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B
ACKGROUND: Since the irst umbilical cord 
blood (UCB) transplant, performed 25 years ago, 

UCB banks have been established worldwide for 

the collection and cryopreservation of UCB for autologous 

and allogeneic transplants.

CONTENT: Much has been learned in a relatively short time 
on the properties of UCB hematopoietic progenitors and their 

clinical application. More interestingly, non-hematopoietic 
stem cells have been isolated from UCB. These cells can 

be grown and differentiated into various tissues including 

bone, cartilage, liver, pancreas, nerve,  muscle and so on. 

The non-hematopoietic stem cells have an advantage over 

other sources of stem cells, such as embryonic stem cells 

or induced pluripotent stem cells, because their supply is 

unlimited, they can be used in autologous or allogeneic 

situations, they need minimal manipulation and they raise 

no ethical concerns. Future studies will test the potential of 
UCB cells for the treatment of several diseases including, 

among other possibilities, diabetes, arthritis, burns, 

neurological disorder and myocardial infarction.

SUMMARY: In addition to hematopoietic stem cells, UCB 

contain a large number of non-hematopoietic stem cells. 

In the absence of ethical concern, the unlimited supply of 

UCB cells explains the increasing interest of using UCB for 

developing regenerative medicine.
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L
ATAR BELAKANG: Sejak transplantasi darah 
tali pusat (DTP) pertama yang dilakukan 25 tahun 
yang lalu, telah banyak didirikan bank DTP di 

seluruh dunia untuk menyimpan DTP, untuk dipakai pada 
transplantasi autologus maupun alogenik.

ISI: Banyak yang telah dipelajari dalam waktu yang 
relatif singkat tentang sifat progenitor hematopoietik 

DTP dan aplikasi klinisnya. Yang lebih menarik, sel 
punca non-hematopoietik telah diisolasi dari DTP. Sel ini 
dapat berkembang dan berdiferensiasi menjadi berbagai 
jaringan seperti  tulang, tulang rawan, hati, pankreas, saraf, 
otot dan sebagainya. Sel punca non-hematopoietik ini 

memiliki kelebihan dibanding sel punca sumber lainnya 

seperti sel punca embrionik atau sel punca pluripoten hasil 

induksi, karena sumbernya tidak terbatas, dapat digunakan 

untuk situasi autologus maupun alogenik, membutuhkan 

manipulasi minimal dan tidak menimbulkan masalah etika. 

Penelitian di masa mendatang akan menguji potensi sel DTP 
untuk terapi berbagai penyakit, diantaranya adalah diabetes, 

artritis, luka bakar, gangguan saraf, dan infark miokard.

RINGKASAN: Selain sel punca hematopoietik, DTP 
mengandung banyak sel punca non-hematopoietik. Dengan 
tidak adanya masalah etika, ketersediaan sel DTP yang tidak 
terbatas ini meningkatkan keinginan dalam penggunaan 

DTP untuk pengembangan kedokteran regeneratif.

KATA KUNCI: DTP, transplantasi, bank DTP, HSC, MSC, 
CD34, CD133, VSEL
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The irst umbilical cord blood (UCB) transplant (UCBT) by 
Gluckman et al. was performed in 1988 in a patient with 

Fanconi's anemia.(1) This patient had a healthy human 
leukocyte antigen (HLA)-identical sibling who was shown 
by prenatal testing to be unaffected by the disorder, to have 

a normal karyotype and to be HLA identical to the patient. 
Her cord blood was collected at birth, cryopreserved and 

used after thawing for transplantation. Since the irst UCBT, 
more than 20,000 UCBTs have been reported worldwide and 

more than 620,000 UCB units have been stored in more than 

100 UCB banks.(2) The main practical advantages of using 

UCB as an alternative source of stem cells are the relative 

ease of procurement, the absence of risks for mothers and 

donors, the reduced likelihood of transmitting infections, 

particularly cytomegalovirus (CMV) and the ability to store 
fully tested and  HLA-typed transplants in the frozen state, 
available for immediate use (3).

 UCB bank (UCBB) established criteria for 

standardization of UCB collection, banking, processing and 

cryopreservation for unrelated donor transplants in patients 

with various hematological malignant and non-malignant 

diseases.(3) Recently, the use of UCB stem cells (UCB-SCs) 

in several regenerative medicine applications has expanded 

its clinical utility.

 UCB-SCs contains a mixture of multipotent stem cells 

capable of giving rise to cells derived from the endodermal, 

mesodermal and ectodermal lineages. It has been shown that 

UCB-SCs have the ability to regenerate numerous tissue 

types, and when transplanted into animals and humans, 

have produced measurable functional improvements.(4,5) 

Generally, tissue-derived stem cells have been described 

for neural (6), retinal (7), pancreas (8), skin (9) and liver 

tissues (10). UCB-SCs appear to be unique in their ability 

to undergo pluripotential differentiation. Thus, UCB-SCs 

appear to be a practical substitute for embryonic stem cells 

and are readily available for use in tissue engineering and 

regenerative medicine. Recently clinical trials have begun 

using UCB-SCs to treat type 1 diabetes mellitus (T1DM), 
cerebral palsy and peripheral vascular disease among others.

(4,5) UCB-SCs has transitioned from the laboratory to the 

clinic and numerous patients are currently being treated 

in clinical trials. Other trials will surely rapidly follow, 

including therapies for eyes, joints, wound and spinal cord. 
The key to these advances lies in the pluripotency of UCB-

SCs and their ability to be used in many instances under the 

practice of medicine, as it appears in many instances that it 

Introduction
is possible to merely infuse the stem cells directly without 

timely and costly in vitro culture and differentiation.(11)

Hematopoietic stem cell (HSC) transplantation (HSCT) can 

be performed using stem cells derived from three sources: 

bone marrow (BM), peripheral blood (PB) and UCB. Only 
about 30% of patients in need of HSCT have a matched-

related donor and, although there are currently around 10 

million adult volunteer donors registered worldwide, still 

about 60% of patients will not ind a suitably HLA-matched 
unrelated adult donor, and thus cannot access this potentially 

curative therapy.(12)

 As UCB products are HLA-typed, tested for lack of 
infectious agents and stored, they are immediately available 

upon request and can be shipped to any transplant center 

in the world with relative ease and without delay.(13,14) 

UCB has become such a popular adult stem cell source for 

many reasons, not least because over 130 million births 

worldwide per annum represents the largest, easily available 

stem cell source. It also allows for storage of units from 

ethnic minorities not easily possible within BM registries.
(15) This potentially allows for an increase in the rate of 

matched unrelated donor allogeneic transplants.(16) It has 

also been found that there is a lower risk of graft versus 

host disease (GvHD) when transplanting UCB compared 
to BM.(17) This could be due to the fact that the cells 
transplanted from UCB are more naive and have lower 

HLA protein expression.(16) UCB has been shown to 
contain a higher frequency of early progenitor cells than 

PB or BM.(18) Further indings show that term and pre-
term UCB contain signiicantly higher number of early and 
committed progenitor cells, and that they are better able to 

form colony-forming-unit granulocyte-macrophage (CFU-
GM) when compared to adult PB.(19)
 UCB also contains non-haematopoietic stem or 

progenitor cells including mesenchymal and endothelial 

precursor.(20) Even more recently UCB is becoming a real 

player in the regenerative medicine ield. There are many 
groups looking to develop tissues for either transplantation 

or drug testing with many successes.(21) It has become a 

real alternative to BM and PB as a source of adult stem 
cells to treat multiple diseases. More than 85 conditions 
can currently be treated using this stem cell source, such as 

the previously mentioned Fanconi’s anemia, a BM failure 
disorder (1), metabolic disorders like Krabbe’s disease 
(22) and immune defects like severe combined immune 

deiciency (SCID) (23). Well over 1 million UCB have been 

UCB-SCs
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stored globally in the last 10 years. Already, over 20,000 
transplants been performed using UCB for haematopoietic 

reconstitution alone, now this potential is joined in the 
regenerative medicine.(21)

UCBB has gained signiicant interest in recent years because 
of the success of UCBT and its more recent applications 

within regenerative medicine. Both public and private 

banking facilities have been established over the past 20 

years to facilitate these endeavors.

 Generally, UCB samples are red cell- and volume-

reduced prior to cryopreservation, in order to facilitate 

banking and minimize costs. Samples may be frozen using 

a variety of media, and can be stored in either cryovials or 

cryobags, generally in a limited number of frozen aliquots. 

The storage containers may also be overwrapped with a 

plastic protective sheath for protection from contact with 

the liquid nitrogen (LN
2
) itself, as well as a barrier to sample 

contamination.(24) Two of the most critical steps in the 

banking process are the cryopreservation and long-term LN
2
 

storage of the sample in such a fashion that the sample will 

be viable and usable decades into the future.(24)

 Finally, great concern was raised in the mid-1990s 
over potential cross-sample contamination during liquid-

phase LN
2
 storage, after the demonstration that pathogenic 

viruses and other microbial pathogens could survive long-

term direct contact with LN
2
 and could infect other samples 

stored in the same dewar.(25,26)

 While donor-speciic factors probably impact on the 
potency of a UCB unit (27), the collection, processing, 

distribution and infusion stages may also affect the potency 

of this stem cell product, whatever processing technology a 

laboratory chooses, the goal is to achieve maximal recovery 

of total nucleated cells (TNC), mononuclear cells (MNCs), 
CD34+ cells, CFU, progenitor cells and stem cells.(28) 
While the overall cellular recovery declines as a result of the 
freezing process, the overall potency may be preserved for 

more than 15 years if the UCB is maintained below -150°C.

(29)

 Currently the United States Food and Drug 
Administration (US FDA) recommends evaluation of 
potency through assessment of the following in vitro 

assays: TNC count, cell viability and CD34 analysis. TNC 
are measured using automated hematology analyzers, the 

CD34 assay is performed using low cytometry, and the 
CFU assay is accomplished using a methylcellulose-based 
media impregnated with cytokines.(28) There is increasing 

evidence that UCB unit potency should be assessed post-

cryopreservation because events associated with freezing 

and storage can affect subsequent cellular viability and 

overall UCB potency.(28)

 Although there are many beneits to using UCB for 
transplantation there is one major limitation: the TNC 
count and cell number recoverable from a single unit. This 

is affected by unit size, maternal factors such as number 

of previous pregnancies and age of mother (30), limited 

volumes available from each sample, but not least the 

processing method used. Together, these factors highlight 

the need to make processing as eficient as possible (31) 
to make UCBB a real option. Many methods are currently 
available. Techniques were varied; from density gradient 

separation, like Lymphoprep or Ficoll-Paque (32), rouleaux 
formation using Hetastarch (HES), a starch based method 

causing red cells to clump (33), plasma depletion; a simple 

volume reduction method which avoids the addition of any 

chemicals and simply removes the plasma (34), a novel 

closed separation kit, known as PrepaCyte-CB which offers 

rapid and speciic cell separation (35), and the only fully 
automated system, provided by Biosafe, known as the 

‘Sepax’ machine (36). PrepaCyte-CB and an automated 
centrifugal machine, Sepax gives the highest recovery of 

nucleated cells, an average of 78.8% (SD±21.36).(21)
 Fifteen to 24% of patients receiving UCBT do not 
engraft. One potential cause of engraftment failure is a loss 

of reconstituting HSC potency that may have occurred at 

some stage during UCB collection, processing, storage, 

shipment and infusion.(28) The National Marrow Donor 
Program (NMDP) Cord Blood Advisory Group can assist 
in the development of assays by providing resources in 

terms of UCB, expertise and access to a network for testing 

assays, once developed, in the ield.(28)

HSC transplantation is a curative approach for a variety of 

malignant and non-malignant diseases.(37-40) Mobilized 
PB, BM and UCB are the main sources of HSC. UCB from 
related and unrelated donors has emerged as a promising 

source of stem cells for a variety of hematological disorders 

and as a supportive therapy for malignant diseases.(41-44) In 

addition to its widespread availability, UCB contains HSCs 

and hematopoietic progenitor cells (HPCs) with higher 

immunological tolerance and higher proliferation ability 

than adult-derived BM (44), however, the low yield of HSCs 
and HPCs in UCB grafts limits their applications in clinics.

(45) For optimum engraftment, current transplantation 

UCBB
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requires at least 2,500,000 CD34+ cells per kilogram of 

patient body weight.(46) An optimally collected UCB 
donation generates approximately 10,000,000 CD34+ cells, 

which is just adequate for pediatric patients right now.(47)
 UCB HSCs have numerous phenotypic and functional 

characteristics that distinguish them from their adult 

counterparts.(48-52) UCB CD34+ cells are thought to be 

more primitive due to their extensive proliferative capacity, 

their increased ability to generate hematopoietic colonies in 

vitro, their capacity to produce erythroid cells, which contain 

fetal hemoglobins, and the ability of smaller numbers of such 

cells to reconstitute a myeloablated allogeneic recipient.

(48,53)

 While UCB represents a readily available source of 
HSC for transplantation, the low cell dose available in a UCB 

graft correlates with a signiicant delay in hematopoietic 
recovery and a higher risk of primary graft failure.(54,55) 

In order to provide higher absolute numbers of HSC for 

infusion, signiicant efforts have focused on developing 
clinically relevant ex vivo expansion methodologies, many 

of which require an initial enrichment of the progenitor 

population.(56-60)

 For over a decade, CD34 was the gold standard 
identiication selection marker for early HSPC. Recently, 
cells expressing CD133 antigen were considered to be a 
potent substitute for CD34+ cells. Phenotypic and functional 

studies revealed UCB CD133+ populations contain 

higher levels of early HSPC than UCB CD34+ harvested 

populations.(61,62) CD133 was initially considered a 
surface molecule expressed by more primitive HSC and 

endothelial precursor cells expressing vascular endothelial 

growth factor receptor (VEGF-R).(63) Advances in various 
ields have implicated CD133+ cells, which, apart from 

hematopoietic diseases, have also been involved as therapy 

for neurologic and myocardial diseases as well as in other 

research applications.(64) A subpopulation of CD34+ 

CD133+ cells has been described in UCB and identiied as 
more primitive than CD34+ cells (65).

 A number of devices and reagents are commercially 
available for enrichment of CD34+ or CD133+ populations; 

however, these devices must comply with current good 

manufacturing practices (cGMP) if they are to be used 
in the manufacturing process of cellular therapies.(66) 

The CliniMACS Cell Separation System from Miltenyi 
Biotec is currently the only cGMP-grade cell separation 
system available for immunomagnetic separation of CD34+ 

progenitor cells from blood products.(67) CD34+ enrichment 

from UCB units is used increasingly in clinical applications 

involving ex vivo expansion.(67)

UCB-SCs are capable of giving rise to hematopoietic, 

epithelial, endothelial and neural tissues both in vitro and in 

vivo. Thus, UCB-SCs are amenable to treat a wide variety of 

diseases including cardiovascular, ophthalmic, orthopaedic, 

neurological and endocrine diseases.(11) Autologous UCB-
SCs transfusion in children with T1DM is safe but has yet 
to demonstrate eficacy in preserving C-peptide. Larger 
randomized studies as well as 2 years post-infusion follow-

up of this cohort are needed to determine whether autologous 

UCB-based approaches can be used to slow the decline of 

endogenous insulin production in children with T1DM.(68)
 Peripheral arterial disease (PAD) is the most important 
manifestation of systemic atherosclerosis interesting 

lower extremities. The end stage of PAD is critical limb 
ischemia (CLI), whose peculiar symptom is rest pain 
refractory to analgesics lasting more than 2 weeks with or 

without ischemic lesions. The use of autologous stem and 

progenitor cells in cell therapy is limited by their rarity in 

adult PB. In addition, progenitor cells in PAD patients may 
be functionally altered (69). Conversely, UCB contains 

a higher number of progenitor cells, more functional and 

eficient than those in PB, able to induce the formation of 
stable vascular structures inside the ischemic tissues.(70)

 Several innovative therapies with human UCB-

SCs (hUCB-SCs) are currently developing to treat central 

nervous system (CNS) diseases. It has been shown that 

UCB contains multipotent lineage-negative (LinNEG) SCs 
capable of neuronal differentiation. Clinically useful UCB 

samples are stored in different biobanks worldwide, but 

the content and neurogenic properties of LinNEG cells are 
unknown. Jurga et al. showed that Sepax-processed blood 

units contained 10-fold higher number of LinNEG cells 
after cryopreservation in comparison to all other methods.

(71)

 Neonatal hypoxic ischemic (HI) encephalopathy 

due to perinatal asphyxia is an important cause of death 

in the neonatal period, in both developing and developed 

countries.(72) Among the surviving infants, up to 25% will 
have a permanent neurologic deicit in the form of cerebral 
palsy, epilepsy, learning disability, or mental retardation.

(73) Treatment is currently limited to supportive intensive 

care. Given the severity of the problem, it is necessary 

to ind new approaches that could reduce the neurologic 
sequelae of HI newborns (74).

 In the last few years, preclinical studies have shown 

that UCB-SCs injected systemically in the acute phase of 
animal models of stroke, have a therapeutic effect. These 

UCB-SCs for Non-Hematological Disorders
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cells can reduce the area of brain infarction (75) and the 

inlammation, and increase the regenerative capacity of the 
brain, improving behavioral recovery (76). The potential of 

UCB-SCs to reduce the neurologic deicits associated with 
neonatal hypoxia-ischemia was shown in rats in a study 

that assessed the functional beneits of these cells, using a 
walking-pattern analysis test. The UCB-SCs, when injected 
intraperitoneally 24 hours after the insult, migrated to areas 

of brain damage in large numbers, and alleviated the spastic 

paresis of the animals.(77) Thus, UCB-SCs transplantation 

might rescue striatal neurons from cell death after a neonatal 

HI injury resulting in better functional recovery.(74)
 Cerebral palsy (CP) is the most frequent neurological 

disorder associated with perinatal injury of the developing 
brain. Major brain lesions associated with CP are white 
matter damage (WMD) in preterm infants and cortico- 
subcortical lesions in term newborns. Cell therapy is 

considered promising for the repair of brain damage. The 

hUCB-MNCs are a rich source of various stem cells that 
could be of interest in repairing perinatal brain damage (78).

 Spinal cord injury (SCI) is often characterized by 
immediate and irreversible loss of sensory and motor 

function below the level of injury. Cell transplantation is a 
potential method for certain neurological diseases as well 

as a viable treatment for acute SCI.(79-83) The present 

results indicated CD34+ UCB-SCs accelerated function 

recovery after SCI by governing blood vessel formation 

and restoration. Also, early administration of CD34+ UCB-

SCs was able to increase tissue vitality and the blood vessel 

density, as well as improve behavioral deicits after SCI 
obviously.(84)

 Traumatic brain injury (TBI) is a major public 
health problem associated with death and permanent 

disability worldwide.(85) Both acute and chronic 

symptoms accompany TBI, with survivors suffering from 

progressive post-TBI pathological manifestations such as 

neuroinlammation coupled with behavioral dysfunctions 
including sensory motor deicits, learning and memory 
impairments and a range of neuropsychiatric symptoms 

including anxiety, depression and aggression.(86,87) 

At present, there is signiicant unmet need for clinically 
eficacious therapies for TBI.(88)
 A number of groups have focused on the potential 
of UCB-SCs as a graft source for various intractable 

neurological disorders (e.g., stroke, Parkinson’s disease and 
Huntington’s disease, among others).(89) Moreover, clinical 
trials have been performed to determine the eficacy of 
UCB-SCs in cerebral palsy, inborn metabolic disorders and 

stroke. (90) Combined therapy of UCB-SCs plus granulocyte  

colony stimulating factor (GCSF) synergistically dampened 

traumatic brain injury-induced neuroinlammation while 
signiicantly enhancing endogenous neurogenesis and 
reducing hippocampal cell loss.(91)

 UCB-SCs holds great potential as a source for cellular 

therapy. Mesenchymal stromal cells (MSC) and unrestricted 
somatic stem cells (USSC) found in UCB have been 

reported to differentiate in vivo into osteoblasts, adipocytes 

and neural progenitor cells (92). UCB-SCs cells have been 

used in high doses to delay symptom progression in a 

mouse model of amyotrophic lateral sclerosis (ALS) (93) 
and have been identiied within the central nervous system 
of a patient with Krabbe’s disease 10 months post-UCB-
SC transplant (94), suggesting the persistence of these cells 

as a possible contributor to cellular repair in patients with 

neurodegenerative diseases (95). UCB-MSC could restore 
behavioral functions and attenuate the histopathological 

deicits of experimental autoimmune encephalomyelitis 
mice over the long term (i.e., 50 days) by suppression of 

perivascular immune cell iniltrations and reduction in both 
demyelination and axonal injury in the spinal cord. These 
indings suggest that transplantation of UCB-MSCs may be 
a potential therapy.(96)

SC Researchers at the Steenblock Research Institute in 

San Clemente, California, have been following the cases 

of patients treated with UCB-SCs, as well as tabulating 

results from pilot studies performed abroad involving 

stem  cell therapy for speciic conditions such as cerebral 
palsy in children and MS in adults. The following are but 
a few of the many responses documented as of the date of 

publications.(97)

 A 65 years old man with progressive multiple sclerosis 
(MS) was treated with UCB-SCs in July 2003. Prior to this 
treatment, he could not swallow water normally. Within a 
week of receiving UCB-SCs, he was able to do so without 

a problem. He subsequently made noticeable gains in his 

ability to get around and could communicate more clearly.

(97)

 Ramirez hUCB-SCs therapy program in Mexico has 
treated more than forty children with cerebral palsy since 

March 2003. Eighty ive percent of these children have 
experienced signiicant improvements in motor skills 
and cognitive functions. In one case, a four years old boy 

was cortically blind (a lack of visual functioning despite 

structurally intact eyes), could not speak well, and could 

not get around well prior to therapy with UCB-SCs. Within 
seven months of therapy, however, he was able to track 

UCB-SCs Successes
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objects with his eyes, was beginning to speak, and could 
move around more ably.(97)

 Jordan Logan, a four years old girl, with a terminal 
genetically based neurological disease called metachromatic 

leukodystrophy (MLD) was treated with 1.5 million UCB-
SCs. MLD is caused partly by a genetic defect in which 
a gene critical to the production of an enzyme called 

arylsulfatase A (ARS-A) is missing or not functioning 
properly. This enzyme makes it possible for a person’s 
body to deal with toxic molecule that we all generate called 

sulfatides children and adults who do not produce ARS-A or 
very little experience declines in their neurological function 

that culminate in disability and death. Within two months 
of her UCB-SCs injection, however, she could track objects 
with her eyes and lift her arms and legs high in the air. 

Eventually, two of the three medications she was on were 

discontinued. Jordan’s story has appeared in numerous 
regional and national newspapers, and also has been the 

focus of TV coverage in Missisippi.(97)

Conclusion

In the last few years, pure UCB-SCs have been utilized 

by physicians to treat a multitude of intractable diseases 

such as progressive MS, ALS, macular degeneration, 
retinitis pigmentosa, stroke, diabetes, and various forms 

of heart disease. This body of patient responses indicates 

that UCB-SCs therapy does produce clinically signiicant 
improvements in many instances. While certainly no cure for 
all, UCB-SC therapy appears to be amassing a respectable 

track record in terms of both safety and clinical utility.

1. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas 
GW, Devergie A, et al. Hematopoietic reconstitution in a patient 

with Fanconi ‘s anemia by means of umbilical cord blood from an 
HLA-identical sibling. New Engl J Med 1989; 321: 1174-8.

2. Bone Marrow Donors Worldwide. Total number of cord blood units. 
Leiden, The Netherlands. Cited 2015 Jan 7. Available from: https://
www.bmdw.org/index.php?id=statistics_cordblood. 

3. Gluckman E. History of cord blood transplantation. Bone Marrow 
Transplant 2009; 44: 621-6.

4. Harris DT, Rogers I. Umbilical cord blood: a unique source of 
pluripotent stem cells for regenerative medicine. Curr Stem Cell 

Res Ther. 2007; 2: 301-9.

5. Harris DT, He X, Badowski M, Nichols JC. Regenerative medicine 
of the eye: a short review. In: Levicar N, Habib NA, Dimarakis 
I, Gordon MY, editors. Stem Cell Repair & Regeneration, Vol. 3. 
London: Imperial College Press; 2008. p.211-25.

6. Seaberg RM, van der Kooy D. Adult rodent neurogenic regions: the 
ventricular subependyma contains neural stem cells, but the dentate 

gyrus contains restricted progenitors. J Neurosci. 2002; 22: 1784-

References

93.

7. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes 
RR, et al. Retinal stem cells in the adult mammalian eye. Science 

2000; 287: 2032-6.

8. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, 
Wheeler MB, et al. Clonal identiication of multipotent precursors 
from adult mouse pancreas that generate neural and pancreatic 

lineages. Nat Biotechnol. 2004; 22: 1115-24.

9. Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A, 
Kaplan DR, et al. Isolation of multipotent adult stem cells from the 

dermis of mammalian skin. Nat Cell Biol. 2001; 3: 778-84.

10. Yoon BI, Choi YK, Kim DY. Differentiation processes of oval 
cells into hepatocytes: proposals based on morphological and 

phenotypical traits in carcinogen-treated hamster liver. Journal of 

Comparative Pathology 2004; 131: 1-9.

11. Harris DT. Non-haematological uses of cord blood stem cells. Br J 
Haematol. 2009; 147: 177-84.

12. Wagner J, Laughlin M, Petz L. Summary of the 7th Annual 
International Cord Blood Transplantation Symposium. Biol Blood 

Marrow Transplant. 2010; 16: 12–27.
13. Barker JN, Krepski TP, DeFor TE, Davies SM, Wagner JE, Weisdorf 

DJ. Searching for unrelated donor hematopoietic stem cells: 
availability and speed of umbilical cord blood versus bone marrow. 

Biol Blood Marrow Transplant. 2002; 8:257-60.
14. Chow R, Lin E, Tonai R, Bolanos R, Connor C, Mendoza A. Cell 

recovery comparison between plasma depletion/reduction- and red 
cell reduction-processing of umbilical cord blood. Cytotherapy. 

2011; 13: 1105-19.

15. Davey S, Armitage S, Rocha V, Garnier F, Brown J, Brown CJ, 
et al. The London Cord Blood Bank: analysis of banking and 
transplantation outcome. Br J Haematol. 2004; 125: 358-65

16. Fasouliotis SJ, Schenker JG. Human umbilical cord blood banking 
and transplantation: a state of the art. Eur J Obstet Gynecol Reprod 

Biol. 2000; 90: 13-25

17. Grewal SS, Barker JN, Davies SM, Wagner JE. Unrelated donor 
hematopoietic cell transplantation: marrow or umbilical cord 

blood? Blood. 2003; 101: 4233-44.
18. Kekarainen T, Mannelin S, Laine J, Jaatinen T. Optimization of 

immunomagnetic separation for cord blood-derived hematopoietic 

stem cells. BMC Cell Biol. 2006; 7: 30
19. Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman 

H, Cooper S, et al. Human umbilical cord blood: a clinically useful 

source of transplantable hematopoietic stem/progenitor cells. Int J 
Cell Cloning. 1990; 8 Suppl 1:76-89.

20. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy 
M, et al. Mesenchymal stem cells derived from CD133-positive 
cells in mobilized peripheral blood and cord blood: proliferation, 

Oct4 expression, and plasticity. Stem Cells. 2005; 23: 1105-12.

21. Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C. The 
Cord Blood Separation League Table: a Comparison of the Major 
Clinical Grade Harvesting Techniques for Cord Blood Stem Cells. 

Int J Stem Cells. 2010; 3: 32-45.

22. Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood 
S, et al. Transplantation of umbilical cord blood in babies with 

infantile Krabbe's disease. N Engl J Med. 2005; 352: 2069-81,
23. Slatter MA, Gennery AR. Umbilical cord stem cell transplantation for 

primary immunodeiciencies. Expert Opin Biol Ther. 2006; 6: 555-
65.

24. Harris DT. Optimizing cord blood sample cryopreservation. 
Cytotherapy. 2012; 14: 359-65.

25. Tedder RS, Zuckerman MA, Brink NS, Goldstone AH, Fielding 
A, Blair S, et al. Hepatitis B transmission from contaminated 

cryopreservation tank. Lancet. 1995; 346: 137-40.
26. Fountain D, Ralston M, Higins N, Gorlin JB, Uhl L, Wheeler C, 

et al. Liquid nitrogen freezers: a potential source of microbial 



 ͳʹͳ

UCB-SCs in Regenerative Medicine (Meiliana A, et al.)
Indones  Biomed J.  2014; 6(3): 115-22DOI: 10.18585/inabj.v6i3.25

contamination of hematopoietic stem cell components. Transfusion. 

1997; 37: 585-91.

27. Cairo MS, Wagner EL, Fraser J, Cohen G, van de Ven C, Carter SL, et 

al. Characterization of banked umbilical cord blood hematopoietic 

progenitor cells and lymphocyte subsets and correlation with 

ethnicity, birth weight, sex, and type of delivery: a Cord Blood 

Transplantation (COBLT) study report. Transfusion. 2005; 45: 856-
66.

28. Spellman S, Hurley CK, Brady C, Phillips-Johnson L, Chow R, 
Laughlin M, et al. Guidelines for the development and validation 
of new potency assays for the evaluation of umbilical cord blood. 

Cytotherapy 2011; 13: 848-55.

29. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, 
Bodine DM. High-eficiency recovery of functional hematopoietic 
progenitor and stem cells from human cord blood cryopreserved for 

15 years. Proc Natl Acad Sci USA. 2003; 100: 645–50.
30. McGuckin CP, Basford C, Hanger K, Habibollah S, Forraz N. Cord 

blood revelations: the importance of being a irst born girl, big, on 
time and to a young mother! Early Hum Dev. 2007;83: 733-41.

31. Rubinstein P, Dobrila L, Rosenield RE, Adamson JW, Migliaccio G, 
Migliaccio AR, et al. Processing and cryopreservation of placental/
umbilical cord blood for unrelated bone marrow reconstitution. 

Proc Natl Acad Sci USA 1995; 92: 10119-22.
32. Vannier JP, Monconduit M, Piguet H. Comparison between 2 density 

gradients for separation of CFU. Biomedicine 1980; 33: 236-9.
33. Solves P, Mirabet V, Planelles D, Blasco I, Perales A, Carbonell-

Uberos F, et al. Red blood cell depletion with a semiautomated 

system or hydroxyethyl starch sedimentation for routine cord blood 

banking: a comparative study. Transfusion. 2005; 45: 867-73.

34. Chow R, Nademanee A, Rosenthal J, Karanes C, Jaing TH, Graham 
ML, et al. Analysis of hematopoietic cell transplants using plasma-
depleted cord blood products that are not red blood cell reduced. 

Biol Blood Marrow Transplant. 2007; 13: 1346-57.
35. Ademokun JA, Chapman C, Dunn J, Lander D, Mair K, Proctor 

SJ, et al. Umbilical cord blood collection and separation for 

haematopoietic progenitor cell banking. Bone Marrow Transplant. 
1997; 19: 1023-8.

36. Lapierre V, Pellegrini N, Bardey I, Malugani C, Saas P, Garnache 
F, et al. Cord blood volume reduction using an automated system 

(Sepax) vs. a semi-automated system (Optipress II) and a manual 

method (hydroxyethyl starch sedimentation) for routine cord blood 

banking: a comparative study. Cytotherapy. 2007; 9: 165-9.

37. Rowe JM. Optimal management of adults with ALL. Br J Haematol. 
2009; 144: 468-83.

38. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic 
BJ, et al. Allogeneic stem cell transplantation for acute myeloid 
leukemia in irst complete remission: system- atic review and meta-
analysis of prospective clinical trials. J Am Med Assoc. 2009; 30: 
2349-61.

39. Bosticardo M, Marangoni F, Aiuti A, Villa A, Grazia Roncarolo M. 
Recent advances in understanding the pathophysiology of Wiskott–
Aldrich syndrome. Blood. 2009;113:6288-95.

40. Filipovich A. Hematopoietic cell transplantation for correction of 
primary immunodeiciencies. Bone Marrow Transplant. 2008; 
42(Suppl 1): S49-52.

41. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner 
JE, et al. Hematopoietic engraftment and survival in adult recipients 

of umbilical-cord blood from unrelated donors. N Engl J Med. 
2001; 344: 1815-22.

42. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, 
Migliaccio AR, et al. Outcomes among 562 recipients of placental-

blood transplants from unrelated donors. N Engl J Med. 1998; 339: 
1565-77.

43. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin 
EC, et al. Placental blood as a source of hematopoietic stem cells for 

transplantation into unrelated recipients. N Engl J Med. 1996; 335: 
157-66.

44. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, 
Pasquini R, et al. Outcome of cord-blood transplantation from 

related and unrelated donors. Eurocord Transplant Group and the 

European Blood and Marrow Transplantation Group. N Engl J Med. 
1997; 337: 373-81.

45. Paulin T. Importance of bone marrow cell dose in bone marrow 

transplantation. Clin Transplant. 1992; 6: 48-54.

46. Rocha V, Wagner JE Jr, Sobocinski KA, Klein JP, Zhang MJ, 
Horowitz MM, et al. Graft-versus-host disease in children who 

have received a cord-blood or bone marrow transplant from an 

HLA-identical sibling. Eurocord and International Bone Marrow 
Transplant Registry Working Committee on Alternative Donor and 
Stem Cell Sources. N Engl J Med. 2000; 342: 1846-54.

47. Zhang Y, Chai C, Jiang XS, Teoh SH, Leong KW. Co-culture of 
umbilical cord blood CD34+ cells with human mesenchymal stem 

cells. Tissue Eng. 2006; 12: 2161-70.

48. Cairo MS, Wagner JE. Placental and/or umbilical cord blood: an 
alternative source of hematopoietic stem cells for transplantation. 

Blood. 1997; 90: 4665-78.

49. Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human 
hematopoietic stem and progenitor cells. Blood. 2011; 117: 6083-

90.

50. Delaney C, Bollard CM, Shpall EJ. Cord blood graft engineering. 
Biol Blood Marrow Transplant. 2013; 19(1 suppl): S74-8.

51. Navarrete C, Contreras M. Cord blood banking: a historical 
perspective. Br J Haematol. 2009; 147: 236-45.

52. Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood 
transplantation: pros, cons and beyond. Blood Rev. 2009; 23: 199-

204.

53. Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R. 
Epigenetic reprogramming induces the expansion of cord blood 

stem cells. J Clin Invest. 2014; 124: 2378-95.

54. Brunstein CG, Gutman JA, Weisdorf DJ, Woolfrey AE, Defor TE, 
Gooley TA, et al. Allogeneic hematopoietic cell transplantation 
for hematologic malignancy: relative risks and beneits of double 
umbilical cord blood. Blood. 2010; 116: 4693-9.

55. Delaney C, Ratajczak MZ, Laughlin MJ. Strategies to enhance 
umbilical cord blood stem cell engraftment in adult patients. Expert 

Rev Hematol. 2010; 3: 273-83.

56. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, 
Bernstein ID. Notch-mediated expansion of human cord blood 
progenitor cells capable of rapid myeloid reconstitution. Nat Med. 
2010; 16: 232-6.

57. Gunetti M, Ferrero I, Rustichelli D, Berger M, Gammaitoni L, Timeus 
F, et al. Refreezing of cord blood hematopoietic stem cells for 

allogenic transplantation: in vitro and in vivo validation of a clinical 

phase I/II protocol in European and Italian Good Manufacturing 
Practice conditions. Exp Hematol. 2008; 36: 235-43.

58. Ko KH, Nordon R, O’Brien TA, Symonds G, Dolnikov A. Ex vivo 
expansion of haematopoietic stem cells to improve engraftment in 

stem cell transplantation. Methods Mol Biol. 2011; 761: 249-60.
59. Madlambayan GJ, Rogers I, Purpura KA, Ito C, Yu M, Kirouac D, et 

al. Clinically relevant expansion of hematopoietic stem cells with 

conserved function in a single-use, closed-system bioprocess. Biol 

Blood Marrow Transplant. 2006; 12: 1020-30.
60. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S, et 

al. Superior ex vivo cord blood expansion following co-culture 

with bone marrow-derived mesenchymal stem cells. Bone Marrow 
Transplant. 2006; 37: 359-66.

61. Pasino M, Lanza T, Marotta F, Scarso L, De Biasio P, Amato S, et 

al. Flow cytometric and functional characterization of AC133+ cells 

from human umbilical cord blood. Br J Haematol. 2000; 108: 793- 

800.



ͳʹʹ

The Indonesian Biomedical Journal, Vol.6, No.3, December 2014, p.115-22 Print ISSN: 2085-3297, Online ISSN: 2355-9179

62. Forraz N, Pettengell R, Deglesne PA, McGuckin CP. AC133+ 

umbilical cord blood progenitors demonstrate rapid self-renewal 

and low apoptosis. Br J Haematol. 2002; 119: 516-24.

63. Pelagiadis I, Relakis K, Kalmanti L, Dimitriou H. CD133 
immunomagnetic separation: effectiveness of the method for 

CD133(+) isolation from umbilical cord blood. Cytotherapy. 2012; 
14: 701-6.

64. Meregalli M, Farini A, Belicchi M,TorrenteY. CD133(+) cells isolated 
from various sources and their role in future clinical perspectives. 

Expert Opin Biol Ther. 2010; 10: 1521-8.

65. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia 
M. Isolation and characterization of human CD34(–) Lin(–) and 
CD34(+) Lin(–) hematopoietic stem cells using cell surface markers 
AC133 and CD7. Blood. 2000; 95: 2813-20.

66. U.S. Food and Drug Administration [homepage on the internet]. 
Silverspring: CFR - Code of Federal Regulations Title 21; 2014 
[updated 2015 Jan 8; cited 2015 Jan 9]. Available from: http://
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.
cfm?CFRPart=211.

67. Blake JM, Nicoud IB, Weber D, Voorhies H, Guthrie KA, Heimfeld 
S, et al. Improved immunomagnetic enrichment of CD34(+) cells 
from umbilical cord blood using the CliniMACS cell separation 
system. Cytotherapy. 2012; 14: 818-22.

68. Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, 
McGrail KM, et al. Autologous umbilical cord blood transfusion 
in young children with type 1 diabetes fails to preserve C-peptide. 

Diabetes Care. 2011; 34: 2567-9.
69. Morishita T, Uzui H, Nakano A, Mitsuke Y, Geshi T, Ueda T, et 

al. Number of endothelial progenitor cells in peripheral artery 

disease as a marker of severity and association with pentraxin-3, 

malondialdehyde-modiied low-density lipoprotein and membrane 
type-1 matrix metalloproteinase. J Atheroscler Thromb. 2012; 19: 
149-58.

70. Perotti C, Arici V, Cervio M, Del Fante C, Calliada F, Gnecchi M, et 

al. Allogeneic lethally irradiated cord blood mononuclear cells in 
no-option critical limb ischemia: a "box of rain". Stem Cells Dev. 
2013; 22: 2806-12.

71. Jurga M, Forraz N, Basford C, Atzeni G, Trevelyan AJ, Habibollah S, 
et al. Neurogenic properties and a clinical relevance of multipotent 

stem cells derived from cord blood samples stored in the biobanks. 

Stem Cells Dev. 2012; 21: 923-36.
72. Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths: When? 

Where? Why? Lancet. 2005; 365: 891-900.
73. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towighi 

J, et al. Rat model of perinatal hypoxic-ischemic brain damage. J 

Neurosci Res. 1999; 55: 158-63.

74. Pimentel-Coelho PM, Magalhaes ES, Lopes LM, deAzevedo LC, 
Santiago MF, Mendez-Otero R. Human Cord Blood Transplantation 
in a Neonatal Rat Model of Hypoxic–Ischemic Brain Damage: 
Functional Outcome Related to Neuroprotection in the Striatum. 
Stem Cell Dev. 2010; 19: 351-6.

75. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, 
Zigova T, et al. Infusion of human umbilical cord blood cells in 

a rat model of stroke dose-dependently rescues behavioral deicits 
and reduces infarct volume. Stroke. 2004; 35: 2390-5.

76. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. 

Intravenous administration of human umbilical cord blood reduces 

behavioral deicits after stroke in rats. Stroke. 2001; 32: 2682-8.
77. Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, 

Gantert M, et al. Spastic paresis after perinatal brain damage in rats 

is reduced by human cord blood mononuclear cells. Pediatr Res. 

2006; 59: 244-9.

78. Dalous J, Pansiot J, Pham H, Chatel P, Nadaraja C, D’Agostino ID. 
Use of Human Umbilical Cord Blood Mononuclear Cells to Prevent 

Perinatal Brain Injury: A Preclinical Study. Stem Cells Dev. 2013; 
22: 169-79.

79. Sobani ZA, Quadri SA, Enam SA. Stem cells for spinal cord 
regeneration: current status. Surg Neurol Int. 2010; 1: 93. doi: 

10.4103/2152-7806.74240.
80. Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli 

A. Recent therapeutic strategies for spinal cord injury treatment: 
possible role of stem cells. Neurosurg Rev. 2012; 35: 293-311.

81. Gurudutta GU, Satija NK, Singh VK, Verma YK, Gupta P, Tripathi 
RP. Stem cell therapy: a novel & futuristic treatment modality for 
disaster injuries. Indian J Med Res. 2012; 135: 15-25.

82. Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation 
strategies to promote plasticity following spinal cord injury. Exp 
Neurol. 2012; 235: 78-90.

83. Sandner B, Prang P, Rivera FJ, Aigner L, Blesch A, Weidner N. 
Neural stem cells for spinal cord repair. Cell Tissue Res. 2012; 349: 

349-62.

84. Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C, et al. Human umbilical 

cord blood stem cells for spinal cord injury: early transplantation 
results in better local angiogenesis. Regen Med. 2013; 8: 271-81.

85. Faul M, Xu L, Wald MM, Coronado VG. Traumatic Brain Injury in 
the United States: Emergency Department Visits, Hospitalizations 
and Deaths 2002-2006. Atlanta: Centers for Disease Control and 
Prevention, National Center for Injury Prevention and Control; 
2010.

86. Azouvi P, Vallat-Azouvi C, Belmont A. Cognitive deicits after 
traumatic coma. Prog Brain Res. 2009; 177: 89-110.

87. Wong D, Dahm J, Ponsford J. Factor structure of the depression 
anxiety stress scales in individuals with traumatic brain injury. 
Brain Inj. 2013; 27: 1377-82.

88. Kaneko Y, Tajiri N, Yu S, Hayashi T, Stahl CE, Bae E, et al. Nestin 

overexpression precedes caspase-3 upregulation in rats exposed to 

controlled cortical impact traumatic brain injury. Cell Med. 2012; 4: 
55-63.

89. Sanberg PR, Eve DJ, Metcalf Borlongan CV. Advantages and 
challenges of alternative sources of adult-derived stem cells for 

brain repair in stroke. Prog. Brain Res. 2012; 201: 99-117.

90. Ilic D, Miere C, Lazic E. Umbilical cord blood cells: clinical trials in 
non-hematological disorders. Br Med Bull. 2012; 102: 43-57.

91. de la pena I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. Umbilical 
cord blood cell and granulocyte-colony stimulating factor: 

combination therapy for traumatic brain injury. Regen Med. 2014; 
9: 409-12.

92. Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N, Willing 
AE, Gemma C, Bickford PC, et al. Human umbilical cord blood 

treatment in a mouse model of ALS: optimization of cell dose. PLoS 
ONE. 2008; 3: e2494. doi: 10.1371/journal.pone.0002494.

93. Kurtzberg J, Kosaras B, Stephens C, Snyder EY. Umbilical cord 
blood cells engraft and differentiate into neural tissue after human 

transplantation. Biol Blood Marrow Transplant. 2003; 9: 128.
94. Goldman SA, Schanz S, Windrem MS. Stem cell-based strategies for 

treating pediatric disorders of myelin. Hum Mol Genet. 2008; 17: 
R76–83. doi: http://dx.doi.org/10.1016/S1083-8791(03)80211-2.

95. Tracy ET, Zhang CY, Gentry T, Shoulars KV, Kurtzberg J. 
Isolation and expansion of oligodendrocyte progenitor cells from 

cryopreserved human umbilical cord blood. Cytotherapy 2011; 13: 

722-9.

96. Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, et al. Human 

Umbilical Cord Stem Cells Ameliorate Experimental Autoimmune 
Encephalomyelitis by Regulating Immunoinlammation and 
Remyelination. Stem Cells Dev. 2013; 22: 1053-62.

97. Steenblock D, Payne AG. Umbilical Cord Stem Cell Therapy: The 
Gift of Healing from Healthy Newborns. Chapter 2. Basic Health 

Publication; 2006.


