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BACKGROUND: Cancer is a disease of genomic 

instability, evasion of immune cells, and adaptation 

of the tumor cells to the changing environment. 

Genetic heterogeneity caused by tumors and tumor 

microenvironmental factors forms the basis of aggressive 

behavior of some cancer cell populations.

CONTENT: Cancers arise in self-renewing cell populations 

and that the resulting cancers, like their normal organ 

counterparts, are composed of hierarchically organized 

cell populations. Self-renewing cancer stem cells (CSC) 

maintain tumor growth and generate the diverse populations 

constituting the tumor bulk. CSC in multiple tumor types 

have been demonstrated to be relatively resistant to radiation 

and chemotherapy. The clinical relevance of these studies 

has been supported by neoadjuvant breast cancer trials that 

demonstrated increases in the proportions of CSC after 

therapy. The CSC hypothesis has tremendously important 

clinical implications.

SUMMARY: In summary, a large and accumulating 

body of evidence supports the CSC hypothesis, which has 

important implications for cancer prevention and therapy. 

The ultimate test of this hypothesis will require clinical 

trials demonstrating that targeting of these pathways reduces 

cancer incidence and improves outcomes for patients with 

cancer.
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Cancer is usually viewed as an evolutionary process which 

results from the accumulation of somatic mutations in the 

progeny of a normal cell, and leading to a selective growth 

advantage in the mutated cells and ultimately to uncontrolled 

proliferation.(1,2) In recent decades, cancer research has  

characterized the cellular and molecular events which enable 

the malignant transformation of cells harbouring oncogenic 

alterations. These events include uncontrolled proliferation; 

evasion of tumor suppression; inhibition of cell death; 

creation of a particular microenvironment containing blood 

vessels, stromal and immune cells; and the acquisition of 

invasive and metastatic potential.(3) Although many genes 

leading to different types of cancer when mutated have been 

identified, the cells that initiate tumor formation following 
accumulation of these mutations have, until recently, 

remained elusive.(4)

 Several studies have identified a subset of cancer cells, 
designated as tumor-initiating cell or cancer stem cell (CSC), 

with the ability for self-renewal and differentiation into 

distinct cell lineages. Recently, the hypothesis has emerged, 

and earned great momentum, that tumors are hierarchically 

arranged, with CSC being the principal drivers of tumor 

growth for proliferation, resistance to chemotherapy, and 

metastasis.(5-7) A combination of flowcytometry and 
xenotransplantation techniques led to the identification of 
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CSC Concept

leukemia-initiating cells (cluster of differentiation (CD)34+ 

CD38) and breast cancer-initiating cells (CD44+ CD24-/lo) 

and provided scientific basis for the CSC hypothesis.(7-9)
 Development of drug resistance and disease recurrence 

and metastasis could naturally be the consequences of 

tumor heterogeneity and plasticity. The latter characteristics 

also could result in cells having distinct characteristics, 

including sensitivity to therapy.(10) The hypothesis that 

tumors arise via sequential mutation and clonal selection 

has been proposed to be incompatible with a CSC model. 

In fact, studies such as that of Jan, et al., have provided 

compelling evidence that both models are correct.(11) 

Although mutations may occur in any cell, those that occur 

in non-self-renewing cell populations are extinguished 

through cellular senescence. CSC mutation may lead to 

these selective population clonal growth, causing further 

mutation, and keep continue to mutate and evolve even after 

full transformation. Thus, cancers may contain multiple 

CSC clones.(12)

 Until now, evidence for the existence of CSC has been 

controversial, but the hypothesis is extremely attractive 

because it provides a conceptual framework on which 

new therapeutic approaches could be built, and is any 

drug capable of killing CSCs would, in theory, be curative. 

Now, three independent studies of mouse models of brain 

(13), skin (14) and intestinal (15) tumors provide the first 
evidence that CSC do exist and arise de novo during tumor 

formation in intact organs.(16) Over the last ten years, the 

notion that tumors are maintained by their own stem cells, 

has created great excitement in the research community.(17)

on the genetic and biochemical mechanisms which cause 

drug resistance. Nonetheless, cancer is widely understood 

as a heterogeneous disease and there is increasing awareness 

that intratumoral heterogeneity contributes to therapy 

failure and disease progression.(3) A tumor is not simply 

a bag of homogeneous malignant cells. Instead, a tumor 

is a complex ecosystem containing tumor cells, as well as 

various infiltrating endothelial, hematopoietic, stromal and 
other cell types which can influence the function of tumor 
as a whole.(18)

 Many leukimias and solid tumors were defined by their 
pehotypic and functional heterogeneity features, including 

genetic mutations, epigenetic changes, microenvironment 

interactions, and if a cellular hierarchy was present 

or absent. Different cellular mechanisms have been 

postulated to account for intratumoral heterogeneity.(19) 

It is now commonly accepted that inherited mutations and 

environmental carcinogens can lead to the development of 

premalignant clones (Figure 1).(12) After further mutations, 

one cell reaches a critical state which confers a survival or 

growth advantage over the normal cells. Such cells have 

the ability to initiate a malignant tumor. They share plenty 

features of normal stem cells, including the capacity for 

self-renewal and differentiation, and are widely termed 

CSC.(20) Central to CSC concept is the observation that not 

all cells in tumors are equal. The CSC concept presupposes 

that, similar to the growth of normal proliferative tissues 

such as bone marrow, skin or intestinal epithelium, the 

growth of tumors is fueled by limited numbers of dedicated 

stem cells which are capable of self- renewal.(17)

 Both CSCs and normal tissue stem cells possess 

self-renewal capability, however, self-renewal is typically 

deregulated in CSC. For many cancers, CSC represent a 

distinct population that can be prospectively isolated from 

the remainder of the tumor cells and can be shown to have 

clonal long-term repopulation and self-renewal capacity, the 

defining features of a CSC.(21,22)

Despite the advances in cancer treatment, many patients still 

fail therapy, resulting in disease progression, recurrence and 

reduced overall survival. Historically, much focus has been 

Figure 1. Unified model of clonal evolution and CSC. 
Top panel shows that acquisition of favorable mutations 
can result in clonal expansion of the founder cell.(12) 
(Adapted with permission from Elsevier).



 23

Cancer Stem Cell (Meiliana A, et al.)
Indones  Biomed J.  2016; 8(1): 21-36DOI: 10.18585/inabj.v8i1.190

 The CSC hypothesis explains that there exists, within 

a tumor, a minority cell type which has the characteristics of 

stem cells, these cells can self-renew and can differentiate 

to form all of the cell types that constitute the original 

tumor from a small number of cells.(21) It seems clear 

that, at least in hematopoetic (23) and some solid tumors 

including pancreatic (24), prostate (25), colon (17,26,27), 

breast (28,29), lung (30), and brain (31,32), a small subset 

of cells can be isolated which can self-renew and form well-

differentiated tumors similar to that of the patient’s tumor 

from which they arise. However, the CSC hypothesis may 

not be true for all tumor types or for all of these cells all 

of the time.(33-36) In reality, it has been suggested that 

stemness may be a dynamic state, which is a function of the 

cell’s interaction with the environment.(37)

 The CSC model states that tumors are organized 

hierarchically with a subset of tumor cells at their apex, 

which possess self-renewal and multilineage differentiation 

potential.(21,38) This model therefore suggests that tumors 

are organized in a similar, albeit distorted, mannered as are 

their tissues of origin, and could potentially explain several 

phenomena that are currently incompletely understood.

(39) According to the CSC model, minimal residual disease 

and tumor recurrence after treatment would be a result 

from remaining therapy-resistant CSC fraction, whereas 

metastatic potential would be a CSC-specific property. 
Although these hypotheses are appealing, they lack 

conclusive experimental evidence.(40)

 The definition of CSCs as the only self-renewing 
tumor cells that capable of seeding a new tumor implies 

that CSCs are also responsible for initiation of metastases, 

a notion strengthened by the connection between CSCs 

and epithelial-mesenchymal transition (EMT) (41-44) 

which is associated with metastatic behavior and poor 

prognosis (45). Transient and long-term quiescence, the 

latter also termed dormancy, are generally believed to be 

fundamental attributes of adult stem cells.(46,47) On the 

basis of this premise, stem cells are often identified by their 
propensity to retain DNA labels much longer than their 

rapidly proliferating offspring. Dormancy may be a crucial 

mechanism for the resistance of CSCs to anti-proliferative 

chemotherapy. Besides, if indeed CSC occur in a dormant 

state, this would explain the appearance of local recurrence 

or distant metastasis after long lag periods.(17)

 It is often proposed that CSCs are resistant to therapy 

in the similar way that normal stem cells are protected 

against insult. These protections include, for example, 

mechanisms such as quiescence, expression of ATP-

binding cassette (ABC) drug pumps, high expression of 

antiapoptotic proteins and resistance to DNA damage.

(48) Some groups have started to explore if CSCs are 

indeed more resistant to therapy than their progeny. For 

instance, CD133-expressing glioma cells survive ionizing 

radiation better relative to CD133-tumor cells.(49) CD44hi 

CD24lo breast cancer CSCs appear intrinsically resistant to 

conventional chemotherapy (50) and ionizing radiation (51). 

Meanwhile chronic myeloid leukemia (CML) is sustained 

by leukemic stem cells that are relatively resistant to the 

drug Imatinib.(52,53) Nevertheless, the phenomenon of 

intrinsically therapy-resistant CSCs cannot be generalized, 

as for instance, the undifferentiated cells which drive 

testicular germ cell tumors are more sensitive to radiation or 

cisplatin therapy than their differentiated cellular progeny.

(54) Tumor cells that escape therapy, however, may not be 

endowed with intrinsic therapy resistance. Rather, they may 

simply be the stochastic winners of the tumor cell-killing 

process. On the opposite, when intrinsic differences in the 

sensitivity of cancer cells to therapy do exist, these may 

also be determined genetically rather than by epigenetic 

differences.(55)

 CSCs must be defined functionally by well-validated 
assays such as in vivo transplantation instead on the basis 

of immunophenotype alone. Nevertheless, a number of 

markers have proven useful for the isolation of subsets 

enriched for CSCs in multiple types of solid tumors, 

including CD133, CD44, epithelial cell adhesion molecule 

(EpCAM), and aldehyde dehydrogenase (ALDH) activity. 

In the case of human leukemia, a combination of CD34, 

CD38, and interleukin (IL)-3 receptor subunit alpha (IL3Ra) 

has enabled the prospective isolation of leukemia stem cells. 

It should be noted that none of these markers are exclusively 

expressed by CSCs.(19) 

 The search for more robust markers of CSCs in 

glioblastoma and other brain tumors has revealed  stage-

specific embryonic antigen 1 (SSEA-1)/CD15/Lewis X 
and a6-integrin. SSEA-1 was identified as a CSC marker 
in both human glioblastoma and syngeneic mouse models 

of medulloblastoma.(56-58) Despite a high proportion 

of specimens lacking CD133+ cells, SSEA-1 enriched for 

CSCs by 100-fold in almost every human glioblastoma 

tumor evaluated.(57) In another approach, the perivascular 

microenvironment in which brain CSCs reside and 

identified a6-integrin as a CSC marker that was required 
for maintenance of CSCs in vivo has been examined.(59) 

Co-expression of CD133 and a6-integrin was observed 

in some but not all tumors. The genetic mutation profile 
may also influence the nature and phenotype of CSCs, as 
suggested by studies on different genetic mouse models 

of lung adenocarcinoma (60), whereas epigenetic changes 

in regulatory genes could impact marker expression itself. 
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In breast cancer, even though CD44 and CD24 have been 

extensively used to isolate CSC, they should not be viewed 

as universal markers. CD44 and CD24 did not selectively 

enrich for CSC in estrogen-receptor-negative and triple-

negative breast tumors as shown by the fact that CSCs were 

found in both the CD44+ CD24 and CD44+ CD24+ fractions.

(61) Furthermore, the ALDHhi and CD44hi CD24lo CSC-

enriched subsets in breast cancer bear little overlap within 

the same tumor.(62) The same story holds true for colorectal 

cancer in which the EpCAMhi CD44+ CSC subpopulation 

shared minor overlap with CD133 (63), and for pancreatic 

cancer, where overlap between the CD133+ and CD44+ 

CD24+ populations varied considerably between specimens 

(64). In ovarian cancers, strikingly little concordance was 

found between CD133 and reported ovarian CSC markers 

including CD117, CD44, and ALDH1 activity (65,66), most 

probably explained by many groups relying on cultured cells 

as opposed to freshly sorted tumors. Finally, in patients with 

non-small cell lung cancer, even though CD133, CD44, and 

EpCAM proved ineffective for the isolation of CSC, CD166 

showed as a robust marker in more than 50% of cases.(67) 

Nevertheless, a combination of markers can refine the CSC 
phenotype.(19)

 Mutations directly influence the stemness and EMT 
qualities, whereas differentiation and reversion to the CSC 

state affect the potential of these mutations to be passed on 

to progeny. The addition of microenvironmental cues to this 

model discloses a system that is constantly being fine-tuned 
to provide an optimal tumor-supporting setting.(40) From a 

cell biological perspective, the link between EMT, migratory 

CSCs and metastatic potential is intriguing, but further 

molecular insight is needed to fully understand and prove 

these connections. The observation that EMT regulators, 

such as Snail and zinc-finger-E-box-binding (Zeb)1, can be 
switched on and off in tumors as a result of a molecular 

circuitry that involves micro-RNA-dependent regulation 

provides a starting point.(68-70) Identifying the cues that 

control the activity of this network will further elucidate 

the process and will likely also provide targets which can 

modulate metastasis and interfere with CSC qualities.

 From a clinical perspective, our understanding of the 

interactions between CSCs, differentiated tumor cells and 

the microenvironment is of utmost importance. As CSCs 

have been suggested to selectively resist therapy, these 

interactions are not only important to understand treatment 

outcome, but could also provide useful targets for therapy.

(39,71) Based on this, the next ten years will transform CSCs 

from an intensely debated concept to a better understood 

and actively targeted tumor property.

The cell of origin for CSC is a fundamental question in the 

field that remains unanswered at this time. A common notion 
is that normal pluripotent stem and/or progenitor cells may 

be the cell of origin for CSC because these two cell types 

possess similar hallmark functional characteristics, namely, 

self-renewal and differentiation. However, there is a lack of 

experimental evidence to provide insight into the molecular 

mechanisms required to reprogram normal pluripotent cells 

into CSC. The most logical and straightforward hypothesis 

is that accumulation of genetic alterations may trigger the 

transformation of normal pluripotent cells into CSC. It is 

unclear whether a distinct set and/or a threshold number 

of genetic alterations are needed to drive the transition of 

normal pluripotent cells into CSC.(72) Emerging literature 

is revealing bidirectional plasticity between the non-CSC 

and CSC populations to support non-CSCs as the cell of 

origin for CSCs. Several groups reported that non-CSCs 

can be induced to dedifferentiate into CSCs by co-opting 

oncogenic pathways and/or through interaction with the 

microenvironment. A recent study showed that hyperactive 

kirsten rat sarcoma viral oncogene (KRAS) and Wnt signaling 

cooperate to dedifferentiate villus cells into intestinal CSC 

in a nuclear factor-kappaB  (NF-kB) dependent fashion.

(73) Similarly, KRAS functioned in concert with another 

oncogene, cellular myelocytomatosis oncogene (Myc), to 

promote the conversion of differentiated mouse fibroblasts 
into CSC.(74) Mammary non-CSC epithelial cells were 

shown to spontaneously dedifferentiate to CSC in vitro and 

in vivo.(35). In addition, the conversion rate of non-CSC 

to CSC was more pronounced in vivo, suggesting that the 

tumor microenvironment may play a critical role in CSC 

expansion.(35).

 The available data suggest that cancer progresses 

through multistep processes involving both genetic 

mutations and epigenetic abnormalities. However, it still 

remains unclear how epigenetic abnormality occurs during 

cancer development. Previous studies have demonstrated 

that cancer-promoting inflammatory stimuli induce drastic 
changes in DNA methylation patterns.(75) These results 

suggest that external signals could be a cause of epigenetic 

abnormalities in cancer cells. In contrast, large-scale 

sequencing projects have identified a number of mutations 
of epigenetic regulator genes across a wide variety of cancer 

types.(76) These results clearly demonstrate that some 

of the epigenetic abnormalities observed in cancers are 

attributable to genetic mutations and highlight the primary 

Origin of CSC



 25

Cancer Stem Cell (Meiliana A, et al.)
Indones  Biomed J.  2016; 8(1): 21-36DOI: 10.18585/inabj.v8i1.190

role of genetic mutations, even against a background of 

epigenetic alterations (Figure 2).(77)

 Induced pluripotent stem cell (iPSC) derivation 

processes share  many characteristics with cancer 

development where during reprogramming, somatic 

differentiated cells  will show unlimited proliferation for 

self-renewal and global alterations for transcriptional 

program, similar to carcinogenesis critical events.(78) The 

metabolic switch to glycolysis that occurs during somatic cell 

reprogramming is similarly observed in cancer development.

(79) Such similarities suggest that reprogramming 

processes and cancer development may be partly promoted 

by overlapping mechanisms.(80) Practically, the forced 

induction of the critical reprogramming factor organic 

cation transporter (Oct)-3/4 in adult somatic cells results in 

dysplastic growth in epithelial tissues through the inhibition 

of cellular differentiation in a manner which is similar to that 

in embryonic cells.(81) These studies provided a possible 

link between transcription-factor-mediated reprogramming 

and cancer development.(82)

 Remarkably, the process of dedifferentiation or 

reprogramming of the somatic cells by Yamanaka factors, 

many of which are oncogenes, offers a new insight into CSC. 

These may be the somatic cells dedifferentiation product 

after oncogenic insult. Cancer cells have an amazing rate 

of survival. They can even exploit and subvert the cellular 

machinery by proliferation, dedifferentiation, and even 

transdifferentiation, to achieve that goal.(83)

 There are many parallels between reprogramming 

and cancer. The similarities between the process of 

reprogramming cells to iPCS and differentiated tumor 

cells to CSC propose that some of these mechanisms, 

like epigenetic resetting, can render cells in a susceptible 

condition where genetic alterations are only the next step 

toward transformation and tumor progression. Knowing 

the mechanisms governing cellular reprogramming and 

induced pluripotency may shed light into deciphering 

the processes involved in tumorigenesis.(83) The notion 

that Oct-4 induction influences the epigenetic regulations 
and contributes to the maintenance of undifferentiated 

proliferating cells may provide a possible link between 

transcription factor-mediated reprogramming and 

oncogenesis.(81) SRY (sex determining region Y)-box 2 

(Sox2) is amplified in lung and esophagus cancer and is an 
essential driver of CSCs subpopulations in glioblastoma, 

breast cancer, and Ewing sarcoma.(84,85) A large variety 

of human malignancies express high levels of Myc. Its 

expression may explain the observation that most of the 

mice generated with iPSC clones spontaneously developed 

tumors.(86) Myc is an important transcriptional regulator 

in embryonic stem cell, and it significantly promotes the 
process of iPSC derivation. Its role as a global amplifier of 
gene expression not surprisingly also drives a wide range 

of malignant programs.(87) The list can go on including 

Kruppel-like factor 4 (KLF4), Nanog, Lin28, and other 

pluripotency factors and transcription factors which mediate 

Figure 2. Dedifferentiation-
driven cancer development 
in an epigenetic landscape.
(77) (Adapted with permission 
from AlphaMed Press).
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Initially described as epithelial to mesenchymal 

transformation, this differentiation process is now generally 

known as EMT to emphasize its transient nature. Meanwhile 

mesenchymal-epithelial transition (MET) describes the 

reverse process. The ability of epithelial cells to do a 

transition into mesenchymal cells and back, either partially 

or fully, illustrates an inherent plasticity of the epithelial 

phenotype. During EMT, epithelial cells lose their junctions 

and apical-basal polarity, reorganize their cytoskeleton, 

undergo a change in the signaling programmed that define 
cell shape and reprogrammed gene expression; this increases 

the motility of individual cells and enables the development 

of an invasive phenotype.(90,91) EMT is integral to 

development, and the processes underlying it are reactivated 

in wound healing, fibrosis and cancer progression.(91-93)
 The changes in gene expression that contribute to 

the repression of the epithelial phenotype and activation 

of the mesenchymal phenotype involve master regulators, 

including Snail, Twist and  Zeb transcription factors. Their 

expression is activated early in EMT, and in this way, they 

have central roles in development, fibrosis and cancer.
(94) Vascular endothelial growth factor (VEGF) signaling 

promotes EMT in pancreatic and breast tumor cells by 

inducing Snail and Twist expression.(95,96) Interestingly, 

Snail1 can induce VEGF expression in epithelial cells (97), 

and they are coexpressed during peritoneal fibrosis (98). 
Thus, a regulatory loop between angiogenesis and EMT 

may contribute to tumor progression.

 Tumors can escape immune surveillance by inducing 

tolerance or by modifying their phenotype through 

immunoediting. Indeed, Neu-driven tumors escape immune 

surveillance upon undergoing EMT.(99) Tumor relapse is 

found in a Neu/ErBb2-inducible transgenic tumor model 

after removal of the inducer, indicating that tumors rely on 

continuous oncogenic signaling. However, all animals had 

residual foci that finally developed more aggressive new 
tumors of the EMT type.(100) These two studies suggest 

that EMT may be involved in the acquisition of resistance 

to targeted therapies and that cells belonging to the foci of 

minimal residual disease acquired a mesenchymal phenotype.

(94) Tumors undergoing EMT may resist conventional 

chemotherapy, and subsequently, colon carcinoma 

epithelial cell lines made resistant to oxaliplatin exhibit a 

mesenchymal morphology and express several markers of 

EMT.(101) The resistance of ovarian carcinoma epithelial 

cell lines to Paclitaxel is also correlated to the acquisition 

of EMT markers and loss of the epithelial phenotype.(102) 

Twist and one of its target genes are elevated in a subset 

of Michigan Cancer Foundation-7 (MCF7) or human 

metastatic MDA-MB-434 cells selected for their invasive 

properties, and having undergone EMT, they were also 

resistant to Paclitaxel.(103) Moreover, the depletion of Twist 

can partially reverse multidrug resistance (MDR) in breast 

cancer cells.(104) EMT is required for primary carcinoma 

to invade and disseminate, because these pioneer invasive 

cells have important features (mesenchymal and a stem cell-

like phenotype) which can initiate a differentiated epithelial-

like structure. A reversion process  of this differentiated 

phenotype through a process of MET is important for 

macrometastasis formation and next forming a bulk of the 

secondary tumor mass. This hypothesis was formulated 

earlier from an analysis of the progression of colon primary 

tumors and liver metastases, where it was proposed that 

CSC could acquire a mesenchymal phenotype, and thereby 

become migratory CSC that will form metastasis.(44)

 Consistent with the reversible nature of EMT, 

differentiated cancer cells can do a transition into CSC, 

and vice versa, enabling oncogenic mutations which arose 

in differentiated cancer cells to integrate through EMT 

into CSC as EMT promotes cell invasion that leads to 

tumor cell dissemination, this procedure enables CSC with 

new oncogenic mutations to clonally expand, following 

invasion, dissemination and MET in secondary tumors.

(44,105) In cancer, both EMT and CSC generation have 

been associated with transforming growth factor (TGF)-β 
signaling. For example, breast cancer CSCs show higher 

levels of TGF-β1 and type II TGF-β1 receptor expression 
than the more differentiated cells, and inhibition of TGF-β 
signaling in CSCs re-establishes an epithelial phenotype.

(106) Also, Wnt and Notch signaling are associated with 

CSCs. Colon CSCs show a high level of Wnt signaling, 

with nuclear β-catenin at the invasive cancer front and in 
scattered tumor cells.(107,108) Notch signaling contributes 

to the generation of CSCs in other cancers (109), including 

pancreatic adenocarcinomas (110), and the inhibition of 

Notch signaling suppresses EMT and CSCs in a xenograft 

model (111).

 Regulating the activity of E-cadherin repressors may 

seem an obvious strategy to combat cancer progression. 

However, these inducers of the full EMT program are 

EMT

direct lineage conversion, emphasizing the link between 

reprogramming and oncogenesis.(88,89) The convergence 

and commonality of CSC and iPSC opens a new avenue to 

develop therapeutic approaches to fight recurring cancers.
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transcription factors, and are very difficult to target. RNA 
interference provides some hope in terms of specificity, 
but further development is indeed needed to increase the 

stability of these reagents and the efficiency in cell targeting 
and intracellular delivery.(91) Small-molecule inhibitors 

or antibodies directed against the epidermal growth factor 

receptor (EGFR), insulin-like growth factor receptor 

(IGFR), platelet-derived growth factor receptor (PDGFR), 

hepatocyte growth factor receptor (HGFR), TGF-β receptor 
(TGFβR), and endothelin type A receptor (ETAR) have 
been effective in preclinical and clinical trials. Although 

initially developed as inhibitors of cell proliferation or 

angiogenesis, it is likely that these molecules interfere 

with EMT.(112) For instance, Cetuximab or Panitumumab, 

two antibodies against EGFR, or Erlotinib and Gefitinib, 
two small molecules that act as competitive inhibitors 

of the EGFR kinase, are currently used clinically to treat 

advanced carcinoma. Nevertheles, studies in cell lines show 

that not all cells expressing high levels of EGFR respond 

to Erlotinib or Gefitinib. Interestingly, there is an obvious 
correlation between the EMT status of each cell line and 

the degree of response.(113-115) Another approach to 

overcome refractoriness is to target directly the CSC. 

Lately, salinomycin was identified from a library consisting 
of 16,000 small molecules for its selective cytotoxity 

toward enriched breast CSC. This pioneer study provides a 

proof of principle that CSC exhibiting EMT features can be 

selectively targeted by drugs.(116)

The CSC Nische

CSCs are tumor cells which have the principal properties 

of self-renewal, clonal tumor initiation capacity, and clonal 

long-term repopulation potential.(21,22) They also display 

plasticity by reversibly transitioning between stem and 

non-stem cell states. CSCs have the capability to evade cell 

death and metastasize, although they may stay dormant for 

long periods of time.(117) Both experimental models and 

clinical studies indicate that CSCs survive many commonly 

employed cancer therapeutics.(18)

 As is the case for normal stem cells, CSCs are believed 

to reside in niches. Niches are specialized microenvironments 

which regulate adult stem cell fate by providing cues in 

form of both cell-cell contacts and secreted factors. Niches 

have been identified for mammalian stem cells in various 
epithelial tissues, such as the intestine as well as in neural, 

epidermal, and hematopoietic systems.(118) Normal niches 

are comprised of fibroblastic cells, immune cells, endothelial 

and perivascular cells or their progenitors, extracellular 

matrix (ECM) components, and networks of cytokines and 

growth factors.(119) The CSC niche itself is a part of the 

tumor microenvironment, which is a collective term for 

the adjacent stroma along with the normal counterparts of 

tumorigenic cells.(120) Non-CSC tumor cells are also part 

of the CSC niche. During the progression of tumors to a more 

malignant state, the CSC state in primary tumor depends 

crucially on the tumor microenvironment and potentially on 

the CSC niches within it.(121) CSCs are metastatic cancer 

cells that can self-renew. Their plasticity and dormancy 

correlates with their therapeutic resistance (Figure 3).(122)

 Metastasis happened when disseminated cancer cells, 

away from the primary site, recreate a full-fledged tumor in 
another tissues. How the cancer cells can move from a tumor 

to a distant organ via circulation is still become the interest of 

cancer biologist and clinical oncologist. The latest findings 
have started to define the sources, phenotypic properties, 
hosting niches, and signaling pathways which support the 

survival, self-renewal, dormancy and reactivation of cancer 

cells that initiate metastasis, that is metastatic stem cells.

(123)

 Metastatic growth in distant organs is the major 

reason of cancer mortality. The development of metastasis 

is a multistage process with several rate-limiting steps.(124) 

Even though dissemination of tumor cells seems to be an 

early and frequent event (125), the successful initiation of 

metastatic growth, a process termed metastatic colonization, 

is not efficient for many cancer types and is accomplished 
only by a minority of cancer cells that reach distant sites 

(126,127). Prevalent target sites are characteristic of many 

tumor entities (128), proposing that inadequate support by 

distant tissues contributes to the inefficiency of metastatic 
process. Small population of CSC is critical for metastatic 

colonization, that is, the initial expansion of cancer cells at 

the secondary site, and that stromal niche signals are vital 

to this expansion process (Figure 4).(122) A component 

of the ECM, called Periostin (POSTN),  is expressed by 

fibroblasts in normal tissue and in stroma of the primary 
tumor. Infiltrating tumor cells have to induce stromal 
POSTN expression in the secondary target organ (in this 

case lung) to initiate colonization. POSTN is required to 

allow CSC maintenance, and blocking its function avoids 

metastasis. POSTN recruits Wnt ligands and thereby 

increases Wnt signaling in CSC. The education of stromal 

cells by infiltrating tumor cells is an crucial step in metastatic 
colonization and that preventing de novo niche formation 

may be a novel strategy for the treatment of metastatic 

disease.(129)
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 Organs are composed of the cells which perform the 

main organ function (e.g., secrete hormones or enzymes) 

and the stroma (from Latin or Greek, often translated as mat 

or bed), the supportive framework of an organ. The stroma 

can be divided into several classes, there are the ECM, 

which is composed of proteoglycans, hyaluronic acid and 

fibrous proteins (e.g., collagen, fibronectin, and laminin), 
and stromal cells. The stromal cells include mesenchymal 

supporting cells (e.g., fibroblasts and adipocytes), cells of 
the vascular system, and cells of the immune system. Various 

peptide factors (e.g., growth factors, chemokines, cytokines, 

antibodies) and metabolites are also found in the stroma. 

The stroma is essential for normal organ development.

(130-132) Different components of tumor stroma similarly 

affect the progression of the tumor. As tumors develop and 

progress, they undergo dramatic morphological changes 

(133,134), which also involves the stroma (133,135-137). 

The importance of stage-specific changes of the stroma is 
not yet completely comprehensible. However, in most cases 

the stroma of the later stages is more supportive of tumor 

progression than the stroma of early stages.(138)

 Just as normal developing organs, such as liver and 

kidneys, have systemic consequences for the organism, 

so does tumor organ. The dramatic systemic effects of the 

tumor organ are not limited to metastatic spread, but also 

include effects on immunity, coagulation and metabolism. 

Certainly it is these major systemic changes which cause the 

Figure 3. The molecular and cellular basis 
of the cross talk between CSCs and their 
niches.(122) DC: dendritic cell, MDSC: 
myeloid-derived suppressor cell, TAN: 
tumor-associated neutrophil, TAM: tumor-
associated macrophage, NK: natural killer, 
GM-CSF: granulocyte-macrophage colony-
stimulating factor, G-CSF: granulocyte-
colony stimulating factor, M-CSF: 
macrophage colony-stimulating factor, 
TNF-α: tumor necrosis factor alpha, MSC: 
mesenchymal stem cells, CXCL: chemokine 
C-X-C motif ligand, ROS: reactive oxygen 
species, HIF-1α: hypoxia-inducible factor 
1-alpha, CAF:  cancer-associated fibroblasts, 
MMP: matrix metalloproteinase, TNC:  
tenascin C, HGF: hepatocyte growth factor. 
(Adapted with permission from Elsevier). 

majority of cancer deaths, rather than effects of the direct 

overgrowth of the primary tumor or even the metastases.

(138) To prevent malignancy and metastasis, CSCs need to 

be eradicated. Due to their plasticity, this could be tricky 

to find a specific niche component target that relevant 
to particular cancer type so a standard promising cancer 

therapy can tackle the tumor bulk effectively. Thus, we need 

a better understanding of CSCs biology and niche factors 

of each cancer subtype, and their modulation to various 

therapeutic design to develop a fully applicable therapy 

strategy in the clinic. (122)

Mechanism of Therapy Resistance in CSC

CSCs have lately been identified and characterized in 
many types of solid tumors and may have role in treatment 

failure since they have been shown to be relatively resistant 

to conventional therapies. Recent data propose that both 

intrinsic and extrinsic determinants confer radioresistance 

to CSC through a variety of mechanisms.(139) Traditional 

cancer therapies typically target the rapidly dividing 

tumor cells, yet, some cells of the tumor are spared.(140-

142) These spared tumor cells which are reported to be 

present within abundant amount of tumor types exhibit the 

potential to regenerate and are called CSCs.(140-144) This 

may explain the clinical scenario in which a tumor has an 
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Figure 4. CSC niches in the primary 
tumor and metastasis.(122) EGF: 
epidermal growth factor, LOX: enzyme 
lysyl oxidase, VCAM:  vascular cell 
adhesion molecule, NET: norepinephrine 
transporter, IM: intramuscular. (Adapted 
with permission from Elsevier).

apparent volumetric reduction, however, is subsequently 

followed by local recurrence. While debate continues as to 

the precise identity and function of CSCs, there is common 

agreement that CSCs show increased chemoresistance and 

radioresistance.(140-142,145) Therefore, understanding 

the biology of chemoresistance potential of CSCs may 

contribute to our understanding of tumor biology and would 

have far-reaching clinical implications.

 Mechanisms of radioresistance in CSC include: CSCs 

display enhanced DNA repair activity, at least in part due 

to enhanced activation of the DNA damage checkpoint.

(1,2) CSCs contain lower reactive oxygen species (ROS) 

levels and overexpress ROS scavengers, resulting in less 

DNA damage after ionizing radiation.(3) CSCs can induce 

autophagy to promote survival.(4) The canonical Wnt/β-
catenin signaling pathway and (5) the Notch signaling 

pathway are over-activated in CSCs, leading to upregulated 

transcription of genes responsible for cell proliferation and 

survival.(6) CSCs may be located in hypoxic niches within 

tumors which would contribute to resistance to radiation.

(139) There is raising evidence that polycomb group (PcG) 

proteins (discovered in Drosophila as epigenetic gene 

silencers) play an important role in cancer development and 

recurrence. PcG of proteins is composed of two multimeric 

protein complexes, which are the polycomb repressive 

complex (PRC)1 and PRC2.(146) The PRC1 complex 

includes B cell-specific Moloney murine leukemia virus 
integration site 1 (BMI1), Mel-18, Mph1/Rae28, M33, 

sex comb on midleg homolog 1 (SCMH1) and Ring2, 

meanwhile the PRC2 complex includes Eed, EzH, Suz12, 

and YY1.(146) BMI1 is reported to play a crucial role in 

self-renewal of stem cells and is associated with a number 
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of human malignancies.(141,144,147-149) Recent studies 

suggest that BMI1 is involved in the initiation of cancer, and 

targeting BMI1 by gene therapy abolishes chemoresistance 

in tumor cells.(141,142)

 The inability of tumor cells to go through apoptosis in 

response to chemotherapy gives a selective advantage for 

tumor progression, metastasis, and resistance to therapy. 

BMI1 has been known to be associated with the protection 

of tumor cells from apoptosis. Cui, et al., showed that the 

ectopic expression of BMI1 rescues keratinocytes from 

stress-induced apoptosis.(148) BMI1 knockdown was 

observed to increase the apoptosis in lymphocytes in spleen 

and thymus in an animal model.(150) Zhang, et al., observed 

that ovarian CSCs exhibiting high BMI1 levels have 

increased resistance to Cisplatin and Paclitaxel.(151) Crea, 

et al., showed that BMI1 silencing significantly enhanced 
the antitumor efficiency of Docetaxel against prostate 
cancer cells. BMI1 (by modulating antioxidant machinery) 

was observed to allow prostate tumor cells to survive after 

the chemotherapy.(142) Examination of clinical datasets 

revealed a positive correlation of BMI1 and antioxidant 

gene expression in patients exhibiting chemoresistance.

(142) Recently, Wang, et al., reported that BMI1 is involved 

in chemoresistance of ovarian cancer cells, and targeting 

BMI1 by gene therapy sensitizes tumor cells to Cisplatin 

chemotherapy.(152) Modulation of reduced glutathione, 

checkpoint kinase 2 (CHK2) and H2A histone family, 

member X (H2AX) molecules by BMI1 was reported as 

the underlying mechanism for chemoresistant behavior of 

ovarian tumor cells.(152)

 Chemoresistance has been reported to be caused by 

the aberration of several molecular pathways in tumor cells. 

CSCs have been shown to display chemoresistance through 

(a) modulation of DNA repair machinery, (b) ABC MDR, 

(c) quiescence, and (d) upregulation of antiapoptotic genes.

(153) Emerging evidences support the notion that BMI1 is 

an important molecule in the process of chemoresistance. 

But the precise mechanism of BMI1 on the regulation of 

chemoresistance in tumor cells is no fully understood. It is 

reported that BMI1 modulates several molecular pathways 

within the cells. BMI1 has been shown to induce its effect 

at epigenetic as well as genetic level.(146,154,155) It is 

believed that chromatin modifications induced by PcG 
proteins, including BMI1, form an obstacle to transcription 

factors and RNA polymerase binding.(155,156) BMI1 

has been reported to be associated with the progression, 

recurrence, and chemoresistance to the various types of 

cancer cells. Hence, it is of great clinical value to further 

understand the molecular mechanism underlying the 

regulation of BMI1 in CSCs and chemoresistance. This 

will not only help in understanding the role of BMI1 in the 

growth of CSCs and chemoresistance but will also provide 

insights for the establishment and development of new 

strategies and effective clinical therapies for the treatment 

of chemoresistant cancers.(156)

Targeting CSC Therapies

A growing body of studies indicates that CSCs are 

intrinsically more resistant to chemotherapeutic agents 

and radiation than the bulk of tumor cells, and thus play an 

important role in persistence of cancer residual disease and 

recurrence. This drug resistance in CSCs has been attributed 

to highly expressed drug efflux pumps (for example, the 
MDR proteins), enhanced DNA repair proteins, expression 

of antiapoptotic proteins, and a slow rate of cell proliferation.

(157) Thus, it is important to develop effective therapeutic 

strategies to eliminate CSCs and overcome cancer resistance 

to chemotherapy and radiotherapy.(158)

 Conventional anticancer approaches are directed 

predominantly at bulk tumor populations. That kind of 

strategies often have limited efficacy because of  the 
intrinsic or acquired drug resistance and/or resistance 

to ionizing radiation.(160) Mechanisms of therapeutic 

resistance include increased recognition and repair of 

DNA damaged by the drug or ionizing radiation, altered 

cell cycle checkpoint control, impaired functioning of 

apoptotic pathways, and reduced drug accumulation as a 

result of increased expression of ABC transporters which 

efflux drug.(160,161) Evidence has showed that CSCs 
represent a subpopulation of cells within cancers that is 

characterized by increased resistance to chemo- and radio-

therapy, indicating that conventional anticancer approaches 

might frequently fail to eradicate the cell subset which 

initiates and perpetuates tumorigenesis (Figure 5).(159) For 

example, CSC chemoresistance has been reported in human 

leukemias (162-169), in malignant melanoma (169,170), 

and in brain (171), breast (50,172), pancreatic (64), and 

colorectal (173) cancers. Furthermore, CSC radioresistance 

has been identified in brain (48) and breast (51,174) cancers. 
CSCs in human indeed are the major culprits for tumor 

development, malignant progression, and responsible for 

therapeutic resistance. CSCs then were a potential target for 

effectively treatments and reducing the tumor relapse and 

metastasis.(159)

 A number of therapeutic strategies directed at CSC 

are beginning to be experimentally confirmed. These 
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Figure 5. CSCs, carcinogenesis, tumorigenesis, and tumor resistance.(159) (Adapted with permission from American Society for 
Clinical Investigation).

Figure 6. The therapeutic promise of CSC-directed targeting 
strategies.(159) (Adapted with permission from American Society 
for Clinical Investigation). 

approaches could potentially intensify responsiveness to 

current anticancer treatment regimens and might reduce the 

risk of relapse and dissemination. The approaches include 

ablation using antitumor agents which target prospective 

markers of CSCs (e.g., monoclonal antibodies and activated 

immune cells), reversal of chemo- or radio-resistance 

mechanisms operative in CSC, CSC pathway interference, 

differentiation therapy, disruption of protumorigenic 

CSC-microenvironment interactions, antiangiogenic or 

antivasculogenic therapy, and disruption of immunoevasion 

pathways (Figure 6).(159)

 Monoclonal antiboy-based strategies that target 

molecules expressed by CSCs, for example EpCAM on 

breast and colon CSCs (9,63), are already being translated 

to the clinic.(48) These developments underline the 

therapeutic promise of the CSC concept. Ultimately, patient 

cures will require eradication of all cells within a cancer. 

So combination therapies which target both CSCs and 

bulk cancer populations are tend to emerge as particularly 

effective clinical strategies, especially in those malignancies 

currently refractory to conventional anticancer agents 

directed predominantly at the bulk tumor cell populations.

(159)

 Recent studies have revealed that cancer 

immunotherapy is a possible and promising candidate to 

target CSCs. Among the various immunological effector 

cells, cytotoxic T lymphocytes (CTL) are a good candidate 

for CSC-targeted immunotherapy as CTLs are antigen-

specific effector cells.(176) In addition, identification of 
specific antigens or genetic alterations in CSCs may provide 
more specific targets for immunotherapy. ALDH, CD44, 
CD133, and ErBb2 have perfomed as markers to isolate 

CSCs from a number of tumor types in animal models and 

human tumors. They might serve as useful targets for CSC 

immunotherapy. In the end, since CSCs are regulated by 

interactions with CSC niche, these interactions may serve 

as additional targets for CSC immunotherapy. Targeting the 

tumor microenvironment, such as interrupting the immune 

cell, for example, myeloid-derived suppressor cells, and 

cytokines, for example, IL-6 and IL-8, as well as the immune 

checkpoint (programmed cell death 1 (PD1)/programmed 

death-ligand 1 (PDL1), etc.) may provide additional novel 

strategies to enhance the immunological targeting of CSCs.

(176)

 The growing number of reports regarding CSCs has 

significantly raised the complexity of our understanding 
of their basic and clinical biology. Some properties, such 

as drug resistance and migratory and invasive potential, 
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are now attributed to CSCs in addition to their defining 
characteristics of tumorigenicity and self-renewal that 

suggests a major role in disease relapse and progression. 

Although these findings have served as a foundation to 
develop novel therapies, proof that CSCs are clinically 

relevant is still lacking. Improved overall survival resulting 

from the documented inhibition of CSCs will provide the 

most definitive evidence for their importance, but challenges 
exist in identifying the proper end-points to clinically assess 

therapies targeting these cells.(177)

The CSC hypothesis provides an attractive cellular 

mechanism to account for the therapeutic refractoriness 

and dormant behavior exhibited by many of these 

tumor. But recent observations have highlighted many 

complexities and challenges. The CSC phenotype can 

vary substantially between  patients, tumors may harbor 

multiple phenotypically or genetically distinct CSCs, 

metastatic CSCs can evolve from primary CSCs, and tumor 

cells may undergo reversible phenotypic changes. The 

clinical relevance of CSCs remains a fundamental issue but 

preliminary findings show that specific targeting may be 
possible.

Conclusion
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