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Abstract
In this paper, we consider methods for hyperspkgtrage processing, required in systems

of image formation, storage, and transmissi
sion and protection. A modification of the di
chical grid interpolation is proposed. Metho

on dntka at solving problems of data compres-
gitalage compression method based on a hierar-
ds ofie (on the basis of digital watermarking)

and passive (on the basis of artificial image digta detection) data protection against unau-
thorized dissemination are developed and invegtat
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Introduction

Hyperspectral Earth remote sensing (ERS) systg
[1-3] are a natural evolution of means for obtainiigj-d
tal images of the Earth surface. An increase imtimaber
of spectral channels of optical sensors from séveris
to hundreds opens up prospects for a qualitatinely
knowledge of the surface, and allows to solve aolot
new applied problems [411] of geology, wildlife man-
agement, ecology, etc. At the same time, hypersge
remote sensing data hyperspectral images (HSIyese
specific "three-dimensional” informational objeotghich
require the development of special methods of thiir
duction, transmission, processing, and storage.

Firstly, the extremely large amount of hyperspd
tral data entails extremely high demands for theaca
ity of storage devices and communication channg
Under such conditions, it is necessary to use daia-
pression [12-18].

Secondly, by analyzing remote sensing data, d¢
sions at the municipal, regional and national Is\ale
made. Due to the widespread use of such data (n
ticular, HSI), the task of potential falsificatia@®tection,
and protection against unauthorized data disseimat
becomes more urgent (as a way to reduce the risk
making such decisions).

Obviously, the compression procedures, generat
complex structured data sets, can be considered
means to cryptographic protection of HSI. Howevq
such protection stops after decompression, i.& ib-
sufficient against many threats associated withuun
thorized copying, distribution, or data modificatio
Consequently, we need special protection methd
which are separate from compression. Today, thexe
[19] two basic approaches to digital image (andhote
sensing data, in particular) protection and aifidis-
tortion detection: active and passive. The bakiment

ed by the Russian Science Foumdatgrant

distortion is the use of digital watermarks, whiale

\rRmbedded into image. Unlike active, the passive ap-
proach does not use watermarks, and is based aasthe
sumption that modification traces can be deteciedsh
ing image computer analysis. The simultaneous tise o
two approaches can provide reliable data protection
against unauthorized copying, modification and eliss
ination, and ultimately enhance the informationusig

t of systems related to the production, storage, gssiag
and analysis of visual information.

It should be noted that in real systems for pradact
and processing of remote sensing data, the taskernf
pression and image protection are usually solveulilta-

cheously, and in many cases they are close in tefrirs
formation technology. That is why we consider theitin-
,|dn one article.

1. Remote Sensing Data Compression

hej- Studies in the area of hyperspectral remote sensing
data compression are conducted by many researchers
pe{ZO—ZZ]- The Multispectral and Hyperspectral Data
Compression (MHDC) working group [23] of the Con-
sultative Committee CCSDS [24] should be noted sepa
s fately. This working group has developed the CCSDS-
123.0-B-1 standard [20], which is based on the Itzss-
inFss compression algorithm, and intended for ordoar
hslossless coding of multi- and hyperspectral imagery
or, However, these algorithms do not meet all the re-
quirements [18-11] for hyperspectral remote sensing da-
h ta compression method. In particular, these papensot

consider a comprehensive approach to compression,
dgvhich takes into account the speed stabilizatiocash-
apressed data formation, and protection againsir&slin

the communication channel .

According to requirements [Hl1], a method based
on a hierarchical grid [2528] interpolation (HGI) was

of active approach to the detection of artificialaige

chosen for hyperspectral image compression.
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HGI method is based on non-redundant hierarch
representation of the original imaye={x(m, n)} as a un-
ion of a hierarchical (scale) levets:

x=gx|, X, ={x,(mn}, (1)
X={x (mah{ x.(mi}, k=1, ()

where L — isthe number of hierarchical levels (HL
{x(m,n)} —is a set of image counts, obtained by taki
2' step for each coordinate.

During the compression levels are processed sagllen
from the senior leveK..1, and besides less detailed le
counts are used for more detailed level countpotation.
Interpolation error (post interpolation residuassare quan-
tized for each level, compressed by entropy enceder

cal 1.1. General Description of The On-Board Video Pro-

cessing Method
Compression method based on HGI meets the-[27
28] compression ratio, quality control and algarith
complexity requirements to the onboard video preices
methods. However, the method needs the further im-
provement to provide not only data compression lerab
, solution, but also constant speed of the compreda&al
NQoutput stream generation and high noise immunity of
output data.
The general scheme of the proposed on-board video
el[29] processing method is given in Fig. 1. Threpasate
blocks of the scheme describe the solution forptab-
lems of compression, output data speed stabilizatiod
protection of encoded information against commuigca

placed in an archive or a communication channel.

channel failures.

Stabilization T
Allowable data % %
»| Estimatione I“ volume < Buffer 85
A evaluation =
)
Differential \ ;
Image ) s? ﬁa}a Quanti-|_ | Entropy| |  (Compresse 5
gnai zation [ |encoding? "\ data g
computatio =
A v S
| Dequantization| Syndrome E
. features > 3
Recopitructe +| Interpolation | | Reconstruction| computation 55;
4 HGI-compression Raster
features
computation
\_/
Protection
against failures

Fig. 1. A general scheme of onboard compressiontgperspectral remote sensing data protection

1.2. Speed Stabilization of Compressed Data Strear

A remote sensing system image is formed as a |
fixed-width band. The image is divided into sub-than
(or blocks) which are compressed independentlyerAf
each compressed block is placed into the buffer ongm
data can be transferred over a constant bandwiltit g
munication channel. To obtain the output streameggen
tion speed, which is close to constant, we needeter-

is the number of rows in a block) can be performt
various control parameters, which leads to outjuatity
bniggdicator (compression ratio and reconstructioo@rde-
viation from the requirements. Thus, the encodexthl
t buffering should simultaneously eliminate the erftac-
tuations and provide speed stabilization of traitamgi
the encoded data to the communication channel.
We built a mathematical model, describing a disgcret
time process of buffering the video, processed kblog

=]

mine the control parameter of compression for eachlock. Let the buffer memory has a capacityMef bit,

block. For HGI-method we use maximum compress
error as a control parameter

e =maxx’(m,n)-3(m r)| :

mn,s

®3)

where x5(m,n), X°(m n are thes spectral componen

counts of original and decompressed images respécti
Let the encoded image be an infinite vertical bahd

width equal toM counts. Such image format makes it ¢

pedient to implement a block-based compression. -H

orand it isV(K—1) bit full to the time the processing of the
K™ block begins. Leb? is a count width of uncompressed
image (bit/count). During a time slice an imagecklof
size AV=ZMKP bit is generated at a constant speed and
encoded with a predefined maximum ere¢K), which
provides the practicable compression of bloBKK)
(bit/count). At the same timBoAV/ kP bits of information
are transmitted to a communication channel, wiigris

x-a compression ratio, corresponding to communication

pwchannel bandwidth. By the next time slice the redat
buffer occupancy rate will be:

ever encoding of different blocks of siZexM counts Z
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B(K)AV BAV
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b’ o}

=V(K-1)+(B(K)-B)/ k1,
wherek,=Vo/AV is a buffer parameter (the ratio of buf
er capacity to the block capacity before compregsio

The main problem is to determine the erg(if) dur-
ing the compression of each control parameter bidhk
predefined error should provide such a degree af-c
pression which can prevent buffer overﬂ(ﬂv( K) <1.

(4)

Next we consider two approaches to determisihQ.

Algorithm |. At each step the error is adjusted depe
ing on buffer occupancy rate by the time #@ block
processing begins, e.qg.

g(K)=e(K-1)+[(V(K-2)-V,)a], (5)

where 0<\7p <1 is a threshold, exceeding of which i

creases the error and reduces the compressionaasia
parameter adjusted experimentally.

Algorithm Il. A predefined maximum error oK™
block compression is determined by calculationnodge
block statistical characteristics (e.g. a disperfigand a
correlation coefficientp) and the required compressia

ratio B(K) :

e(K)=f(D,.p,B(K)) , ®)
where determiningB(K) is based on the availability o
free memory in the buffer:

B(K)=8,+(V, - V( K-1)) B(k/kK), @)

V, =1 is a threshold, providing a "safety margin” foe ti

buffer occupancyks=1 is a stabilization coefficient
providing a more smooth change of all parametersnw
encoding the image block by block.

Below we propose a specific method for calculati
the maximum erroemax via the required compressio
ratio B, based on the assumption of an isotropic {
ponential model of autocorrelation function of aput
signal.

Assuming that entropy encoding method is quite
fective, we use valud-Alq, which is an entropy of the

guantized differential signal, predicted on theibax
image correlation coefficiert, image dispersiorDy
and erroremax, as a compression ratio estimatid.
Relying on the ratio of the number of counts 2} at
separate hierarchical levels (HL), we can get thle f
lowing expression:

jm ,

~ ~ R ~
H, =(H(R) +3) 4t

r=1
where H® is a predicted value of the quantized differd
tial signal entropy at the" HL. According to the defini-

HO = z P’ (log(py’ () -

where p" (i) is a probability of thé" quantization level of

differential signalN, is the number of quantization levels.
In accordance with the recommendations [29] we as-
- sume that the probability distribution of unquaetizdif-
ferential signal at each HL is exponential. Therefas-
ing the quantizer with a uniform scale we can deiee
the probability of thé™ quantization level of differential
b signal as follows:

102€ g 1)+ € a ,
i (i) = (1-p)/(1+n)) 0",
d- K=i[02€mat1)~ € nax

wherep, is a parameter of the above-mentioned expo-
nential distribution, related to dispersidf) of differen-

tial signal at the™ HL as follows:

n

b, :(ZED“) +1-+/2D" +1) Do

Besides, we can prove that:
D" =a 2 In(Yp) D, +a,e

wherea,, a; are coefficients determined via the prediction
scheme.

Thus, we obtain the relatiot, =H,(p,D,.€,.,) .

which can be pre-tabulated. During encoding thei-min
mum valueemax Which satisfies the condition:

Hq (P, Dy € ) < B,

is used as a required error value.
Thus, the proposed scheme of stabilization by eefin
ing the compression algorithm control parameteueal
(the maximum errorg(K) during theK" time slice re-
quires:
- calculation of statistical characteristibg(K), p(K)
h for theK™ image block;
- determination of a required compression

9 B(K) according to (7);
X

2
max?

n

(8)

max

f

ratio

- selection (from the table) &fK) value, which satis-
FXfies the condition (8).

To investigate the considered algorithms we conduct
ed a simulation of image compression process \pided
Flstabilization of output encoded video stream using
large-format aerospace image of the Earth's surfane
example of such an image (of size 10812 counts),
reflecting the dynamics of change in image locdbrin
mation content along a survey route is shown in Eig
Measured by blocks of size 3%12, statistical character-

istics pand o =,/D, are shown in Fig. 3.

X
In order to find the optimal speed stabilizatiogosithm
for image compression we conducted an experimeetal
search on the above-mentioned methods of generating-
trol parameter (maximum reconstruction error) foccen-
n-pression algorithm. During the study we controtieel buff-
er memory occupancy according to a mathematicalemod

tion of entropy:

(4). We used an average (over blocks) maximum stagrn
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tion error EE(K)} as a quality criteria. All experiments wer|
performed for the most typical required compressaiios:
Bo= 1 bit/count, 2 bit/count.

Algorithm 1. Of particular interest is the control param
ter generation depending on the relative buffelupaocy
according to (5). The experimental research (byingrthe
coefficient within 2,5a<20, and buffer parametég=2,

b is adaptively adjustable depending on the buffatestin
general, this method can be characterized as iicisutfy
stable one. The main reason, why the method cédnencic-

b-ommended for actual use, is the pulsing charadteteo

pendencesV (K) , &(K) (see Fig. 4), which can lead to un-
acceptable quality of output video, rapidly andeagpdly

\7p =0,5) showed that, although the compression param

Fi. 2. Test ig' 'rve Route" for prs stabilizatio algo hms

changing along one survey route.
bter

o &
80 740.9
40 0.7

O

0 ~05

0 40 80 120 160 200 240 K

Fig. 3. The statistical characteristics of the tesage "Survey Route"

\Y — 3
0.8 Vv £ 20
0.4 10

0 — 0
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Fig 4. The results of simulation of the stabilipatalgorithm | (B= 2, a= 10) for "Survey Route" image
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Fig. 5. The results of simulation of the stabiliaatalgorithm Il (B = 1) for "Survey Route" image

Algorithm 1l. The most applicable method of pred
fined error generation appears to be based onnteded
block statistical characteristic analysis.

The dependence parameters (6) calculated for yeal
perspectral images are shown in paper [30]:

(t)=-96,4+ 7,7D(t) " +
+75,14(t)"" - 3,6B(t) *°

Thus, the standard deviation of the calculated evg
emaft) from the predefined valué,,, (t) was 0.66 for

€

max

am

In general, the results of speed stabilization oeth
simulation show sufficiently high effectiveness asb-
tainability. When simulating according to formulé®),
h(7), attention should be paid to stabilization ¢icefnt ks,
which allows to mitigate the effects of passing hinghly
informative image regions and get better qualityiéa-
tors (see Fig. 5,3). The effect of buffer parametky (for
Z=33 and optimaks) and the number of rows in a block
Z (for k,=1) on the reconstruction quality is shown in
Fig. T, 7c. An increase in the value, corresponding to
an increase in the memory size, results in betbafity

lu

each block, which demonstrates the high approxonali (see Fig. B). However, to increase the size of the encod-

accuracy. A histogram of error deviation distributi
Ne =8 . (t)-€,.(t), demonstrating that in 98% of

cases the error deviation £&£]< 1, is shown in Fig. 6.
The deviation of the resulting compression r&{t)

from the required oneB(t) was also evaluated in [30]

The standard deviation was 0.28 bit/count. It heenbal-
so showed, that, in 95.1% of cases the compresatan

ed blocks, it is more appropriate to use the menaory
hancement, if it is possible (see Fig).7

The results of computational experiments do not
make the final recommendations on the selection of
specific stabilization method parameter values,abee
we conduct the experiments only under the following
conditions:

- precisely specifying the limitations due to teickah

deviation was/\B|< 0.2 bit/count.

resources;
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Fig. 6. A histogram of error deviation distribution
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Fig. 7. Influence of stabilization parameters onoer
- solving the time-consuming optimization problem
a multidimensional parameter spa(jg, K, Z,T/,,) using

a large set of real plots.

However, the experimental results, outlined abave,
low us to compare different stabilization algorithiand
outline the ways to achieve the best quality inidicsa

Thus, the results of the conducted simulation shg
that for a sufficiently precise prediction of erra(K),
which provides a required compression ratio in ¢he

rent block and a stable speed of compressed video |f

mation, we cannot rely only on the current statehef

buffer and the compression parameter values, us#tki
previous steps. So the statistical properties ofnzage

block, encoded at this moment, should be considé@aed

ly in this case the data compression algorithm élleas-
ily adapt to even the most adverse (in terms ofifda

compression ratio under acceptable quality) sibmat
along a survey route without exceeding the limtagi

imposed by the technical resources.

the transmitted data from communication channesenoi
the noiseless coding algorithm is used.

Since these algorithms are implemented in different
subsystems of digital image generation and trarsaoms
systems, the algorithm development is usually edrin-
dependently, without consideration of mutual spesif
On the one hand, when choosing a compression algo-
rithm we do not take into account the failure tatere of
the compressed data. On the other hand, all ofriba/n
noiseless coding algorithms (NCA) are versatilenwi-
spect to the original data, and such algorithms@touse
the limitations on possible combination set of twan-
pressed data array of known length. Besides, waalo
consider the probabilistic nature of uncorrectelifa ef-
fects, which can lead to both minor distortionsle€om-
pressed data (compared with distortions, introduicgd
compressing), and to significant distortions, umttotal
loss of a picture.

This section examines a comprehensive approach to
selection of compression and noiseless coding idfgos
for implementation in systems of digital image gatien
and transmission. Here we assume the following ode
of formation and transformation of the information,
transmitted to the communication channel. Suppbae t
an image is formed by the progressive scanninggéma
rows are combined into frames of sikExM pixels.
Frames are compressed independently with a predeter
mined compression ratiB.. Next, the compressed infor-
mation is divided into blocks of lengtk bit, each of
which is transformed by NCA (the block size incesato
sizen>Kk) and transmitted to the communication channel.
We assume that, when transferring data, failunege(i
sions) occur independently, and we know the prditabi
po of one bit failure.

Let S be an event, consisting in appearance fail-
ures in array of compressed data. By consideriflg on

{S}._, events while simulation, it is possible to build a

distribution histogram of the output quality indicaand
Wobtain estimates of conditional probabilitR& < Qr / S)
that the quality (errorfQ of the decompressed image is
limited by the value).
Finally, the quality of output image is estimatesing
a cumulative histogram

F(er):gP(Qs Q/S)KS.

When comparing different algorithms it is more camv
ient to use integral estimates of probability. A&pecifying
the threshold valugd:, Q., we introduce the following clas-
sification of the image distortion: "undistortedQ=%0),
"slightly distorted” (G<Q<Q), "considerably distorted"

1.3. Compressed Data Noise Immunity Enhancement (Q,<Q<Q,), "unusable" Q> Q). LetQq, Q1, Qz, Qs be the

In systems of digital image generation and transni
sion over communication channels the most impoiitant|
formation transformation algorithms are as followsst,
to reduce the amount of information, transmitteéroa

communication channel with limited bandwidth, a eo

jsevents, consisting in image assignment to oneeotlglsses
listed above, respectively.
In [31] a method of improving the noise immunity of
compressed images is proposed. According to thik-me
od the information is divided into two parts: rastefor-

pression algorithm is used. Secondly, in orderrtget | mation and service information, including an image
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header, algorithm parameters, etc. The share wfcsel
information in a frame is less thar?d, but it has a spe
cial value for the image recovery — its impairmaimost

always results in image loss. Therefore, to prothet

service information we should use effective NCAg(e.
Bose—Chaudhuri-Hocquenghem (BCH) code, Ref
Solomon code) [32], which provides the requiredad
transmission reliability.

When the service information recovery is guarante
the protection requirements of raster data caredaced
on the condition, that the distortions, occurrechassult
of unfixed failures, are insignificant, comparedhwiis-
tortions, introduced by compression. Thus, the eless
code redundancy will be reduced, the compressitia r
Bc will be improved, and, finally, the quality of tloeitput
image will be increased.

A hierarchical structure of compressed data pravi
additional opportunities to enhance the noise imtgun
Thus, according to the proposed HGI-method, cg
pressed data are formed consecutively by imagerhig
chical levels, starting with the compression df!2

thinned image (wherk is a number of hierarchical lev}

els). Since, when moving to the next level, the am@f
data increases approximately 4 times, the prolbplol
failures at the next level also increases. Howegeen
when it is impossible to fix failures at a low I&viae im-
age is not lost completely, it can be obtainedrigrpo-
lating the reconstructed senior levels.

In our research we examined three digital image-cq
pression methods — JPEG; compression, based orewa|

transform, and HGI-method, modified to increase the

noise immunity of compressed data. The HGI-metH
modification consists in introducing control feasrin

service information at each hierarchical level tgadea-

tures computation in Fig. 1), and in distinguishiagd

encoding the service information, using BCH-coden{s
drome features computation in Fig. 1).

The control features calculation while image deco
pression and comparing them with true values alltwg
detect and fixS;, S-type failures. Fig. 8 shows the dd
pendence of the image hierarchical level loss priiba
on the one bit failure probability (f.NM =215 bit). The
probability of the errorless transmission of théirenim-
age is Pisd0). It is easy to see that the probability
senior level loss is negligible.

=0
P\oss(l) F
0.002
0.001 ‘/,I:l
0 = |=2
-7 -6.5 -6 -5.E -5 lgp,

Fig. 8. Estimation of image hierarchical level Igg®bability
for HGI-method

The results of the research are presented in Fit0 9
and demonstrate the impact of failures on the intzage-

noted that we didn't use noiseless coding (excepice
information encoding in HGI-method). To compare the
noise immunity of compressed data, the cumulatige h
tograms of quality indicator (standard deviat&gng and
the dependence of probability, that decompressedjém
2dbelongs to classeQo and Qs, on failure probabilitypo,

Bt are given.

F(& s
L (Ensd

0.6
2l
0.2 8mS(
e 0 10 100 1000
HGI e JPEG Wavelet

Fig. 9. Cumulative histograms of quality indicator
(standard deviation)

m_

-

P(Q)

0.5

-8
) HGI JPEG —— Wavelet
P(Q,)
Ve
od 45
0 8 7 -6 -5 |gpo

b) HGI e JPEG Wavelet

- Fig. 10. Dependence of output data quality estiomati

on the probability of single bit failure:
a) classQo; b) classQs;

The results demonstrate that HGI-method has afsigni
icantly superior noise immunity. Thus, with a prbiigy
of 0.986, the effects of HGI-method data compreassio
Df failures will be completely eliminated (fpe=107), and,
with a probability of 0.997, reconstruction erroillwot
exceed 1, which corresponds to the clagsStudies have
shown, that the failure effect on the reconstrudteage
quality can be neglected over the entire rqmgel0>.

For the known methods, like JPEG and method, based
on wavelet transform, the problem of compressea@ dat
noise immunity is very urgent. With a probability at
least 0.5, the quality of reconstructed images adgll be
satisfactory, which corresponds to clas®esandQs. To
protect images, compressed by these methods, theto
level of HGI-method, it is necessary to introduceea
dundancy of at least 28 by using noiseless coding.
However, if the communication channel bandwidth is
fixed, the use of NCA requires the higher compiassi

pression for different compression methods. It &hde
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which inevitably entails the deterioration of outplata
quality.

Thus, we propose a comprehensive approach to
lecting algorithms of compression and noiselessngpd
for transmitting the compressed images over a comym
cation channel. The effectiveness of such an appraa
particularly significant when used for HGI-methoadnt-
pression, which allows to evaluate and considerahly
prove the performance of systems of digital imageey-
ation and transmission over communication chanthels
ing the design stage.

1.4. Compression During Storage
of Hyperspectral Images

Analysis of hyperspectral image features {2B]
made the HGI-method a reasonable solution for hyy
spectral image storage problem. A direction, cotetkd
with consideration of correlation between composegr
which is extremely high for hyperspectral imagessw
chosen as basic direction of method improvemerg
Fig. 11).

Py

0.9

\V

0.7

05

03

0-1 T T T

0 50 100 150 200
Fig. 11. Estimation of correlation coefficiept
between neighboring components (components nunayet s
number 1) depending on the number of component s
for "Low Altitude" image made by spectrometer ABIRI

"Sliding Component Approximation®”. The relation
ship between spectral components is used due tona
ponent prediction [1811]. Actually, the prediction is
proposed to be implemented as component approxi
tion, based on other components, which have alre
passed compression and recovery. A high correldt@n
tween components should provide a good predict®mn
curacy, and compression of the difference betwéen
original and the predicted spectral componentgabtof
compressing the original spectral component, sheigd
nificantly increase the compression ratio. The faroe-
scription of the algorithm is given below.

Let {X50<s<S be anScomponent hyperspectral im
age, consisting of two-dimensional spectral corepts—
one-component imagex®. These components are con
pressed successively, from smaller numbers toegrdatir-
ing the compression of each componénive first compute
its predicted (approximating) value:

~ N-1 —s—
X*=%"k X
i=0

<

' 0<s< S,

where X ,i=0 are the previous components, whig

number of previous reconstructed spectral compsnen
used for the approximation (an algorithm parameter)
sgki, 0<i<N} are the approximation coefficients, which
are the solution of system of linear equationspetiag

U to Ordinary Least Squares:

Rk =B,

wherek ={ki, 0<i <N} is a required vector of the approx-
imation coefficientsR={R;,0<i,j<N} is a the correla-
tion coefficient matrix for the decompressed congris

X" " and X", B={B,0<i<N}isa correlation coef-
ficient vector for the currently predicted compongfand

the decompressed componeﬁ? '1.

Actually, using HGI-method, we compress (with a
epredefined maximum error) not the componiit but
the difference betweeX® and the predicted (approximat-
ting) componentX®.

Thus, a set of support components for each cuyrentl

S®redicted component is represented by a "sliding- wi

dow", located in a spectral plane. That is why ¢ben-
pression algorithm described above is called "#lgor
based on sliding component approximation”.

"Independent Portions of Components". The compres-
sion algorithm based on "sliding component apprexim
tion" described in the previous section is notahli for
solving the problem of hyperspectral image stordde
reason is that for decompression of an arbitragcsapl
component we have to decompress all previous compo-
nents (there can be hundreds of them), which erials
drawback for the organization of quick access toattle
hyperspectral images.

Naturally, when storing hyperspectral images iradat
base, we would like the decompression of an aritra
spectral component to entail the decompressionhef t
smallest possible number of components (probably un

- necessary). To provide this opportunity an apprpach

' based on component approximation within "indepetden

portions of components” [1011], is used.

ma- During compression a set of spectral componerds is

adyided into independent "spectral portions!' §omponents
each, see Fig. 12), and within each portion the/almoen-

ationed algorithm of "sliding" component approxinaatiis

t used. Thus, to decompress an arbitrary componertove
not need to decompress all previous componentsedf-
age, we only need to decompress previous componénts
the corresponding spectral portion.

Portion Nel of compone

Portion NeO of compone

Hyperspectral image

Fig. 12. Component approximation algorithm based on
"independent portions of components"<M)
"Shared Support Components". The compression ratio
hof the algorithm based on "independent portionsash-

have already passed the compression and recdVésya

ponents" will inevitably be smaller, than the coegsion
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ratio of the algorithm based on "sliding componapt

proximation”. The reason is that, to approximatehe
spectral component, the "independent portions"rityo

uses (on average) much less basic components.oshe
appear to be especially great during compressiotihef
first component of each portion, since these coraptm
are not approximated. To reduce the effects destri
above, an approximation algorithm [2Q1] based on
"shared support components" is used (see Fig. 13).

o

Common reference components

v

’J’E

Portion Nel
of component

> 3]

g

Portion NeO
of component

D

Hyperspectral image

Fig. 13. Component approximation algorithm
based on "shared support components (3 C= 1)

With a stepN the "shared support" spectral compone
are selected from the image. An integer paranisralso
specified. The shared support components are cesgute
by the algorithm based on "sliding component agprex
tion". To approximate each "shared support compdne
(N+C-2) previous support components, which have
ready passed the compression, are used.

Next, after compressing "shared support comj
nents", the portions of components, located betw
"shared support" ones, are independently compre3sed
compress these portions an approximation compies
algorithm, similar to the one based on "sliding poment
approximation" is used. Components of each porimn

compressed successively, with the use of approxmal

based on the components, which have already paisse
compression. These approximating components are
previous components of the same portion, supplesde
by the nearest "shared support components” in sud
way that the total number of approximation compadsie
is equal to l+C-2). Thus, the parametéris equal to
the minimum number of "shared support componen
used to approximate the "rest" of the components.

We can expect that the algorithm based on "shaned
port components” will have a better compressioo,rétan
the algorithm based on "independent portions of pBm
nents". The price to pay is a speed reductiongsiocthe
decompression of an arbitrary component, we hawdeto
compress not only the previous components of time §sor-
tion, but also the required "shared support compisfie

To evaluate the compression effectiveness of p
posed algorithms, we constructed the dependentleeo
compression ratio on the mean squameximum error
(see Fig. 14) for real 16-bit images made by hyp,
spectrometers SpecTIR [33] and AVIRIS [34].

The results obtained allow to draw the followingi€g
clusions:

|

Common reference
K A|—&—components -7
- - Moving . R 4
8 approximation —
7

Independent
—5— oorlt%)nsOI X
ndependen
+com80nents

(=)

C f 5 Smax
ommon referenge
KA|—&—components e
_ _Moving | -~
8+~ “® ~ approximation =

Independent
—8— oorlﬁgnsd t
ndependen
+com80nents

T T T >

2 4 6 8 &

Fig. 14. Average for the five SpecTIR images

compression ratio K depending on the maximum esrax
and on the mean square errexr

(L=5,N=7, C=4, \bx Hp= 112x 614)

DO-
Een

Lio @) All algorithms demonstrate sufficiently high com
pression ratio, and can be recommended for usgparh
spectral image storage systems.

b) The use of any approximation of components al-
4 lows to significantly improve the compression ratig-
tfgoximation algorithms can be recommended for use.

Lt  C) Algorithms in a descending order of the compres-
h Sion ratio: "Shared Support Components”, "Slidirgn

, ponent Approximation”, "Independent Portions of Gom
ponents”, "Independent Component Processing”. Algo-
«ithm should be selected on the basis of allowédde of
decompression rate.

d) Benefit from the use of component approximation
grows with the increase in compression ratio.

e) For zero and minor errors "Sliding Component Ap-
proximation" and "Shared Support Components" algo-
rithms demonstrate the best results. Since thesdtseare
about the same, but "Shared Support Components* alg
rithm allows to reduce the access time, it is nprefera-
rdgole from these two algorithms (for minor errors).

2. Active HSI-Data Protection Methods
based on Digital Watermarking
To solve problems in research and development of
methods and algorithms for «active» HSI protectioew
algorithms for digital watermark detection, extrast and

S

er-

embedding into large-format digital multichannet! amy-
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perspectral remote sensing images, were proposddila

noise-like watermark image is generated. Such image

so the robustness of these algorithms against thst m does not depend on the carrier image, and it isigob

common types of attacks and distortions was inyatd.

2.1. HSI Protection against
Unauthorized Copying and Dissemination
using Robust High Capacity Digital Watermarks

To solve the problem of data protection againstuun
thorized copying, «robust» watermarks were develop

Such watermarks preserve embedded data while perfor

ing typical data manipulaions: compression, filigri
cropping, radiometric and geometric correction.

The analysis of existing robust watermarking 3
proaches presented in [381] showed, that most o
these approaches, and specific algorithms, redode-
pendent embedding of separate fragments of a watkrn
(an image or a bit vector) in each spectral chanhély-
perspectral image; current approaches also doamstiat-
er specificity of hyperspectral data (in particularcorre-
lation of close spectral layers). An exception imethod
described in a number of papers ([39, 40, 42, 481
based on the use of Karhunen-Loeve transform [d3]
principal component analysis [39, 40], for hypecips
data preprocessing before embedding or extracting g
bust watermark. The advantage of this approaclhés
ability to «disperse» the watermark image acrasre
ent "layers" of hyperspectral image (due to the abe
Karhunen-Loeve transform), which can significantty
duce the amount of visible distortions introducetb iin-
dividual HSI spectral channels by watermarking.tii¢
same time, it is also one of the disadvantages@®pto-
posed approach — since the original noise-like enagpd
for watermark encoding is identical for all "layers hy-
perspectral image, it can be detected without kngwie
embedding key, by comparing the number of "laye
available to attacker, and retrieving their comnoom-
ponent. A detailed example of such an attack issiden
ered in [40].

Unfortunately, the above-mentioned papers-{32]
lack any information on software implementatiorttedse
algorithms, and do not investigate the computatio
complexity of the proposed algorithms, which signi
cantly complicates the evaluation of their pradtaffec-
tiveness. This paper describes a comparison of atanp
tional complexity and robustness of methods progdse
the authors, and existing methods, using two most-c
mon algorithms: Digimarc algorithm and Cox algamith
based on independent watermarking of individual H
spectral channels.

One of the features of the proposed watermarking
gorithm is an ability to embed a high-capacity watark
(from 100 to 4000 bits, depending on the numbespefc-
tral channels). The proposed watermarking algoritanj
additive, i.e. it is based on addition of a two-dimsional

noise-like signal encoding a watermark sequencer (lis

identifier, right-holder code, serial number, oe thate the
image was obtained, etc.) to a carrier image. Weuse
an arbitrary sequence of bi¥(m), wherem[0, m—1],

as the watermark sequence. During additive watéem

against the most typical transformations of theiearm-
age (lossy compression, cropping, frequency dorfikin
tering, nonlinear filtering, etc.).

Fourier synthesis of noise-like watermark signal
Wi(n1, n2) encoding a watermark sequence, is performed
as follows. AW(0) bit corresponds to a set of spectral
points, equidistant from a zero component of a erewot
complex-valued spectrum at a distanBgefMs/2 (a set
of such spectral points is hereinafter referreds@ "peak
ring" of radius RaepMls/2). For all bits of sequence
W(m), wherem> 0, watermark image spectrum shaping is
performed as follows. Using the bit sequenigm), we
h form an array of integergsni(n), which determines a

cyclic shift of them' ™ spectrum peak ring relative to the
vertical axis, and a bit sequeneém’), which determines
the use of a pseudo-random bit sequedie) (or S(n))

in order to formm' ™ spectrum peak ring:

Qs (m')
0

= 5, (m+)
Z 2 m+
m=1

w(0), if m=0,
{w(en@m—1)+ m+1) else.

2

0]

p

if m=0,

NV(G[@M—])+ m+]) else,

—

o)

Next, on the basis of the binary pseudo-random se-
guences Si(n) and S(n), which are used as a ste-
ganographic key, and the watermark sequenta), a
complex-valued Fourier spectru@(u,v) of size Nsx Ns
pixels (spectrum of the two-dimensional noise-kignal

[Sencoding the watermark) is generated:

Cos(rand 9((u,v)) ,
it S (uwea) =1 ma(R) =1,
cos(rand 9C(u,v)) ,
it S Mneg) =1 m (R,

0, else,

ha reaI(C(u, v)) =

0:

sin(rand90( u \0) ,
it S (Nwes) =1 w (R} =1
sin(rand 90(u v)) ,
it S Mees) =L 1w (R,

0, else,

Sl

al
imag(c(u ) =

0:

whereu [0, Ns/2—1], vO[0, Ns/2-1];
rand90(u,v) is a random number in the range of
o [0, 90] (uniform distribution) generated for a pofn, v);

ing with the use of this bit sequence, a two-diners
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Hyperspectral remote sensing data compression....
JU2+ V2 - RO

nsh.ﬂed-{afda’{v) [ Rup 72 J] e

Rstep is a distance between neighboring sequence
the spectrum, expressedhi/ 2;

R is a distance from zero spectrum component to
first code sequence, expressedin2;

R, =(U +V - RIN/2)+( R,,ON/2);

real(C(u, v)) andimag(C(u, v)) are real and imaginary
parts of a complex spectrum respectively.

By computing the inverse DFT, the resulting spgc
trum is converted into imageWi(ns, nz), where
Ny, N2 O [0, Ns—l].

Next, the carrier imaggm, mp), wheremy, (1[0, M1—
1], m [0, M2—1], M1>Ns, M2>Ns, is watermarked ag
follows.

LetQO[0, 1] be a user-defined parameter called "W
termarking intensity". For the carrier imaggy(m, m) a
local dispersion field is calculated:

| gisp(My, M) =
1 Lz L2

=5 2 2 lmrim )
1

="L/2j=-L/2

L2

L/2 L/2

2 2

i=—L/2j=-L/2

H(m, +i,m, + i)] ,

wherelL <Ns is a size of window used for local dispersign

field lqgisp(my, Mp). calculation. Then, for a synthesized in
age Wi(n1, np) the average brightness and dispersion
calculated:

1 NN , NN 2
Woe =72, 2 W(nn) -5 2> W a9,
Ns n=0n,=0 Ns n=0n=0
1N
Wmean:F W(q Q)
n=0n,=0

After that, the imagé(my, my) is watermarked accord
ing to the relation:

(r‘rﬁmz —| rrl n} Qi/(lhsp m,
X(V\/I(nl modl\L,ﬁg mod N)_ VMean) !

wherel’(my, mp) is a watermarked image.

/ Vchp) x

The major advantage of the proposed watermarki
algorithm, compared with other robust additive wat¢

marking algorithms, is the higher watermarking ciya

i.e. the allowable length of sequen®m), embedded in-
to a separate color channel of the carrier imager ex-

ample, if the maximum allowable number of peak sing
8, we can embed a 43-bit sequeiggn) into a separate
spectral channel of the image.

Algorithm for Pseudo-Holographic Redundant Co
ing of Digital Watermarks. During the developmerfit
presented algorithms for HSI protection, based atew
marking, we designed a new algorithm for pseuq
holographic redundant coding of the watermark secee
W(m), which allows to increase the size of the embdd

watermark in proportion to the number of specttare
nels of the carrier image, while providing waterknao-
bustness against the loss (intentional removalyarhe
| spectral channels of the carrier image. The prapatgo-

b Pthm provides a pseudo-random distribution of wate
mark bits between the spectral channels of theezam-
thege, and thus provides a higher watermark capdicity

comparison with existing algorithms).

Let us consider the proposed method for pseudo-
random distribution of digital watermark bits beeme
different spectral channels of HSI. Let us divide- a bit
sequence embedded into HSI as a robust watermiark —
to a set ofL disjoint subsequencés (i J[0,L—1]),each
of K bit length. Before the watermarking, we fotmin-
dependent fragment$, S, &, S,..., S-1 from the se-
quence H. Each fragment in its turn consists of
M =ceil(logz(L) + K) bits (ceil is an operation of rounding
down) and is formed according to the following rule

& S=nnann.p.,H,

wherenpninyns...Nu—2 is a value of the indeiin the bina-

ry number system. For instance, for 8, andH;=0, the
fragmentS; is formed as 4-bit sequence "1110", where
"111" is a binary representation of index 7. Heaftier
the firstM—1 fragment bits will be referred to as "index
portion”, and the lasK bits will be referred to as "infor-
mational portion".

Next, in the process of watermarking the sequefice o
HSI spectral channels, for each channeramdomly, or
pseudo-randomly, select one fragment froma set
h-S0, S, S, S,..., S1. After that, the selected fragment is
Lrémbedded into the current HSI spectral channehgusie
robust watermarking algorithm described above.

Thus, in addition to the embedding capacity in@etse
proposed approach allows to avoid the static oetitage
structure of a payload, what makes the watermarie mm
bust against the number of steganographic attddks [

Algorithm for Robust Watermark Extraction from
Hyperspectral Satellite Images, Based on Blockwise
Digital Image Processing. Watermark extraction fribve
watermarked imagg(m, mp) is performed as follows (in
case of watermark extraction from HSI, we assuna¢ th
I'(m, my) is a separate HSI spectral channel).

In the first step, the watermarked imadgm, m) is

divided into K disjoint fragments I, (n,,n,) where

INg;, n, [0, Ns—1]. Next, for each fragment, a modulus of
the centered spectrur@y (ni, nz), and averaged (over all
fragments) modulus of the spectrum,

CM@F%EQMA%

are calculated.
Then, a polar coordinate representat@ygr(r,!) of
d-the averaged spectrum moduligny, ny) is calculated:

. Coon (1) =C'(N,/2-rsinl N, /2-r cos),

iowherer [0, Ns/2], | O[0,N-1].

After that, we calculate valud®(r) andRy(r) of con-
hevolution of Cpolar(r,1) and each of the code sequences

Si(n) andSy(n), which are used as a steganographic key:
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1 N
Cpolar( r, l ) _chpolar(r ’I )
Cpolar(r’l) = =0

Con 1) = [ SCnln)]|

Mz

1

1
o

R (1) =3 8 (1) D (o me )
Rl(r)=rrlrn:1xzsl( N DG (- mod m+AT) /N .

Next, we search for the smallast][R, Ns/2] such
that satisfies the conditioRyro) —Ro(ro)|>T, whereT is
a detection threshold determined experimentally.

When extracting the b¥(m), wherem>0, we take
into account not only the conditidd(ro) <Ro(ro), but al-
so the calculated valugn for the current rowo. If for a
certainr,, wheren> 0, the conditionRu(rn) —Ro(rn)|>T is
fulfilled, then next 6 bits of watermark sequence ex-
tracted as follows:

w(6(n-1)+1):{0’ eent R (1) <Ry(1).

1, ecim Ri(rn)> R)(rn)

0, ecitu An< 2™,

1, ecmu An> 2",

W (6(n-1)+1+ i):{

wherei is an integeri,=[1.5].

The watermark extraction is considered completat i
the next extraction step we cannot findsatisfying the
condition Ry(rn) —Ro(rn)|>T.

Then, after extracting the watermark from all spedct
channels of the watermarked image, the origindlvial-
termarkH is reconstructed.

We assume that, after extracting watermark seque
fragments, we obtaiK fragmentsw, j O[1, K], which size
matches the size of fragments when embeddinghéoein-
bedding algorithm discussed in this section, tlgrfrent
size is 43 bits). However, due to the possible (dissortion)
of the digital watermark in certain spectral chdsinéhe
number of extracted fragment§ may be considerably
smaller than the total number of spectral chanoietg/per-
spectral image. Nevertheless, the loss of digitatemmark
fragments does not imply inability to extract thigitdl wa-
termark. Actually, the fragment=ngmmns...nu2H; ex-
tracted from an arbitrary frame can be unambigyadisid-
ed by digital watermark decoder into "index" amifdima-
tional" portions. After that the indexof the extracted "in-
formational" portion of the fragmer; of the original in-

ding. At the same time, this "divided" watermarkjsence
can be restored even in case, when the majorityatdr-
marked image spectral channels were damaged or re-
moved, and the remaining spectral channels arelesst
within the image. Next, if some spectral channdlshe

carrier image are highly correlated, then waternfealy-

ments, prepared for embedding into these spedtah-c
nels, can be also formed as highly correlated twide

equal (this allows to decrease watermark visibdityl pre-
vent attacks of "watermark estimation" class).

2.2. HSI Protection Against Forgery Using Semi-Riag
Digital Watermarking and Adjustable Brightness
Reguantization

The proposed method for so-called "fragile” or "sem
fragile" digital watermarking allows to simultanesby
perform the tasks of the image protection agairmdifia
cations, and the task of hidden data transmissiiimirw
the image. The developed algorithm provides rolasstn
of the digital watermark against elementwise transf
mations of the watermarked image (contrasting)p-cro
ping and 90 degree multiple angle rotation.

The proposed watermarking algorithm is similar to a
known QIM algorithm [45,46], and it can be briefiye-
scribed as follows. Assume that an input image m)
and a binary watermark imad®n, m), wheren[1, N],
m0[1, M], are given.

For integerd (n, m) (input image) and’(n, m) (output
image), digital watermark embedding is performed ac
cording to the following rule:

roor(I(nT’nﬂ)-kmOd(&;m)) ,
| — if W(m n=0,
| (n,m) = ﬂoor(|(nq,m))+g+mod(&:'m)),
if W(m n =1,

where floor is an operation of rounding down, medai
division remainderg is a quantization step, which deter-
mines a distortion ratio of the watermarked image.
Digital watermark extraction is performed as folkow
0, if mod("2)) <4
W (nm= R
1, if mod("0) >4

whereW’(n, m) is an extracted watermark.

Next, let us consider the algorithm for embedding o
watermark bit into the pixel block of the carrierage. This

formational sequence can also be calculated from the hit @lgorithm simultaneously provides hidden data trassion

sequencewNnans...Nw—2 Without any additional data aboyt and watermarked image protection against modifinati
the number of the current frame. Let L be a linear size of the pixel block of the carrier

Thus, the proposed pseudo-holographic watermfarinage, into which the digital watermark pixel (big)em-

coding algorithm allows to adapt the correlatiosdshwa-
termarking approach to work with a wider class afitm
and hyperspectral images. First, binary watermark loe
divided among any number of independent spectrah-ch
nels, which allows to increase watermarking cagamio-

portionally to the number of channels availabledobed-

beddedK(i, j), wherei O0[1,L]; jO[1,L] is a pseudoran-
dom binary imag&, which is a secret "key", and the em-
bedded binary imag&(u, v) Wh(u, v) (verification in-
formation), whereu O [1, floor(N/L)], vO[1, floor(M/L)]
is a watermark image.

Thus,
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floor I(nq,m) +mo£{@)

1'(n,m) = if W (n m=0,
floor I(nq,m) +%+mod[2D(qn,m)J’

if W, (n m) =1,

where
W, (n m) = W(floor ( d 1), floor( nh ) O
0 K(mod(n/l_) ,mod m ,L)) ,

O is an "exclusive OR" operation.

If the valueq is known, and the watermarked image
not distorted, then extraction of watermark Wit (u, v)
from the image blocKy(n, m), wherenO[uL, u(L +1)],
mO[vL, v(L +1)], is performed as follows:

01

if anzm:(mod('y(';‘m))— Kmod(n,m)) =0,
1,

W(uy = ZZ(mod('v(”‘m))—Rmod(n,m)) =0,

q

is not defined, else,

where
Konoa (N, M) = K(mod( n/L) , mod m/I))D(q/Zj

Kmod (n’ m) = 1_ Kmod( n’ n)
If after digital watermark extraction, a numberwaflues

W'(u, V) are not determined, it is implied that the resp{

tive image block was modified, which led to the tdes
tion of watermark bit. In this case the calculatioh
W'(u,v) combines the extraction and the detection pro
dures (i.e. the detection of watermarked image fivadi
tions, ifW'(u, V) is not determined).

In case when the watermarked image is contras

the embedded watermark can be detected by perfgrm

the following procedure. For all pixels of the s
block I} (n,m) such thaK(mod(n/L), mod(m/L))=0, a
brightness histograrhlg(b) is constructed. Similarly, fon
all pixels of the selected blocK,(n,m) such that

The robustness of watermark detection procedure
against 90 degree multiple angle rotation of the wa
termarked image is provided by introducing addigébn
limitations on the form of the kel(i, j) used for em-
bedding:

Oi,j O[1L /2]

K(i,j)=K(L=-ji)=KLAL=j)=K{L +)

If the watermarked image is cropped, and, conse-
qguently, the original block boundaries are movdunt
for a given pixel block the watermark detectionqadure
takes the following form.

Step 1. For all possible offset valugs, AmO [0, L—

1], a set of histogramklg(An, Am, b), which include all
ispixels of the selected blocK (n,m) such that

K(mod( (+Aan)L) ,mod Mm+A m)/l)) =

is constructed. Similarly, a set(An, Am, b) is constructed.
Step 2. Next, for each block, the "map" of modified
blocks is calculated:

0, ecnu
min b (Ho(n,Am B OH(ANA M B) = 0,
D(u,v)= 1, ecin

min> (Ho(2n,am B OH(ANA M B) > 0,

and the digital watermark is extracted similarly the
previous case.

Thus, the proposed algorithm for blockwise water-
marking has the following advantages over the exjst
methods:

— the algorithm allows to embed an arbitrary water-
mark sequence into the carrier image, and detedifimo
cations, introduced into watermarked image, sinmela
*Cously;

—the algorithm provides watermark robustness
against cropping, linear contrasting, and 90 degreki-
C€le angle rotation.

2.3. Experimental Study of HSI Protection Effectess
Led and Watermark Robustness Against Different Types
' of Distortion

During the experimental study of robust watermark-
ing algorithms considered earlier in this sectiar, used
a set of (single-channel) satellite images of size
4000% 4000 pixels, represented in uncompressed TIFF
format. These images, in turn, represented indalidu

n

K(mod(n/L), mod(m/L))=1 a brightness histogram spectral channels of AVIRIS HDR format HSI compris-

Ha(b) is constructed. Next, for each block we calculate
0.3 (Hy (b) H,(8) = ),
1 Zb:(Ho(b)ml(b) >0).

D(u,v):

A binary imageD(u, v) represents a "map" of modit

fied blocks (0 — the block is not distorted, 1 e tiock is
distorted).

ing 450 spectral channels.

First of all, we experimentally evaluated robustes
against unintentional watermark distortion, i.etedéor
ability to properly extract a watermark fragmerarfr a
separate distorted spectral channel of the watdwedar
hyperspectral image. For different values of theapee-
ter Q (the watermarking intensity), a probability of the
correct detection and extraction of the digital evatark
fragment from the distorted image, was evaluated.
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To conduct this experiment the following scenari
for distortion of separate watermarked spectralnoba
have been developed (we assume that the scena® i
plied independently to all spectral channels of whaaer-
marked image).

Scenario 1 — Cropping We cut a 2048 2048 pixel

5

psencoding, which allows you to restore the origina-

termark from fragments even in case of removal\aod
distortion of some watermarked spectral channels.

We considered such variants of original watermark
partition into subsequences, that the number démtift
subsequences embedded into the individual spectral

fragment from the watermarked image; a fragment-pgschannels, was from 8 to 128 (in all cases the tutatber

tion on the original image was selected randomlfgerA
that, the cropped fragment was used as the watkecha|
image.

Scenario 2 — Additive noise addingVe added addi-
tive white Gaussian noise with a standard deviagian
rametero =15 to a watermarked image.

Scenario 3 — Median filtering.We subjected the wa
termarked image to median filtering, using3 pixel
window.

Scenario 4 — Rotation and croppingWe rotated the
watermarked image by 15 and then cut a fragmesizef
2048x 2048 pixels.

Scenario 5 — JPEG-compressionWe subjected the|
watermarked image to JPEG-compression; the valee
compression quality parameter was set to 80.

Scenario 6 — ResamplingWe subjected the water
marked image to resampling with a scaling factof .&f
and using a linear interpolation algorithm as angsing
algorithm.

For the considered set of watermarked images, fthe
fectiveness of independent watermark fragment exti
tion Pexi=Nex/ 100 was calculated for each distorte
spectral channel after applying one of distorticargri-
0s. The valud\uss represented the number of images
the set, for which the watermark was detected aodegr-
ly (with a bit-precision) extracted. The resultsexperi-
mental research on watermark extraction effectigen
are shown in Table 1.

Table 1. Effectiveness of robust watermark extoacti
using different image distortion scenarios

Watermarked| Watermark extraction effectivene&sxt
image _ _ _ _
distortion Q=0.07 | Q=0.15| Q=0.25| Q=0.3
Scenario 1 0.99 1.0 1.0 1.0
Scenario 2 0.993 0.997 1.0 1.0
Scenario 3 0.97 0.981 1.0 1.0
Scenario 4 0.98 0.99 1.0 1.0
Scenario 5 0.96 0.96 0.98 1.0
Scenario 6 0.994 0.998 1.0 1.0

The obtained results show, that the developed a
rithms for watermark extraction are robust enoufgn (|
application in practice) against common distortiohshe
watermarked image.

During the experiment, it was shown, that if the-w|
termark fragment size is more than 1 bit (impleragoh
of watermarking algorithm, proposed earlier, imgplithe
watermark fragment size of 43 bit/spectral chanriég
probability of false watermark fragment detectisnass
than 0.000001, which is acceptable for practicalliap-
tion of this algorithm.

Also, we conducted a research on the effectiveaks

of embedded watermark fragments was equal to the nu
ber of spectral channels — 450). Using each ottmesid-
ered partitions, we formed fragments of watermagk s
guence and embedded them into hyperspectral imhge o
size 4000<4000 pixels (450 spectral channels). Next,
Naist Spectral channels were randomly removed from wa-
termarked hyperspectral image, and the watermark wa
extracted from the remaining channels. Extracticas w
considered successful, if after extracting fragmdnivas
possible to restore the full original watermarkeThsults
of experimental estimation of the probability ohqolete
watermark extraction using only part of the spéctra
channels, are given in Table 2 (for each paraneier-
pfbinationNuist/ Nseq.
Due to the obtained results we can state that the p
- posed information technology provides a probability
Poo>0.96 of hyperspectral image forgery detection with-
out using pseudo-holographic redundant coding, and
probability Pgo>0.995 when using pseudo-holographic
ecoding.
a  To study the effectiveness of a fragile watermagkin
rdalgorithm proposed by the authors, and its progeritn
the case of remote sensing data (satellite imguesg¢c-
intion against falsification, we embedded a watermairk
size 256x 256 pixels into a set of 22 grayscale carrier im-
ages of size 40964096 pixels (an example of the image
e is shown in Fig. 15) using the pseudorandom emingddi
key of size 16 16 pixels.

I

Table 2. Experimental estimation of the probability
of successful restoration of full watermark fromgments
in case of removal or distortion of some specth@rmels

(for a set of 1000 realizations)

The number| The number of distorted spectral channels,

of watermark Naist

subsequenct 50 100 | 150| 200] 250 300

€SNseq

(water mark

length)

128@608) | 0.01 0 0 0 0 0
g0- 64(2368) 0.88| 0.77| 0.55 0.26 0.04 0.001

32(1216) 0.99| 0.99| 0.99 098 0.94 0.7%

16(624) 1 1 1 1 1 1

Next, we introduced the following modifications ant
each watermarked image (Fig. 15):

— white Gaussian noise was added to image block 1
(noise standard deviation was- 15);

—block 2 was subjected to a Gaussian blur (defocus
parametep, =5);

— block 3b was replaced by block 3a.
s The location and size of blocks differed for alltera
ararked images.

a

the applied scheme for pseudo-holographic watermi
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Fig. 15. Distorted watermarked ima

For each modified image, procedures of waterm
detection and extraction were performed. Accordm@g
study conducted for the whole set of watermarkeagimn
es, modified parts of the image were detected aadkenl
with the block size precision (2616 pixels) for all imag-
es of the test set.

Besides, for the test set of 22 grayscale image&zef
4096x 4096 pixels we determined minimum parameté
for distortion of types discussed above (Gaussiam, b
noise adding, block replacement), for which thebpiml-
ity of modified area detection wd%o>0.9999. For digi-

tal watermark embedded into each block pixel wigh p

rametersL =16, =2, we obtained the following mini-
mum distortion parameter values:

— minimum size of the replaced blocksx5 pixels
(for the replacement of watermarked image block);

— minimum standard deviation of white Gaussi
noisecd =0.65 (for additive noise adding);

— minimum defocus parameteg=0.45 (for Gaussian
blur).

According to obtained results, we state, that tlae
termark detection algorithm allows to detect visualg-
nificant image modifications of the most commonetyp)
(noise adding, block replacement, blur) with a jaitaility
Po0>0.9999.

The results show, that the watermark embedded
using the developed algorithm is robust againstesip
ously listed set of image transformations, and ,a¢s@n
in case of such distortion, allows to detect thelifired
image regions.

2.4. Development of Algorithm for Generating a Rstbu
and Semi-Fragile Large-Size Watermark with Improve
Resistance Against Intentional Attacks

This section describes a method for improving
bustness of digital watermarks, embedded into far|
format multi-channel and hyperspectral images, thase
the use of pre-generated multidimensional (twothoee-

propose a new algorithm for generating such Rlikee

binary digital watermarks based on a secret ker(us

password). Such algorithms and methods allow to im-

plement (without reducing the overall steganograpbt

bustness of the embedded watermark) the most camput
tionally complex embedding operations (e.g., getieara

of a noise-like additive watermark, robust to aewidnge

of distortions) in a preprocessing step, and, thersig-

nificantly (up to 5-10 times) reduce the computadio

complexity of the procedure for watermarking theyéa
format remote sensing image.

It is known that, in case of implementing an inten-
tional attack in order to detect the embedded \waek,
it can be extracted or removed with the use of-aadled
"brute force" strategy. In this case, the attacexjuen-
tially tries all possible embedding keys, and clesothe
key, that allows to detect and extract the wateknfrarm
a given image, as the "true" one (it is assumedt, tite
attacker is certain about the presence of the i in
this image). Later, knowing the "true" embedding k&
lows the attacker both extract and remove all imadeks
Arembedded with the use of this key.

As an example, consider some robust watermarking
algorithms based on spread spectrum coding $0T.

These algorithms use the secret steganographic key
for the selection (generation) of an m-sequence, or
Kasami sequence, and then use the selected segqifence
modulation and coding of the embedded binary water-
Efmark. In fact, in these algorithms the m-sequerses dor
modulation is the only secret information required
watermark extraction. When such approach is udes, t
length of m-sequence is approximately equal tontinm-
ber of carrier image pixels: thus, for the imageside
640x% 480 pixels we need to use the m-sequence of length
approximately 2 bit. It is known that the number of dif-
ferent sequences of a given length is bounded abgve
the value of Euler function; for the m-sequencéeofjth
A1 hit the number of different sequences can be atadl
(according to [51]) as=500% Therefore, if attackers
know about the use of m-sequences for watermarkumod
lation, they can try to extract the watermark byterforc-

vV ing all m-sequences of a given length. Consequenly
ing the found original m-sequence, attackers caplam
ment a "watermark estimation attack”, and remowe th
embedded watermark with minimal loss of carrier gma
quality.
by Next, we propose new algorithms for generation of
multidimensional noise-like digital watermarks, wihial-
low both to improve watermark robustness against at
tacks, and to reduce computational complexity ofewa
marking procedures.

For the majority of watermarking algorithms it &-r
dquired to use two-dimensional key bit sequenceteats
of one-dimensional (such as the user passwordjhin
oLase, the secret "key" (user password) is firsivedad
génto. two-dimensional 'n0|se-I|ke "tgmplate" imagehigh

Is directly embedded into the carrier image.

On the one hand, the algorithm for key sequence gen
eration proposed in this section provides the loon(-

dimensional) noise-like digital watermarks. Moregwee
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pared with the truistic case discussed above) pitityaof
collisions due to the adjustability of minimum dgcl
Hamming distance [50]. In this case, the collisio@ans a
situation, when the watermark embedding is perfdroe
ing one secret embedding key, and the extractidnvari-
fication can be performed using a number of "faleys,
which are close to the original one, accordingh® lHam-
ming distance criterion. On the other hand, theppsed
algorithm significantly exceeds the existing analeg by

the number of various key sequences of a giventheng

(and, hence, by the robustness against brute-&btaeks).

At the first stage of the developed algorithm, #ee
cret user password is converted into the one-dirorak
key sequence with fixed minimum cyclic Hamming di
tance. In its turn, the first stage of the algarthdis-
cussed in this section, can be divided into théo¥ahg
steps.

In the first step, the user password, represensed
bit sequenc® = pipzps...pn, is encoded using a redunda
BCH code with a minimum code distarc& he result of
the encoding is a bit sequentgss=titots...th+k (Where
bits tnh+ithsotnes.. .tk are added as a result of redundd
coding). Obviously, in this step, the number of ible
user passwords of length and the number of the corrg
sponding binary sequenc&gsss is 2. Due to the proper-

ties of BCH code, we can also assert, that the Hagm two-dimensional

n

distance between two arbitrary sequentgs, and T

of equal length is not less thanwherel is a minimum
BCH code distance used in this step.

In the second step, for the further transformatibn
the user password into the key sequeBGcee use the
comma-free binary code, which consists of four cg

words S={S,, §. § § (the length of all code words

is s bit), and the m-sequendd = mimN...Ma«, Where

m is thei™ bit of the sequenchl, 1<i<n+k. The key

sequenceC = C1CxCs...C+is IS formed on the basis of th
sequencelpass Obtained previously, according to the fo
lowing equation;

{Cj GG +2"'9+s—1}

wherej =ils, 1<i<n+k.
The cyclic Hamming distance between two key 3
quence<’ andC” of lengthL can be defined as

h
— mi 2 ' "
)\C'C" - ng:]n Ch O Ch+Ah’
h=1

whereO<Ah<L and fi+Ah) is calculated modulb.

For cyclic invariant codeC, the minimum cyclic
Hamming distance is defined as a minimum possiale
ue of the cyclic Hamming distance among all possi

pairs of code words irC . As shown in [52], the mini-

mum cyclic Hamming distance of key sequences used f

bedded watermark against brute-force attacks.2hif%s

shown, that for two arbitrary key sequen€®sand C",

according to the rule (5), the cyclic Hamming dista
does not exceed the value:

A =min( h,,h,0(n+ K)/ 2, h, O(n+ K)),
whereh. is a comma-free Hamming distance determined
for comma-free codeS; hs is a minimum code distance
of S (without considering possible shifts). Some exam-

ples of generating the comma-free cofie which con-
sists of four code words of equal lendihare given in
Table 3.

Besides, in [47] it is shown, that by the number of
possible key sequences of a given length, the coufe,
sidered in this section, is significantly superiorother
known cyclic invariant codes, which allow to gerterthe
L code word on the basis of the password set by user.

Nt Table 3. Examples of comma-free codes,
comprising 4 code words

S_

bl h|hs s A St st
ings5 | 1 1 10110 01001 10111 0100d
6| 1 1] 101100 010011 101000 010111
-l 7] 2] 1] 0001101 1110010 0011101 110001p
At the second stage of the algorithm for generating
noise-like templates, the one-

dimensional key sequences, generated at the fages
are converted into the two-dimensional noise-likeaby
templates, while maintaining a fixed minimum cyclic
Hamming distance.
Next, to convert the one-dimensional key sequébce
d into two two-dimensional noise-like templafés andM;
Sor further watermarking, we need (according to the
quirements discussed earlier in this section) tdope
the following steps.
In the first step, we need to generate two temporar
b binary array$Ro(v, h) andRy(v, h) of sizeV x H bit, where
[- H=(n+K)[S, VIHH =MIN, by using the algorithm for pro-
ducing optical orthogonal codes, represented in].[50
Thus, the first rows of arrayBo(v,h) and Ry(v,h) are
formed according to the relationsRy(1,h)=C,,
Ri(1,h)=Cxn. Then, theg" row of the arrayRo(v,h) is
formed through cyclic shift ofg—1) ™" row by giGo posi-
tions (whereqo is prime, and the valugldo is calculated
modulo integeH). Similarly, the arrayr; is formed: §—
1) row of the array is formed through cyclic shiftthe
eprevious row bygld; positions {1 # qo is prime, the value
gldo is calculated modulb).
In papers [49] and [50] it was proved, that for two
dimensional binary arrayRy(v, h) and Ri(v, h) the value
of the cyclic Hamming distance is close to the mmaxin
(i.e. to VH) in case of non-zero shift values (in case of
cyclic shift of two-dimensional arrays, it is assednthat
the array Ryo(v,h) remains unchanged, and the array
hl Ri(v, h) is cyclically shifted byAh rows andAv columns).
In the last step, arrayRq(v,h) and Ri(v, h) are con-
verted into templateM; and Mg of size NIM, according

watermarking directly affects the robustness of ¢ne

to the following relations:
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M, (umodN ,u modM) = R ( umoaV ,u modH
M, (umodN ,umodM) = R( umodVv ,u modH

whereu [O[1, NIM].

According to [49] and [50], the proposed sequerfce
transformations of original key sequerCealso allows to
keep the minimum cyclic Hamming distance equah td
for resulting two-dimensional templates, and sugtlic
Hamming distance takes place only for zero shiftes
The difference between obtained two-dimensional-te
plates from original key sequences only lies in fhet,
that in the case of two-dimensional templates, tém-
plate cyclic shift is also two-dimensional, i.emigates
are shifted byAh rows andAv columns. With this in
mind, and taking into account the fact that obtdir
noise-like template®; andMp consist ofV repetitions of
original key sequenc€, the minimum cyclic Hamming
distance for templatéd; andMg can be calculated as:

A,y =V Omin(l thy, h,[{n+ k) /2, L O+ K).

Actually it means that there are no such tw
dimensional key sequencddo and M,, that cyclic
Hamming distance between them is less than

To investigate the robustness of developed algosth
for generating key sequences, both against unioteait
distortions and intentional attacks on the digitslter-
mark, we conducted a number of computational exp
ments. For all experiments we used binary templistes
and Mo of size 409% 4096 pixels, based on 47-bit pas
word (secret key) and redundant BCH co
(4095,47,955). To construct the key sequefethe
comma-free code, given in Table 3 (codeword len
s=5), was used. The minimum cyclic Hamming distan
for this class of noise-like embedding templates is

A,y =8190Min(191a05, 2041 1,4095 %) 1676,

Experiment on watermark embedding was condud
for 15 hyperspectral images of size 463895 pixels.

Ny =[ M|/ (20N, +2)),

collis

Where|l\7l| is a number of different array pairs (since the

pair M1 and Mg is generated on the basis of one secret
0key), N_,. is the average number of collisions per array

pair. In the present case, the valNg,,. should be evalu-

collis

ated experimentally, and the vaI{J\%| is determined by

mthe number of possible secret embedding keys, qudl e
to 2V7.
For the experimental evaluation of the valdg,,,

the following experiment was conducted. At the staf
watermark embedding, 10 different "true" secretskey
€ were used, for each key the pair of templatésandMo,
was generated. Each pair of templates was usedder
termarking the separate hyperspectral image, caeingri
450 spectral channels. After watermarking, for each
age we ran the brute force attack, i.e. we secmignti
o-tried to extract the watermark using all possihiebed-
ding keys. As noted earlier, the number of suchséfa
keys is (27—1), what makes it almost impossible to im-
plement the brute force attack during the experiridne
to this fact, the experiment was simplified asdalé: to
implement the attack, from all{2-1) "false" embedding
brkeys we used only 5000 template paitsandMo, which
are the "closest" to the original pair by the miaimcy-
5-clic Hamming distance criterion. Next, we evaluated
Henumber of collisions under the assumption, thatvhst
majority of collisions occurred during watermarktrex-
jthion, is represented by these 5000 "closest" tetepla
ce After that, for all 10 generated embedding keys,
average number of collisions was calculated:

— 1
N(:ollis =T
ted 10

whereN,; is the number of detected collisions fér'true”

10

SN,

=1

Each image comprised 450 spectral channels; therwat embedding key.

mark was embedded into all channels.

Algorithms for robust watermark extraction, d¢

scribed earlier, are based on the use of so-cdliled
formed" watermark detector; in fact, during the evat
mark extraction from the frame we calculate a cro
correlation function of arrayd; and Mo, which are al-
ready known for detector, and individual spectrarmmel
of the analyzed image. The security of such schg
against intentional attacks depends primarily aabm-
plexity of brute force attack, i.e. against waterkndetec-
tion without knowing the proper embedding key. Adtu
ly, the watermark is vulnerable to such an attéake at-
tacker can try all possible key values (and theesmond-
ing valuesM; andMy) in acceptable time, and select tH
one that leads to successful watermark detection.
Suppose that an attacker sequentially tries abiptes
secret embedding keys (for the proposed algoritir t
number is #"), and, based thereon, generates pairs of]

The results of the conducted experiment show, that,
" after 50000 attempts to extract the watermark usireg
"false" keys, no collision was found, i.e. the alu

SSN =0 was obtained. Accordingly, the estimation of

the computational complexity of brute force attaakes
the form of:

me N, =|M|/2=27 /2= 10"

D

collis

Such computational complexity of brute force attack
unambiguously allows us to speak about the indffect
ness of such attacks against the proposed algorithm
comparison, the above mentioned watermarking algo-

erithms based on m-sequences [51, 52] require odl§*5
attempts to extract the watermark for the implermigon
of such attack.

By increasing the capacity of the set of all pdssib

asteganographic keys, the developed algorithms astth-m

raysM: andMo, and uses them to extract the watermarkods allow to make the watermark much more robust

from the selected image. The computational comple
of such an attack is proportional to the value:

i against its extraction without knowing the embeddiey

K. Thus, the average complexity of finding the caotre
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steganographic key by the attacker was increased f
1C° (100000) iterations for existing algorithms to'4id-
erations for developed modified algorithm with seme
parameters of watermark embedding and generation.

3. Methods for Passive Protection of HSI Data

Unified digital formats for storing and processiig-
ual information, including remote sensing data, dmee
widespread in recent decades. Consequently, stdiof i
mation became much more vulnerable to intentiomnsl
tortion (falsification) and unauthorized use (inrtpaular
copying and distribution).

Unlike active methods based on the use of digit
termarks, passive approach to detecting unauthbr
modifications does not imply any pre-distortionhyfer-
spectral image (i.e. digital watermarks are nodysk is
based on the assumption, that even if the altefieddi-(
fied) image does not contain visually detectabdeds of
modifications, these modifications can be detettgthe
image feature analysis.

Passive methods for digital hyperspectral image
thentication can be conventionally divided intocHdw-
ing groups [19]:

1) methods based on detecting changes in the inf
pixel level (Pixel-based) [53, 54];

2) methods aimed at detecting changes of interp
correlations, introduced, for instance, by usingsio
compression algorithms (Format-based) [55, 56];

3) methods for determining various artifacts oft@p
tographing apparatus, introduced by a camera &esen-
sor, or a built-in post-processing algorithm (Caane
based) [57];

4) methods for detecting inconsistencies in mugual
rangement of physical objects, light sources andera
(e.g. different illumination of objects, mismatchtiveen
objects and their shadows) (Physically-based);

5) methods based on detecting mismatches betw
geometrical characteristics of real objects andtaligm-
age objects (e.g. inconsistencies in geometriedgions
of objects with respect to each other or to the erain
(Geometric-based).

Next, we consider the basic ways of hyperspeatnal
age falsification, and the corresponding passiveirsy
methods. For each of selected directions we wiillyze
the existing methods and algorithms for detectiamd
then we will distinguish the direction of our resga

3.1. HSI Protection Against Introducing Distortion
of "Resampling" Type

Any geometric transformation (resampling) is impl
mented by means of interpolation algorithm (e.gubi
bic), for which an output pixel value is formed as
weighted sum of values of neighboring pixels omeayf
ment (before interpolation). In this case the datien
between neighboring pixels of the resampled fragm|
significantly increases [58], i.e. the value of legixel
depends on its environment. With this in mind, eeeal-
oped an algorithm for resampled area detectiorherba-
sis of Expectation Maximization (EM) algorithm.

d

In order to solve the denoted problem, we devel@ped
algorithm for distinguishing resampled areas, winetiee
analyzed hyperspectral image is divided into blpckwl
for each block the correlation between pixels &l@ated.

referring a block hyperpixel to one of two clasaes in-
troduced: the first class M1 contains pixels whiciire-
late with the neighboring, the second class M2 aiost
the rest pixels. According to Bayes' rule, for eptkel
the probability of getting into M1 or M2 class iglculat-
ed. The implementation of this algorithm is anataere
process, wherein with each iteration the dependeoet

V ficients are specified, until the estimated errecdmes

Z8ower than the allowable (taking into account tlagtition
into classes M1 and M2). From the obtained dataph-
ability matrix is formed, such that in the resandptgeas
a periodic structure is observed, and it can bdyeds-
tected by Fourier transform. The analysis of therkeo
spectrum of the probability matrix shows, that toe
embedded block, bright peaks are well recognizékilg

AUt6), and, generally, they can be used to deterpamem-

eters of geometric transformation (scaling factut eota-
tion angle).
age

xel

een

D

Fig. 16. Fourier spectrum (left - for embedded Bloc
right — for unmodified image block)
In practice, when we use the algorithm for distin-
guishing image resampled areas, we should conghur,
their location is unknown, or there is no such araaall.

Thus, an important step of the algorithm is thealza-
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tion of resampled areas in the probability matiba
solve this problem, we propose an algorithm of llo
spectrum analysis, calculated recursively (whigmii-
cantly reduces the computational complexity of lyoa
rithm) in a sliding window. Spectrum emissions ege-
ognized via peak filter, and a decision, whethes
resampled area exists, is made by comparison wit
threshold (determined in the step of algorithm sdjy
ment). Thus, spectrum analysis is conducted fonage
blocks taking into account the possible shift, vahpro-
vides a more precise localization of the resampled.

The Study of Algorithm for Resampled Area Dete
tion. To study the developed algorithm, we usegeh
spectral image obtained under AVIRIS program. Agaa
containing water texture was embedded into eaclyem
channel. Embedded area was subjected to geométric|
tortions with rotation angle in the range of [80°], and
scaling factor in the range of [0.664].

To study the algorithm quality, we used a ratidhef
relative area of the detected image fragment torétee
tive area of the embedded fragment as a criterion;

K, = (S,,/S,) [100%,

wherei 00,C -1 is anumber of spectral channel.

The value of the criterion for the whole hyperspalct
image is calculated as follows:

K=(ZKi)/C.

During the quality parameter calculation, a paramg
of false detection was also calculated, and theltrésall
cases was 2-10%. The parameter of false detectam
calculated as a ratio of the area of incorrectljected
blocksS.r to the total area of the original ima8gg:

Ker = (Sur/ Sg) [100%.

This parameter was also calculated for each chan
According to the dispersion of obtained valuegaih be
concluded that, in one area each channel is madjties-
persion is close to 0), or something else is embegdd

The following parameter values were used as ini
conditions: the size of a processing window fomgéar
format imageWS=256, the size of a sliding windov
L =64 and L=128, the size of a peak filter maSke=3.

The experimental results show that the detectial-q
ity depends on the sliding window size. If its sizereas-
es, the quality of detection increases too (a smaihber
of incorrectly detected blocks), but the quality dutec-
tion decreases, if the size of the embedded infoomas
smaller than the size of the window. When the esizihe
window decreases, the quality of detecting the eldbd
information of small size increases, but also iases the
number of incorrectly detected blocks. The optineaii-
ant determination is a task for future research.

3.2. HSI Protection Against Introducing Distortioh
"JPEG Compression” Type

When the hyperspectral image is modified using i
age processing software, and after resaving thagénfor

T

In this case, methods for detection of (JPEG) ceswyr
casion application can be used to check, whetheimtiage
is modified. Well-known algorithms for JPEG tampeyi
detection [56, 59] use only one channel for dedectind
cannot be applied for hyperspectral imagery.
h  Since the compression algorithm can be applied to a
h separate channel, and, thereby, modify its chaiatits,
the developed algorithm analyzes each channel tectde
inconsistencies in characteristics of spectral nbn As
a solution to the problem of detecting hyperspédtna
age fragments with different compression quality ya
c-tio, we developed DCT coefficient histogram spettru
analysis algorithm, which allows to establish saegu-
- larities numerically characterized by feature valaalcu-
a lated via spectra. Thus, the result of applying IR&EG-
dcompression is well seen on histograms of DCT ¢oeff
cients calculated by image blocks for fixed speautru
components.

By analyzing the histograms of DCT coefficients we
can determine, whether JPEG compression was applied
for the embedded part of hyperspectral image. Ia th
case, the following situations are possible: JPEGI-C
pression was not performed; compression was peerm
once; compression was repeatedly performed witierdif
ent quality parameters.

Along with the detection algorithm, we also devel-
oped a method of determining the shift of JPEG -frag
ments relative to the embedding coordinates, whieh
multiples of 8. This method is used as a pre-piEings
operation for the analyzed image.

The proposed algorithms both perform the task withi
Wa unified information technology.

1. The basic shift of the block matrix is calcuthte
This operation is performed in order to provide die¢ec-
tion of embedded JPEG blocks shifted in relatiorthi
original mesh.

nel 1.1. An arrayg8][8] is created, each array element is
a so-called JPEG-feature, calculated as follows:

1) a random set of blocks, comprising not less than

1000 blocks, is created,;
ial  2) blocks of the resulting set are shiftedfyAy, and
cosine transform is calculated,;

3) for all blocks the histogram of cosine transfaroa
efficients is calculated with a fixed shift;

4) histogram spectra are calculated;

5) for obtained spectra, features are calculated;

6) calculated features are converted into onerite
(periodicity criterion), recorded I§A[ 4y);

7) steps (23(7) are repeated.

1.2. The minimum oS array is determined, its indices
are the shiftsshif{0], Shif{1]. Thus, an invariance to the
shift of the embedded area is obtained.

2. Blocks are pre-clustered on the basis of thécbas
shift. At this stage, background image blocks amasat-
ed from blocks, which demonstrate any JPEG prageerti
As a result of this procedure, two clusters arenfm:
first are the block coordinates without propertiégperi-

Modicity and monotony, second are, respectively,ttzd!
rest, that are divided by quality and ratio of JP&fm-

t

individual spectral channels), global features alsange.

pression at a later clustering stage.
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3. Image blocks are clustered on the basis ofahad
basic shift. An iterative procedure is repeated bicks
are divided into clusters, or the number of clusterach-
es the maximum allowable number.

3.1. We assume, that all image blocks belong to
same cluster.

3.2. For all blocks of each cluster, histogramscanme-
structed (see para. 2).

For each block we verify, whether it belongs to ofhe

the current clusters. If the product of probalatifor
given block frequencies is above the threshold, bfdck
belongs to the cluster. If for all existing clusténe value
of the product is smaller than the threshold, themew
cluster is created, wherein the block is placed.
The Study of Algorithm for Detection of Fragmentbj&cted
to JPEG Compression.

Table 4 and Fig. 17 show the results of the study
the algorithm for detection of embedded informatigth
JPEG properties. The dimensions of embedded ari#as
different JPEG compression properties were frors 64
to 512x 512 when the dimensions of the input hypersp
tral images were from 2002000 to 600& 6000.

Table 4. Quality of detection of dual JPEG compias$or
different combinations of quality parameters

Q2 50% 60% 70% 80%| 90%
Ql
50% — | 100%| 100% 100% 90%
60% 100% - 100%| 100% 95%
70% 100%| 100% - 100% 92%
80% 100%| 100% 95% - 80%
90% 95% | 95%| 95%| 754 -
1
09 \
08 AN
0.7 \\
0.6 \
05 \
04 \
0.3 \
0.2
o1 \
0 .\
50 60 70 80 90 10C

JPEG quality, %
Fig. 17 - Quality of detection of single JPEG coegsion
The data, presented in the table and figures, tee
average over the set of 5 hyperspectral imagesjraut
under the AVIRIS program. According to the datae
detection quality is very close to 1 in most casdsich
indicates a high accuracy of the developed algorith

Also, during the study, we obtained the relatiopshi

between the quality of single JPEG compressionthad
values of peak periods of the DCT coefficient speat
The results are shown in Fig. 18. If we calcul&i peri-
od via the DCT coefficient histogram spectrum bings
this diagram, we can obtain the initial value of tHPEG

500
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200
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50
0

A

10

30 40 50 60 70 &
JPEG quality, %
Fig. 18. The relationship between JPEG compressiaiity

and values of DCT coefficient spectrum peak periods

3.3. HSI Protection Against Introducing Distortion
of "Undistorted Duplicate" Type

The most common way to counterfeit a hyperspectral
Wimage is to copy some image areas to hide an olject
this case, an image part is copied, and pastecamtther
ECpart of the image in the place of the object, whgkex-
pected to be hidden (Fig. 19).

20

(0]

—

=

Fig. 19. Example of an image containing a duplicate
and the attack detection result
Such operation is performed for each spectral
channel to hide the traces of modifications. Ifstlig
done carefully, even an expert will not be ablado-
ognize a counterfeit and determine the modifiechare
To try all the possible combinations of dimensiaris

compression quality.

modifiable regions, and their location, is a time-
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consuming task, and for large-format images thabpr
lem cannot be solved at all.

The most well-known duplicate detection algorithn
[53, 54] are based on block-based discrete cosarest
form and principal component analysis. Duplicateaar
are detected using lexicographical sorting of feattec-
tors, which consist of DCT coefficients, and thdse+
guent grouping of blocks with the same spatialtshif

In this paper, we propose to analyze all the ima
fragments of sizeaxb sequentially — in the so-calle
"sliding window" ("processing window") mode. Foroba
position of a "sliding window" a value of hash-ftioo
(deterministic algorithm, which converts an inpatalar-
ray of an arbitrary length into an output bit sfyinf a
fixed length) is calculated using the correspondigge
counts, and placed into a data structure, wherath ¢
hash value corresponds to the number of occurreoicg
such values (and correspondingly, fragments) orirthe
age, called the hash table. The values of the tatsh,
which exceed "1", correspond to the values of thshh
function, which are derived from the potential doates
(their position on the image is specified during second
run through the image). In this paper, the compnrat
complexity of such a solution (analysis of all theage
fragments) is mitigated by the method of constarcand
implementation of the hash function calculatiom¢si the
algorithm generalization to the case of using savesish
functions is trivial, it is not considered).

Thus, instead of pairwise comparison of all possi
fragments we propose to detect matching fragmesitgyu
hash table.

i

S

NS

— a maximum value (a hash table length2<Y);

— processing window parameterandb.

A quality indicator for hash functions and for the
gorithm (for a specific set of images) is the numbg
wrongly detected duplicates — collisions)( Diagrams
show the relative number of collisions, ixe= K/ MN.

For the experiments we used 3 hyperspectral images
without duplicates, obtained under AVIRIS prograro.

lgperform calculations we used a standard PC (C@aa

Q8300, 4 Gb RAM) with 64-bit Windows 8 OS.

For simplicity, we will denote the hash functiorsbd
on the bit projection — 1 o¥, and based on the modular
representation — 2 ar.

Figure 20 shows the dependencexobn parameters
axb of sliding processing window. As can be seen from
the diagram, hash function 2 demonstrates therbsstt.

0 00:

000

000

000!

= 000

0003

0 00:

~.

d
9x10

0007

0 B
9x9

11x11
axb

13x13 15x15

Fig. 20. The relationship between the relative numbe
of collisions and parametersxab

We developed an algorithm for undistorted duplicate

detection, which is based on the use of hash fomstof
analyzed areas. We used the following hash funstion

— bit projection (selection of fragment pixel bitsa
way to comply with a condition of physical realidp
of hash values);

— modular representation of the image fragmenteco
sponding to a rectangular template.

Construction of algorithm for undistorted duplica
detection is based on the selection of the stratteie-
ment, under which bits for hash generation arectzde
First, an array for storing the resulting field,j) OB is
formed. In the first step, far=0 the hash table of has
valuesHo(m, n, f) is constructed: image bit positions, us
to derive the hash value, are calculated undeseterted
structural element. Along with filling the hash tabthe
field t(i,]) is filled with values. In the next step, for1
we analyze only those positions of the processiig W
dow, where duplicates may be located, i.e. in viéwal-
culated valued(i,j) for r=0. At each iteration of the al
gorithm, the number of false duplicate detectiorli¢
sions) decreases. The iterative process stops, wWieer
number of collisions on™ iteration coincides with the
number of collisions onr1)" iteration, or when they
are not found.

The Study of Algorithm for Undistorted Duplicat
Detection. The key parameters of the proposed tuesh
tions are:

r

e

R
bd

E

Figure 21 shows the dependencexadn the number

of bits k, used to represent hash values. As can be seen

from the diagram, for all hash valugshas a tendency to
increase with the decreasekint should be noted that for
the hash function 2 the number of collisions insesa
slower than for the other two.

0.25

4

0.2

i\/‘

0.15
=
01
0.05
N | T | |
9x9 9x10 11x11 13x13 15x1t

axb
Fig. 21. The relationship between the relative
number of collisions and the number of hash valtge b
3.4 HSI Protection Against Introducing Distortioh o
"Geometrically Distorted Duplicate" Type

The existing algorithms for detecting geometrically
transformed duplicates [55, 56, 60] are based ati-pa
tioning the analyzed image into blocks (usually -non
overlapping), and their pair-wise comparison. ladt®f
block pixels, secondary features calculated byksdbat
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are invariant to transformations are commonly uskdn

comparing the blocks. The proximity of two bloclafiere

vectors under a certain criteria indicates the laitity of

two blocks, which may be a consequence of introdu
duplicates.

A lot of problems occur when using this approabk,
major ones are.

1. Block size selection. For a small block size thg
number of required block comparisons is unacceptd
high for practical implementation of the algorithFor a
large block size, the block may appear to be grehan
the duplicated area, which will lead to the impbiisy
of its detection.

2. Choosing the scheme for partitioning the image
into blocks. When using a partition without overlapping
duplicates located on the block boundary can stadeu
tected. The use of overlapping leads to a shamease in
the number of blocks.

3. Comparison algorithm selection. A direct com-
parison of each block pair in spatial or spect@hdin is
unacceptable from the computational standpoint.ain
ternative way is to use for comparison a small (carad
to the number of pixels in the block), number aftiees.

4. Selection of features, invariant to possible distor;
tions of the duplicated image fragment.

5. Selection of a decision rule for determining the
identity of blocks, and determination of its paraens,
i.e. parametric adjustment via existing samplesnafges
with duplicates.

For reliable detection of duplicated areas, the si
the analyzed block should not exceed the size efdiir
plicate (otherwise, the block will "capture" undigpkted
background, i.e. the original block and duplicatédif-
fer). At the same time a significant decrease ehtock
size (to several dozen pixels) will lead to a hngenber
of false similar areas detected pairwise, and wilentu-
ally, make the duplicate detection much more diffic
The block size should be smaller than the area a@ t@
detect, to ensure that for a minimum shift (by tepi of
the analyzed block, the block is in the duplicatedge
area.

Since the duplicated area form is a priori uncerti
would be optimal to use the block in the form dficle.
However, the use of fast spectral or recursiverélyos
for feature calculation makes it appropriate to sgeare
blocks. Moreover, the use of such algorithms (&gt
Fourier transform) makes it appropriate to use blsiz-
es, which are powers of two.

Speaking about the partitioning scheme, it shodd
noted that in case of simple image partition intmn
overlapping blocks for subsequent comparison, g@i-du
cate can appear in several blocks, covering omqdgra of
each block, and, therefore, remain undetected.

The most reliable, in terms of detection qualitygyw
is to compare each block with all possible (oveplag)
blocks.

Taking into account the problems stated above,
developed an algorithm for detecting geometricality-
torted duplicates on hyperspectral images withuses of

features invariant to affine transformations. WediBou-
rier-Mellin transform coefficients as features.

The proposed information technology is based on the

cefollowing principles, which provide the problem opt-
zation in "solution reliability - computational cqhexity"
coordinates:

— the use of Fourier-Mellin transform for calcutegi
features used for the block comparison (these rfesitare

blinvariant to rotation and scaling of the image fmagt;
the invariance to linear brightness transformatisreasi-
ly achieved by image block preprocessing);

—the use of scheme with block overlapping (which
improves algorithm reliability), and the sliding rdow
mode for recursive computation of the Fourier speut

J, (which reduces the computational complexity), foe t
duplicate detection.

The Study of Algorithm for Geometrically Distorted
Duplicate Detection. During the study on the sévisjt
of the developed algorithm to changes in the anfl®-
tation of duplicate embedding area, the resultsvshim
Fig. 22 were obtained.
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Duplicaterotation angle, degrees
Fig. 22. The dependence of the detection quality
on the rotation angle
As a quality criterion we selected the same coteri
as for the study of resampling detection algorithm.

As can be seen from Fig. 22, the developed alguarith
demonstrates a high precision invariance to thatioot
angle, since during the feature formation in aiis§dvin-
dow, their values are calculated via the inscribecle of
the window to avoid redundant pixels, which conité
substantial error, when features are formed viacihe
cumscribed circle or via the sliding window. Suchap-
proach yields better results in comparison with ekist-
ing results, demonstrating the successful detectfoge-
ometrically transformed duplicates, subjected t@mtion

bby an angle not exceeding®15

Conclusion

In this paper, methods of compression and protectio
hyperspectral remote sensing images, are propAsgen-
eral structure of the method for compression antkeption
of hyperspectral data, algorithms for speed staitn of
the compressed data stream generation, algorittums f
noise immunity enhancement, and spectral compaa@nt

WBroximation algorithms, that are well adapted far tise of
HGI-compression when solving hyperspectral image- st
age problem, are developed. We evaluated the #igori
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effectiveness, and also compared these HGI-cosipred
algorithms with previously developed, using thd figabit
images made by hyperspectrometers. The prospecis g
ing the HGI-compression for hyperspectral imageaste
problem solution are shown.

f
(10]
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modification, algorithms for digital watermark enabse
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tion, are proposed. The proposed algorithms fousbQ
digital watermarking preserve embedded informaiion

ul

of remote sensing data for GIS-ready informati@PRS
Journal of Photogrammetry and Remote Sensing Z&03):
239-258.

Gashnikov MV, Glumov NI. Hierarchical compriess for
hyperspectral image storage [In Russian]. Compuptic©
2014; 38(3): 482-488.

Gashnikov MV, Glumov NI. Hyperspectral imageposito-
ry using a hierarchical compression. 23-rd Intéonat Con-
ference on Computer Graphics, Visualization and @der
Vision proceeding 2015; 1-4. ISBN 978-80-86943-67-1
ISSN 2464-4617.

case of typical data conversion operations: congjwas | [12] SalomonD. Data Compression. The Complete reefe.

filtering, geometric correction, allocation of fragnts Springer-Verlag, 4ed; 2007. _

and two-dimensional sections of hyperspectral image | [13] Vatolin D, Ratushnyak A, Smimov M, Yukin V.2t com-

In the paper we have shown that, in comparison With pression methods. Archive program architecturegérand
L ! video compression [In Russian]. Moscow: DIALOG-MIFI

existing analogues, the developed methods are njuch 555,

more robust against watermark extraction by mednd §14] Pratt W. Digital image processing. Wiley, 48607.

brute force attack on the steganographic key. Tthes,| [15] Soifer VA, Chernov AV, Chernov VM, Chicheva MAcur-

average complexity of finding the correct steganpic sovVA, Gashnikov MV, Glumov NI, llyasova NY,

key by the attacker increased fron? it@rations for exist- Khramov AG, Korepanov AO, Kupriyanov AV, Myas-

ing protection algorithms to 1biterations for developed nikov EV, Myasnikov VV, Popov SB, Sergeyev VV. Com-

algorithms. Eutgr I_;nag\;/eAP{;)lg:As?/lngl, Pagcolll:O Methods and dlgos. Ed
For passive HSI protection we developed algorithm y Solter VA. erag, 2u10. .

for detection of four basic attack types: resanplttack T gaShn'kOV.MV' [Parameterization of nonlineaeltm pre-

. . . ictor for digital image compression [In Russianpn@uter
based on JPEG compression, undistorted duplicate [em Optics 2016; 40(2): 225-231. DOI: 10.18287/24127%1
bedding, and geometrically distorted duplicate emnbg 2016-40-2-225-231.
ding. The proposed methods demonstrate high quaflity [17] woods E, Gonzalez R. Digital Image Processigntice
data distortion detection and low computational ptax- Hall, 3ed; 2007.
ity. Experimental studies have shown the advantafgg [18] Wallace G. The JPEG Siill Picture CompressRiandard.
the developed algorithms over existing solutions. Communications of the ACM 1991; 34(4): 30-44.

Implementation of the proposed methods and algdd®] Sridevi M, Mala C., Sanyam S. Comparative gtod im-
rithms in systems of remote sensing data formaseor- alg(éforfgery and cogy-movte teschn'q“esl'zse.cond. ttorn |
age, and transmission over communication chaniseds) S“ c act’igr?;egé%gré A c;n(;i);)erN eaeg(;?ﬁi ?r?('j?: efn%g
important direction in security of information systs re- 715-723. ' ' ' '
lated to processing and analysis of visual inforomat [20] Lossless Multispectral & Hyperspectral Imagenres-

sion. Recommendation for Space Data System Stagdard
References _ - CCSDS 123.0-B-1. Blue B(F))ok; 1. Wasyhington, D.C.:

[1] Chang C. Hyperspectral Data Processing: AlgoriDesign CCSDS, 2012.
and Analysis. Wiley Press; 2013. [21] NianY, He M, Wan J. Lossless and near-losstzsnpres-

[2] Schowengerdt RA. Remote Sensing — Models and Mgth' ~ sjon of hyperspectral images based on distributedcs
ods for Image Processing. New York: Academic Press;  coding. Journal of Visual Communication and ImageR
1997. resentation 2015; 28: 113-119.

[8] Chang C. Hyperspectral imaging: techniquessfuectral de- | [22] valsesia D, MagliE. A novel rate control algom for
tection and classification. Springer; 2003. onboard predictive coding of multispectral and hgpec-

[4] Borengasser M., Hungate W, Watkins R. Hyperspe®e- tral images. |[EEE Trans. Geosci. Remote Sens. 2014;
mote Sensing — Principles and Applications. CRCs$r¢ 52(10): 6341—6355.

2004. o | [23] Multispectral Hyperspectral Data Compressiororking

[5] Chang C. Hyperspectral data exploitation: theand appli- Group. Sourcethttp://cwe.ccsds.org/sls/default.aspx
cations. Wiley-Interscience; 2007. [24] Consultative Committee for Space Data Systéd@SDS).

[6] Gashnikov MV, Glumov NI, Myasnikov VV, Chermna@w, Sourcexhttp:/www.ccsds.ong
Ivanova EV. Regiongl .Geographic Inform.a.tion SystemsIZS] Gashnikov MV, Glumov NI, Sergeyev VV. The ineagom-
for Ga§ Network Monitoring. Pattern Recognition amége pression method in real-time remote sensing [IrsRok
Analysis 2015; 25(3): 418-422. DOl 9th All-Russian conference “Mathematical methodspat:
10.1134/51054661815030062 . tern recognition” 1999 (Moscow); 160-163.

[71 ChanussotJ, Crawford M., Kuo B. Fo_reword te ®Bpecial [26] Gashnikov MV, Glumov NI, SergeyevVV. Compiiess
Issue on Hyperspectral Image and Signal Procesi&ifg: Method for Real-Time Systems of Remote Sensindp bt
Transactions on Geoscience and Remote Sensing 4010; ternational  Conference on Pattern Recognition 2000
48(11): 3871-387. , . (Barselona); 3: 232-235.

[8] ChangC, Chlqng S. Anomaly detecthn and dlaas:)n. for [27] Gashnikov MV, Glumov NI. Hierarchical grid erpolation
hyperspectral imagery. IEEE Transactions on Geoseiand for hyperspectral image compression [In Russiaonfiter
Remote Sensing 2002; 40(6): 1314-1325. Optics 2014; 38(1): 87-93. ISSN 0134-2452.

[9] BenzU, HofmannP,  WilhauckG, Lingenfelder|, 5q Gashnikov MV, Glumov NI. Hierarchical GRID &pola-
Heynen M. Multi-resolution, object-oriented fuzzpatysis tion under Hyperspectral Images Compression. Optica

710 Computer Optics, 2016, Vol. 40(5)



Hyperspectral remote sensing data compression.... shriev M.V., Glumov N.I., Kuznetsov A.V., MitekM.A., Myasnikov V.V., Sergeev V.V.

(29]

(30]

(31]

(32]

(33]

(34]

(39]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

(44]

Memory and Neural Networks (Information Optics) 201
23(4): 246-253. ISSN 1060-992X.

Gashnikov MV, Glumov NI, Sergeev VV. A hierhical
compression method for space images. AutomatiorReaad
mote Control 2010; 71(3): 501-513. ISSN: 0005-1179.
Gashnikov MV, Glumov NI. Onboard processinghgper-
spectral data in the remote sensing systems bashaar-
chical compression. Computer Optics 2016; 40(43-5E11.
DOI: 10.18287/2412-6179-2016-40-4-543-551.

Glumov NI. Improving Noise Immunity of Transssion of
Compressed Digital Images. Pattern Recognitionlaradje
Analysis, 2003; 13(2): 273-276.

Lin S, Costello D. Error Control Coding: Fumdentals and
Applications, second edition. New Jersey: Prerita#; inc.
Englewood Cliffs; 2004.

SpecTIR Data — Advanced Hyperspectral and (e So-

lutions. Corporate Headquarters SpecTIR Remoteirgens

Source: (Division /I http://www.spectir.com/free-datal

samples
AVIRIS Data — Ordering Free AVIRIS Standard Dal
Products. Jet Propulsion Laboratory.  Sourq

(http://aviris.jpl.nasa.gov/data/free_data.html

Kbaier I, Belhadj Z. A novel content preseryimatermark-
ing scheme for multipectral images. Information &@wm-
munication Technologies (ICTTA'06)%2006; 1: 322-327.
Minguillén J. Evaluation of copyright protecti schemes
for hyperspectral imaging. Remote Sensing. Inteonati
Society for Optics and Photonics 2004: 512-523

Jing L, Zhang Y, Chen G. Zero-watermarking émpy-
right protection of remote sensing image. Signab-P
cessing (ICSP 2008. 9th International Conference
2008: 1083-1086.

Wang X, Guan Z, Wu C. A novel information Mmdi
technique for remote sensing image. Advanced Data M
ing and Applications 2005: 423-430.

Kaarna A, Toivanen P. Digital watermarking sgectral
images in PCA/Wavelet-transform domain. Geoscie
and Remote Sensing Symposium (IGARSS'03) Procs
ings 2003; 6: 3564-3567.

Kaarna A, Parkkinen J. Digital watermarking sgfectral
images with three-dimensional wavelet transformadm
Analysis 2003: 320-327

Melgani F, Benzid R, De Natale F. Near-losskgsread spec-
trum watermarking for multispectral remote sensingges.
Journal of applied remote sensing 2007; 1(1): ZRII7.
Panyavaraporn J, Rangsanseri Y. Digital Imaghyiage
Watermarking of Remote Sensing Images. 26th As
Conference on Remote Sensing and 2nd Asian Sf
Conference ACRS2005 2005; 1: 1145-1150.

Barni MF, Bartolinib F, Cappellinib V, Maglic E,
Olmoc G. Near-lossless digital watermarking for yop
right protection of remote sensing images. Geosei@amd
Remote Sensing Symposium 2002; 3: 1447-1449.
Doérr G, Dugelay JL. Security pitfalls of fradby-frame
approaches to video watermarking. IEEE Trans-ast@an

[45]

[46]

[47]

[48]

[49]

- [50]

a[51]

[52]

(53]
bn)
[54]

[55]
ce

ed-
(56]

[57]
[58]

an
adedl

[60]

Signal Processing 2004; 52(10): 2955-2964.

Delp EJ, Lin ET. A review of fragile image veatarks.
Proc. ACM Multimedia and Security Workshop 1999; 1:
25-29.

Tirkel AZ, Hall TE. A unique watermark for emeimage.
IEEE Multimedia 2001; 8(4): 30-37.

Van Schyndel RG, Tirkel AZ, Svalbe ID. Key inund-
ent watermark detection. IEEE International Confeeen
on Multimedia Computing and Systems 1999; 1: 580-585
Van Schyndel RG, Tirkel AZ, Svalbe ID, Hall TBs-
borne CF. Spread-Spectrum Digital Watermarking Con-
cepts and Higher Dimensional Array ConstructionsstFi
International Online Symposium on Electronics Eegin
ing 2000: 1-13.

Van Schyndel RG, Tirkel AZ, Svalbe ID, Hall TBs-
borne CF. Algebraic construction of a new classuEsit
orthogonal arrays for steganography. Proc. SPIE7 365
1999: 354-364.

Chen L, Gong G. Communication system securitR CC
press; 2012.

Mitekin VA, Timbay EIl. A new watermarking segpuce
generation algorithm for collision-free digital \eatark-
ing. Intelligent Information Hiding and MultimedBignal
Processing (IIH-MSP) Eighth International Conferenne
2012: 256-260.

Mitekin VA, Fedoseev VA. A new method for high
capacity information hiding in video robust agaitesin-
poral desynchronization. Seventh International Qenfe
ence on Machine Vision (ICMV 2014), International-So
ciety for Optics and Photonics 2015: 94451A-94451A.
Mahdian B, Saic S. A bibliography on blind fnetls for
identifying image forgery. Signal Processing: Image
Communication 2010: 389-399.

Fridrich J, Soukal D, Lukas J. Detection ofpgemove
forgery in digital images. Proceedings of Digitarénsic
Research Workshop, Cleveland 2003: 55-61.

Mahdian B, Saic S. A cyclostationarity anatyapplied to
image forensics. IEEE Workshop on Applications of
Computer Vision (IEEE WACV), Snowbird 2009: 1-6.
Farid H. Exposing digital forgeries from JPE§Bosts.
IEEE Transactions on Information Forensics and &gcu
2009; 1(4): 154-160.

Ng TT. Camera response function signature fgital fo-
rensics - part Il: signature extraction. IEEE Wdndgs on
Information Forensics and Security 2009: 161-165.
Popescu AC, Farid H. Exposing digital forgsriey de-
tecting traces of re-sampling. |IEEE TransactionsSag
nal Processing 2005; 53(2): 758-767.

Poilpre MC, Perrot P, Talbot H. Image tamperdaec-
tion using Bayer interpolation and JPEG compression.
Proceedings of the 1st International Conferenceaerk
sic Applications and Techniques in Telecommunicetjo
Information, and Multimedia Workshop 2008: 1-5.
Bayram S, Sencar HT, Memon N. A survey of copgve
forgery detection techniques. Proceedings of thEEIE
Western New York Image Processing Workshop 2009:
538-542.

Authors’ information

Mikhael Valeryevich Gashnikov (b. 1975) graduated from S.P. Korolyov SamaraeStstrospace University

(SSAU), holds a candidate's degree in Engineefiugrently he is an associate professor at the Gmonatics and In-
formation Security sub-department at Samara Nadti@aaearch University. He has 80 scientific puliiaas, including
30 scientific papers and 2 monographs (with coas)hdlis research interests currently focus on enegmpression,
space image processing, and geoinformation techiesoE-mailmgash@geosamara.ru

Computer Optics, 2016, Vol. 40(5)

711



Hyperspectral remote sensing data compression.... shr@eov M.V., Glumov N.l., Kuznetsov A.V., MitekM.A., Myasnikov V.V., Sergeev V.V.

Nikolay Ivanovich Glumov (b. 1962) graduated with honours (1985) from 8&tolyov Kuibyshev Aviation In-
stitute. He received his Candidate in Technics 4)3gree from Samara State Aerospace UniversBA(S. He is
the head of research laboratory of advanced teogied of remote sensing at Samara National Reséhmeersity and
the senior researcher at the Image Processingrydtestitute of RAS — Branch of the FSRC “Crystgiphy and
Photonics” RAS. His current research interestsuahelimage processing and pattern recognition, isagenpression,
digital images forming systems modelling. He hagertban 100 publications, including more than 4érddic papers,
2 monographs (in co-authorship). E-maiflu@geosamara.ru

Andrey Vladimirovich Kuznetsov (b. 1987) graduated with honours (2010) from Sam@tate Aerospace
University (SSAU), majoring in Applied Mathematiaad Informatics. He studied as a post-graduateeatuat SSAU
from 2010 and received his PhD in technical scierine2013. Nowadays he is a senior researchebatdsory of ad-
vanced technologies of remote sensing at SamarardhiResearch University and a researcher at InRageessing
Systems Institute of the RAS— Branch of the FSRQys@llography and Photonics”. His research intsrese
currently focused on image processing and analypittern recognition, digital image forgery detewti
geoinformatics. He has 37 publications, includirg) stientific papers and 1 monograph (with coaudhdeEsmail:
kuznetsoff.andrey@gmail.coitVeb-pagehttp://nil97.ssau.ru/employee/detail.php?ID=35

Vitaly Anatolyevich Mitekin (b. 1983) graduated from S.P. Korolyov SamaraeSAatrospace University (SSAU),
majoring in Applied Mathematics and Informatics2006. He received his Candidate in Technical Seisrdegree
from Samara State Aerospace University in 2009r&2uly he is a senior researcher at the laboratbagvanced tech-
nologies of remote sensing at Samara National Relsddniversity and a researcher at Image ProcesSysiems
Institute of the RAS— Branch of the FSRC “Crystgtlmphy and Photonics”. His scientific interestdude image pro-
cessing and recognition, steganography and stegasiatryptography. Emaimitekin@gmail.com

Vladidav Valerievich Myasnikov (b.1971), graduated (1994) from the S.P. Korolyam@&ra State Aerospace Uni-
versity (SSAU). He received his PhD in Technicaesces (2002) and DrSc degree in Physics & MatB98R He
worked in Image Processing Systems Institute of RASG SSAU. At present, he is a leading researdhfreaSamara
University. The area of interests includes digsighals and image processing, geoinformatics, heetavorks, computer
vision, pattern recognition and artificial inteltigce. He’s list of publications contains about 26@ntific papers, includ-
ing 100 articles and 2 monographs. He is a membBRussian Association of Pattern Recognition andgenAnalysis.
Email: vmyas@geosamara.tiVebsite http://www.ipsi.smr.ru/staff/MyasVV.htm

Vladidav Victorovich Sergeyev (1951 b.), graduated (1974) from S.P. Korolyov {gihev Aviation Institute
(presently, Samara National Research Universityskartly, Samara University)). He received his Gdatd's degree
in Technical Sciences in 1978 and DrSc degree ith&aatics and Physics in 1993. At present, he eéshibad of
Geoinformation Science and Information Security-dapartment at Samara University, also holding r&tpae posi-
tion as the head of a laboratory at the Image Reitg Systems Institutedf the RAS — Branch of the FSRC “Crystal-
lography and Photonics” RAS. The areas of reseatehests include digital signal and image progegsjeoinformat-
ics and pattern recognition. Emaikerg@geosamara.ru

Received October 6, 2016. The final version — @etab, 2016.

712 Computer Optics, 2016, Vol. 40(5)



