requires all processes to take checkpoints and the

channel must be FIFO. It is observed that most of the

checkpointing algorithms proposed for message passing

system uses CL algorithm as the base. CL algorithm is

based on the following assumptions [17].
 The distributed system consists of a finite

number of processes and a finite number of

channels.

 The processes communicate with each other

by message passing through communication

channels.

 The channels are fault-free and

Communication delay is arbitrary but finite.

 The global state of the system includes the

local states of the processors and the state of

the communication channels.

 State of a channel refers to the set of

messages sent along that channel

 Buffers are of infinite capacity.

 Termination of the algorithm is ensured by

fault-free communication.

The steps are below:

(1) Save the local context in a stable storage.

(2) For i = 1 to all outgoing channels

 do {send markers along channel i};

(3) Continue regular computation;

(4) For i=1 to all incoming channels

do {Save incoming messages in channel i until a

marker I is received along that channel}.

3.2 Acharya et al. [6], [9] in 1994, he was the first to

present an asynchronous snapshot collection algorithm for

distributed applications on mobile computing systems.

Due to these two reasons they consider synchronous

checkpointing to be unsuitable for mobile systems: (i) In

the Chandy-Lamport [8] kind of algorithm, an MH has to

receive REQUESTs along every incoming link so a high

cost is required for locating an MH (ii) non-availability of

the local snapshot of a disconnected MH during

synchronous checkpointing.

 The two phase based protocol from Acharya Badrinath

[6] actually adapts the Russel Protocol [16] to the context

of mobile systems. Each MH (hi) owns a Boolean variable

‘phasei’ which can assume only two values (SEND and
RECV). Upon receiving a message, if the value of ‘phasei’
is SEND then hi takes a check point and phasei is set to

RECV. Every time whenever hi will send a message then

‘phasei’ will set to SEND. Acharya and Badrinath proved
that to keep of the consistent global checkpoint a local

checkpoint belongs to, in this protocol, a vector of integers

must be piggybacked on each application message, which

takes into account the causal dependency established

between local checkpoints.

3.3 Lai-Yang Coloring Scheme They were present a

global snapshot algorithm for non-FIFO systems and it is

based on two observations on the role of a marker in a

FIFO system. The Lai-Yang algorithm fulfils this role of a

marker in a non-FIFO system by using a coloring scheme

on computation messages that works as follows [11]:

1. Initially, every process is white and then turns into red

while taking a snapshot. The equivalent of the

“marker sending rule” is executed when a process
turns red.

2. Every message sent by a white (red) process is

coloured white (red). Thus a white (red) message is a

message that was sent before (after) the sender of that

message recorded its local snapshot.

3. Every white process takes its snapshot at its

convenience, but no later than the instant it receives a

red message.

Thus, when a white process receives a red message, before

processing the message it records its local snap-shot This

ensures that no message sent by a process after recording

its local snapshot is processed by the destination process

before the destination process records its local snapshot.

Thus, an explicit marker message is not required in this

algorithm and the “marker” is piggybacked on
computation messages using a colouring scheme.

3.4 Koo-Toueg’s Minimum process Blocking Scheme
[40] as its name indicates they proposed a minimum

process blocking checkpointing algorithm for distributed

systems. This algorithm makes the following assumption

about distributed system: processes communicate by

exchanging messages through communication channels

and channels are FIFO. Communication failure does not

partition the network. The algorithm consists of two

phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated

since the last checkpoint and sends them a request. Upon

receiving the request, each process in turn identifies all

processes it has communicated with since the last

checkpoint and sends them a request, and so on, until no

more processes can be identified. During the second

phase, all processes identified in the first phase take a

checkpoint. The result is a consistent checkpoint that

involves only the participating processes. In this protocol,

because it’s a blocking algorithm so no process can send
any message after taking a checkpoint until the second

phase terminates successfully, although receiving

messages after the checkpoint is permissible.

3.5 Cao-Singhal Non-intrusive Checkpointing

Algorithm [29] had proposed an efficient minimum-

process and non-blocking algorithm and it significantly

reduces the number of checkpoints. Their algorithm

requires minimum number of processes to take tentative

checkpoints and thus minimizes the workload on stable

storage server. Their algorithm has three kinds of

checkpoints: tentative, permanent and forced. Tentative

and permanent checkpoints are saved on stable storage.

Forced checkpoints do not need to be saved on stable

storage. They can be saved on any where even in the main

memory. When a process takes a tentative checkpoint; it

forces all dependent processes to take checkpoints.

However a process taking a forced checkpoint does not

require its dependent processes to take checkpoint. Thus

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2686

taking a forced checkpoint avoids the cost of transferring

large amount of data to stable storage and accessing the

stable storage device and thus it has much less overhead

compared to taking a tentative checkpoint on stable

storage. Also by taking forced checkpoints their algorithm

avoids avalanche effects (in avalanche effects the

processes in the system recursively ask others to take

checkpoints) and significantly reduces number of

checkpoints. A process takes a forced checkpoint only

when it receives a computation message which has a

checkpoint sequence number larger than the process

expects. Their algorithm is efficient in the sense that it is

non-blocking, requires minimum stable storage, minimizes

number of tentative checkpoints and avoids avalanche

effect.

3.6 Silva and Silva Algorithm [15], [17] they proposed

all process coordinated checkpointing protocol for

distributed systems. The non- intrusiveness during

checkpointing is achieved by piggybacking monotonically

increasing checkpoint number along with computational

message. As in [11], logic is same here but this algorithm

use checkpoint number instead colouring scheme. When a

process receives a computation message with the higher

checkpoint number, it takes its checkpoint before

processing the message. When it actually gets the

checkpoint request from the initiator, it ignores the same.

If each process of the distributed programs is allowed to

initiate checkpoint operation, the network may be flooded

with control messages and processes might waste their

time making unnecessary checkpoints. In order to avoid

this Silva and Silva give the key to initiate checkpoint

algorithm to one process. The checkpoint event is

triggered periodically by a local timer mechanism. When

this timer expires, the initiator process checkpoints the

state of processes running in its machine and forces all the

others to take checkpoint by sending a broadcast message.

The interval between adjacent checkpoints is called the

checkpoint interval.

3.7 In Venkatesan's algorithm [13], [14] a node sends

out markers (corresponding to REQUESTs in the proposed

algorithm) on all the outgoing edges along which

computation messages have been sent since the last

checkpoint. However, in order to efficiently collect a

consistent snapshot, checkpointing REQUESTs need only

be propagated from the receiver of messages to the sender,

not the other way round as in [24]. Moreover, in the

snapshot collection algorithm of Koo-Toueg, [40]1987

only direct dependencies are maintained.

3.8 Juang-Venkatesan asynchronous checkpointing

Scheme [5], [14] they gave an algorithm that is based on

asynchronous checkpointing. During the recovery, we

need to find a consistent set of checkpoints to which the

system can be restored. In this recovery algorithm each

process keeps track of both the number of messages it has

send to and received from other processes. Several

iterations of rollback by processes are also involved in this

recovery. This algorithm avoids the existence of Orphan

messages. Whenever a process rollbacks, it is necessary

for all other processes to find if any message send by the

rolled back process has become an orphan message.

Orphan messages are discovered, if the number of

messages received by processor Pi from process Pj is

greater than number of messages sent by process Pj to

process Pi, according to the current state of processes,

then one or more message at process Pj are orphan

messages. Then process Pj must rollback to a state where

number of messages received are equal to the number of

messages sent by the process.

3.9 Xu and Netzer Zig-Zag Paths [13] they introduced

the concept of Zigzag paths, a simplification of Lamport’s
happened-before relation [5] and shown that notation of

Zigzag path captures exactly the conditions for a set of

checkpoints to belong to the same consistent global

snapshot. They showed that a set of checkpoints can

belong to the same consistent global snapshot if and only

if no zigzag path exists from a checkpoint to any other

checkpoint. If there exist a Zigzag path between a set of

checkpoints belong to the same global state that means

that global state is not consistent. But, if a global snapshot

is consistent, then none of its checkpoints happened before

the other. If we have two checkpoints such that none of

them happened before other, it is still not sufficient to

ensure that they can belong together to the same consistent

snapshot. This happens when a zigzag path exists between

such checkpoints. A zigzag path is defined as a

generalization of Lamport’s happened before relation [4].

Definition: A zigzag path exists from a checkpoint Cx,i to

a checkpoint Cy,j iff there exists messages

m1,m2,……mn(n≥1) such that
1. m1 is sent by process px after Cx,i;

2. if mk (1≤k≤n) is received by process pz, then

mk+1 is sent by pz in the same or a later

checkpoint interval (although mk+1 may be sent

before or after mk is received);

3. mn is received by process py before Cy,j.

3.10 In 1996 Prakash- Singhal [14], [28] proposed that a

good checkpointing protocol for mobile distributed

systems should have low memory overheads on MHs, low

overheads on wireless channels and should avoid

awakening of an MH in doze mode operations. The

disconnection of MHs should not lead to infinite wait

state. The algorithm should force minimum number of

processes to take their local checkpoints.

3.11 Adnan Agbaria and William H. Sanders [23] in

2003 presented their works for a new distributed snapshot

for mobile computing systems, which often have limited

bandwidth and long latencies, and where the mobile hosts

may roam among the different cells within the system. In

addition they also proved the liveness and safety.

3.12 Garg and Sabharwal [7] in 2006, they proposed and

proved three algorithms first is Grid Base second was tree

based and third was centralized algorithm. The grid based

algorithm uses O(N) space but only root of N messages

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2687

per processor. The tree based algorithm required only

O(1)space and O(log N low w)messages per processor

where w is the average number of messages in transit per

processor. The centralized algorithm requires only O(1)

space and O(log w) messages per processor. They also

show that their algorithms have applications in

checkpointing, detecting stable predicates and

implementing synchronizers.

3.13 Lalit and P. Kumar [17] they presented a new

algorithm in 2007 for synchronous checkpointing protocol

for mobile distributed systems. In the algorithm they

reduced the useless checkpoints and blocking using a

probabilistic approach that computes an interacting set of

processes on checkpoint initiation. A process checkpoint

if the probability that it will get a checkpoint request in

current initiation is high. A few processes may be blocked

but they can continue their normal computation and may

send messages. They also modified methodology to

maintain exact dependencies. They show that their

algorithm imposes low memory and computation

overheads on MHs and low communication overheads on

wireless channels. It avoids awakening of a MH if it not

required taking its checkpoint. A MH can remain

disconnected for an arbitrary period of time without

affecting checkpointing activity.

3.14 Ajay D Kshemkalyani [38] he presented a fast and

message efficient global snapshot algorithms for large

scale distributed systems in 2007. He compared his

algorithm with Garg and show that new algorithm is more

efficient. He presented two new algorithms Simple Tree

and Hypercube that use fewer message and have lower

response time and parallel communication times. In

addition the hypercube algorithm is symmetrical and has

greater potential for balanced workload and congestion

freedom. This algorithm have direct applicable in large

scale distributed systems such as peer to peer and MIMD

supercomputers which are a fully connected topology of a

large number of processors. This algorithm is also useful

for determine checkpoint in large scale distributed mobile

systems.

3.15 Alvisi et. Message Logging Schemes [4], [20], [21],

[26] He developed a message logging protocol that is non-

blocking and avoids creation of orphan states. This

protocol only sends the application messages and their

acknowledgements. This scheme may make application

messages arbitrarily larger, but it is claimed that average

amount of overhead is small. The major limitation of this

scheme is that it can only with stand a sequence of process

crash, process recovery pairs. If process P sends messages

to process Q and both P and Q simultaneously crash, then

orphan states may be created and Q may find itself trying

to reconstruct a message for which there exists only a

receive sequence number.

3.16 Kim-Park Algorithm [10] proposed a time-efficient

protocol for checkpointing recovery which exploits the

dependency relationship between processes in

checkpointing and rollback coordination. Unlike other

synchronized protocols the coordinator of the

checkpointing does not always have to deliver its decision

after it collects the status of the processes it depends on

hence one phase of the coordination is practically

removed. The checkpointing coordination time and the

possibility of total abort of the checkpointing are

substantially reduced. Reduction of the coordination roll

back time is also achieved by sending the restart messages

from the coordinator directly to the roll back processes and

concurrent activities of the checkpointing and roll back are

effectively handled by exploiting the process dependency

relationship.

3.17 Hybrid Coordinated Checkpointing Algorithm
(24) In minimum-process checkpointing, some processes,

having low communication activity, may not be included

in the minimum set for several checkpoint initiations and

thus may not advance their recovery line for a long time.

In the case of a recovery after a fault, this may lead to their

rollback to far earlier checkpointed state and the loss of

computation at such processes may be exceedingly high.

In all-process checkpointing, recovery line is advanced for

each process after every global checkpoint but the

checkpointing overhead may be exceedingly high,

especially in mobile environments due to frequent

checkpoints. MHs utilize the stable storage at the MSSs to

store checkpoints of the MHs. Thus, to balance the

checkpointing overhead and the loss of computation on

recovery, a hybrid checkpointing algorithm for mobile

distributed systems is proposed, where an all-process

checkpoint is taken after certain number of minimum-

process checkpoints.

 A strategy is proposed to optimize the size of the

checkpoint sequence number (csn). In order to address

different checkpointing intervals, he replaced integer csn

with k-bit CI. Integer csn is monotonically increasing,

each time a process takes its checkpoint, it increments its

csn by 1. K-bit CI is used to serve the purpose of integer

csn. The value of k can be fine-tuned. The minimum-

process checkpointing algorithm is based on keeping track

of direct dependencies of processes. Initiator process

collects the direct dependency vectors of all processes,

computes minimum set, and sends the checkpoint request

along with the minimum set to all processes. In this way,

blocking time has been significantly reduced as compared

to [37].

 During the period, when a process sends its

dependency set to the initiator and receives the minimum

set, may receive some messages, which may alter its

dependency set, and may add new members to the already

computed minimum set. In order to keep the computed

minimum set intact and to avoid useless checkpoints, he

proposed to block the processes for this period.

3.18 Wang and Fuchs lazy checkpoint coordination
[44]: They proposed a coordinated checkpointing scheme

in which they incorporated the technique of lazy

checkpoint coordination into an uncoordinated

checkpointing protocol for bounding rollback propagation.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2688

Recovery line progression is made by performing

communication induced checkpoint coordination only

when predetermined consistency criterion is violated. The

notation of laziness provides a tradeoff between extra

checkpoints during normal execution and average rollback

distance for recovery.

3.19 Helary’s Concept of Message Waves [45] He

proposed a snapshot algorithm that uses the concept of

message waves. A wave is a flow of control messages

such that every process in the system is visited exactly

once by a control message and at least one process in the

system can determine when this flow of control messages

terminates. Wave sequences may be implemented by

various traversal structures such as a ring. A process

begins recording the local snapshot when it is visited by

the wave control message.

3.20 Elnozahy and Zwaenepoel Algorithm [46] they

proposed a message logging protocol which uses

coordinated checkpointing with message logging. The

combination of message logging and coordinated

checkpointing offers several advantages, including

improved failure free performance, bounded recovery

time, simplified garbage collection and reduced

complexity.

IV. CONCLUSION

A survey of the literate on checkpointing algorithms for

mobile distributed systems shows that a large number of

papers have been published. A majority of these

algorithms are based on the concept by chandy and

lamport and have been obtained by relaxing many of the

assumptions made by them. We have reviewed and

compared different approaches to checkpointing in mobile

distributed systems with respect to a set of properties

including the assumption of piecewise determinism,

performance overhead, storage overhead, ease of output

commit, ease of garbage collection, ease of recovery,

useless checkpointing, low energy consumptions.

 Checkpointing does not require the processes to

coordinate their checkpoints, but it suffers from potential

domino effect, complicates recovery, and still requires

coordination to perform output commit or garbage

collection. Between these two ends are communication-

induced checkpointing schemes that depend on the

communication patterns of the applications to trigger

checkpoints. These schemes do not suffer from the domino

effect and do not require coordination. Message logging

based checkpointing avoid creation of orphan message

during an execution and preserve consistency.

REFERENCES

[1] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel,

The Performance of Consistent Checkpointing Proc. 11th

Symp. Reliable.

[2] A Survey of Checkpointing Algorithms in Mobile Ad

Hoc Network By Ms. Pooja Sharma & Dr. Ajay Khunteta.

[3] A. Borg, J. Baumbach, and S. Glazer,“ A Message

System Supporting Fault Tolerance”, Proc. Symp.
Operating System Principles, pp. 90-99, ACM SIG OPS,

Oct. 1983.

[4] “Distributed Operating System” by Mukesh singhal.

[5] “A Review of Fault Tolerant Checkpointing Protocols

for Mobile Computing Systems” Rachit Garg Singhania

University Dept. of Computer Sc & Engg Pacheri Bari

(Rajasthan), India Praveen Kumar Meerut Institute of

Engg & Tech. Dept of Computer Sc. & Engg Meerut

(INDIA).

[6] Avi Ziv and Jehoshua Bruck, “ Checkpointing in

Parallel and Distributed Systems” Book Chapter from

Parallel and Distributed Computing Handbook edited by

Albert Z. H. Zomaya, pp. 274-302, (Mc Graw Hill, 1996).

[7] Rahul Garg, Vijay K Garg, Yogish sabharwal

“Scalable algorithms for global snapshots in distributed

systems ” ACM 2006.

[8] K.M. Chandy and L. Lamport, ªDistributed Snapshots:

Determining Global States of Distributed Systems,º ACM

Trans. Computer

[9]A. Acharya and B.R. Badrinath, ªCheckpointing

Distributed Applications on Mobil Computers,º Proc.

Third Int'l Conf. Parallel and Distributed Information

Systems, Sept. 1994

[10] J.L. Kim and T. Park, ªAn Efficient Protocol for

Checkpointing Recovery in Distributed Systems,º IEEE

Trans. Parallel and Distributed Systems, pp. 955-960,

Aug. 1993.

[11] T.H. Lai and T.H. Yang, ªOn Distributed Snapshots,º

Information Processing Letters, pp. 153-158, May 1987.

[12] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal

M., “A Communication- Induced Checkpointing Protocol

that Ensures Rollback-Dependency Trackability,”
Proceedings of the International Symposium on Fault-

Tolerant-Computing Systems, pp. 68-77, June 1997.

[13] R. Netzer and J. Xu, ªNecessary and Sufficient

Conditions for Consistent Global Snapshots,º IEEE Trans.

Parallel and Distributed.

[14] S. Venketasan, “Message-Optimal Incremental

Snapshots , ” Computer and Software Engineering, vol.1,

no.3, pp. 211-231, 1993.

[15] L.M. Silva and J.G. Silva, ªGlobal Checkpointing for

Distributed Programs,º Proc. 11th Symp. Reliable

Distributed Systems, pp. 155- 162, Oct. 1992.

[16] Wood, W.G., “A Decentralized Recovery Control

Protocol”, 1981 IEEE Symposium on Fault Tolerant

Computing, 1981.

[17] Lalit Kumar P. Kumar “A synchronous ckeckpointing

protocol for mobile distributed systems: probabilistic

approach” Int Journal of information and computer
security 2007.

[18] Bhargava B. and Lian S. R., “Independent

Checkpointing and Concurrent Rollback for Recovery in

Distributed Systems-An Optimistic Approach,”
Proceedings of 17th IEEE Symposium on Reliable

Distributed Systems, pp. 3-12, 1988.

[19] L. Alvisi and K. Marzullo,“ Tradeoffs in

implementing Optimal Message Logging Protocol”, Proc.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 02 Pages: 2682-2689 (2015) ISSN: 0975-0290

2689

15th Symp. Principles of Distributed Computing, pp. 58-

67, ACM, June, 1996.

[20] Elnozahy E.N., Johnson D.B. and Zwaenepoel W.,

“The Performance of Consistent Checkpointing,”
Proceedings of the 11th Symposium on Reliable

Distributed Systems, pp. 39-47, October 1992.

[21] Storm R., and Temini, S., “Optimistic Recovery in

Distributed Systems”, ACM Trans. Computer Systems,
Aug, 1985, pp. 204-226.

[22] Adnan Agbaria, Wiilliam H Sanders,“ Distributed

Snapshots for Mobile Computing Systems”, IEEE Intl.
Conf. PERCOM’04, pp. 1-10, 2004.

[23]S. Venketasan and T.Y. Juang, “Efficient Algorithms

for Optimistic Crash recovery”, Distributed Computing,
vol. 8, no. 2, pp. 105-114, June 1994.

[24] “A Low-Cost Hybrid Coordinated Checkpointing

Protocol for Mobile Distributed Systems” by Parveen
kumar.

[25] .P. Sistla and J.L. Welch,“ Efficient Distributed

Recovery Using Message Logging”, Proc. 18th Symp.
Principles of Distributed Computing”, pp 223-238, Aug.

1989

[26] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson

D.B., “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375-408, 2002.

[27] L. Lamport, ªTime, Clocks and Ordering of Events in

Distributed Systems,º Comm. of the ACM, July 1978. cao

and singhal: mutable checkpoints: a new checkpointing

approach for mobile computing systems 171.

[28] Prakash R. and Singhal M., “Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,”
IEEE Transaction On Parallel and Distributed Systems,

vol. 7, no. 10, pp. 1035-1048, October1996.

[29] Cao G. and Singhal M., “On the Impossibility of Min-

process Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing Systems,”
Proceedings of International Conference on Parallel

Processing, pp. 37-44, August 1998.

[30] L. Alvisi,Hoppe, B., Marzullo, K., “Nonblocking and

Orphan-Free message Logging Protocol ” Proc. of 23rd
Fault Tolerant Computing Symp., pp. 145-154, June 1993.

[31] L. Alvisi,“ Understanding the Message Logging

Paradigm for Masking Process Crashes,“ Ph.D. Thesis,
Cornell Univ., Dept. of Computer Science, Jan. 1996.

available as Technical Report TR-96-1577.

[32] Elnozahy and Zwaenepoel W, “ Manetho:

Transparent Roll-back Recovery with Low-overhead,

Limited Rollback and Fast Output Commit,” IEEE Trans.
Computers, vol. 41, no. 5, pp. 526-531, May 1992.

[33] D. Johnson, “Distributed System Fault Tolerance

Using Message Logging and Checkpointing,” Ph.D.
Thesis, Rice Univ., Dec. 1989.

[34] Elnozahy and Zwaenepoel W, “ On the Use and

Implementation of Message Logging,” 24th
 int’l Symp.

Fault Tolerant Computing, pp. 298-307, IEEE Computer

Society, June 1994.

[35]Hélary J. M., Mostefaoui A. and Raynal M.,

“Communication-Induced Determination of Consistent

Snapshots,” Proceedings of the 28th International

Symposium on Fault-Tolerant Computing, pp. 208-217,

June 1998.

[36] Richard C. Gass and Bidyut Gupta,“ An Efficient

Checkpointing Scheme for Mobile Computing Systems”,
European Simulation Symposium, Oct 18-20, 2001, pp. 1-

6.

[37] Higaki H. and Takizawa M., “Checkpoint-recovery

Protocol for Reliable Mobile Systems,” Trans. of
Information processing Japan, vol. 40, no.1, pp. 236-244,

Jan. 1999.

[38] Ajay D Kshemkalyani “Fast and message efficient

global snapshot algorithms for large scale distributed

systems” IEEE 2010.
[39] Elnozahy and Zwaenepoel W, “On the Use and

Implementation of Message Logging,” 24th int’l Symp.
Fault Tolerant Computing, pp. 298-307, IEEE Computer

Society, June 1994.

[40] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on
Software Engineering, vol. 13, no. 1, pp. 23-31, January

1987.

[41] D. Johnson, “Distributed System Fault Tolerance

Using Message Logging and Checkpointing,” Ph.D.
Thesis, Rice Univ., Dec. 1989.

[42] Manivannan D. and Singhal M., “Quasi-Synchronous

Checkpointing: Models, Characterization, and

Classification,” IEEE Trans. Parallel and Distributed
Systems, vol. 10, no. 7, pp. 703-713, July 1999.

[43] Yoshinori Morita, Kengo Hiraga and Hiroaki

Higaki,“ Hybrid Checkpoint Protocol for Supporting

Mobile-to-Mobile Communication”, Proc. of the

International Conference on Information Networking,

2001.

[44] Wang Y. and Fuchs, W.K., “Lazy Checkpoint

Coordination for Bounding Rollback Propagation,” Proc.
12

th
 Symp. Reliable Distributed Systems, pp. 78-85, Oct.

1993.

[45] Hélary J. M., Mostefaoui A. and Raynal M.,

“Communication-Induced Determination of Consistent

Snapshots,” Proceedings of the 28th International
Symposium on Fault-Tolerant Computing, pp. 208-217,

June 1998.

[46] Elnozahy and Zwaenepoel W, “On the Use and

Implementation of Message Logging,” 24th int’l Symp.
Fault Tolerant Computing, pp. 298-307, IEEE Computer

Society, June 1994.

Biographies

Sudha

I am Pursuing My M.Tech(Computer science) Form

Amity University Gurgaon, Haryana. I have completed my

B.Tech(Information Technology) degree from Maharishi

Dayanand University, Rohtak.

Nisha

I am Pursuing My M.Tech(Computer science) Form

Amity University Gurgaon, Haryana. I have completed my

B.Tech(Computer science) degree from Maharishi

Dayanand University, Rohtak.

	I. Introduction

