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Introduction 

Master equations for the density matrix of a quantum 
dynamical system (QDS) interacting with the environ-
ment are widely used in atomic spectroscopy, laser phys-
ics, nonlinear optics [1]. For the description of spontane-
ous relaxation, the environment is modeled by an infinite 
set of harmonic oscillators in a thermodynamic equilibri-
um, characterized by the temperature Т [2, 3].  

In recent years, a new direction has been intensively 
developing – the «noisy» optical spectroscopy [4, 5]. The 
basis of this direction is the study of a QDS response on 
an external stochastic field. The study of related issues is 
actual today because of the experiments in the spectros-
copy of isolated molecules [6] and development of quan-
tum information and quantum computing theories [7 – 9]. 

In [10], the nonequilibrium density matrix method is 
used for studying relaxation of a QDS interacting with a 
heat bath and an external stochastic field. The balanced 
type master equations describing levels population evolu-
tion were obtained, and the probabilities of transitions in 
a three-level QDS are calculated. In [11, 12], the radia-
tion line shape is calculated for a two-level system inter-
acting with dichotomous noise.  

In [13], the master equation was reduced to a Fokker-
Planck equation by the method of generalized coherent 
states. The solution of the Fokker-Planck equation is used 
for calculation of the probability for the atom to be in an 
excited state and shapes of radiation lines in presence of a 
delta-correlated process. Relaxation of a three-level atom 
in a heat bath and an external stochastic field is investigat-
ed in [14] for a delta-correlated process and a Kubo-
Anderson process. Radiation line shapes are obtained in 
the explicit form, and the influence of adjacent transitions 
is showed. In [15], the dependence of a solution of the 
Fokker-Planck equation describing relaxation of a two-
level atom in a stochastic field on the order in which the 
averaging over realizations of the stochastic field is applied 
to the QDS is investigated. 

The present paper goal is to obtain the master equation 
averaged over stochastic field realizations, to calculate radia-
tion lines shapes employing it, and to compare the shapes 
with the ones obtained in [14] by perturbation theory.  

1. Problem formulation 

In this paper we consider relaxation of a stationary 
three-level atom interacting with a photon heat bath and 

an external stochastic field. We propose a new approach 
that allows investigation of the interaction of the atom 
with the stochastic field in the same order of perturba-
tions theory as used for the interaction with the photon 
heat bath. 

The model Hamiltonian of a quantum system consist-
ing of a three-level atom, a photon heat bath, and a sto-
chastic field is given by 

ˆ ˆ ˆ ˆ ˆ
A T AT stH H H H H= + + + , (1) 

where ĤA is the Hamiltonian of the three-level atom 

0 1 0 2
ˆ ˆ ˆ

AH H H= ω + Ωℏ ℏ , (2) 

ĤT is the Hamiltonian of the photon heat bath, which is 
modeled by an infinite set of harmonic oscillators, 
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ĤAT is the Hamiltonian of interaction between the atom and 
the heat bath, written in the rotating wave approximation, 
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Ĥst is the Hamiltonian of interaction between the atom 
and the stochastic field 

( )
( )

1 2
ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) . . .

stH t H t H

t J t K t L h c+ + +

= Ω + Ξ +

+ ξ + ζ + λ +

ℏ

ℏ

 (5) 

Here, ωk is the frequency of the k-th mode of the heat 
bath field; b̂k and b̂k

+ are creation and annihilation opera-
tors of the k-th mode of the heat bath; f1k, f2k and f3k are 
constants of the atom-field interaction with the k-th mode 
of the heat bath; Ĥ1 and Ĥ2 are the diagonal operators de-
fining energy levels of the atom; Ĵ±, K̂± and L̂± are transi-
tion operators between atomic energy levels (Fig. 1); Ω(t) 
and Ξ(t) define random shifts of atomic energy levels; 
ξ(t), ζ(t), and λ(t) are random functions, proportional to 
the stochastic field intensity and defining transitions be-
tween atomic energy levels. The stochastic processes de-
scribed by the random functions Ω(t), Ξ(t), ξ(t), ζ(t), and 
λ(t) are assumed to be ergodic.  

In the interaction picture by the atomic subsystem and 
the heat bath, the interaction energy operator is given by 

( ) ( ) ( )ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

A T A T

i i
H H t H H t
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Fig. 1. Notation of the three-level atom transition operators 

Interaction between the atom, the heat bath, and the 
stochastic field is described by the Liouville-von Neu-
mann equation [1,16]: 

( )ˆˆ ˆ( / ) ,aT aTi t V t ∂ρ ∂ = ρ ℏ . (9) 

A formal integration of (9) gives 

( ) ( ) ( ) ( )
0

0
ˆˆ ˆ ˆ( / ) ' , ' d '

t

aT aT aT

t

t t i V t t t ρ = ρ − ρ ∫ℏ . (10) 

Substituting (10) in (9), we obtain 
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Using the irreversibility approximation and the sec-
ond order of perturbation theory for the small interaction 
V̂(t), the equation (11) can be written for the reduced den-
sity operator  
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in the following form 
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where γ1, γ2, and γ3 are damping constants of the atomic 
subsystem 

0 0

2

1 1 ( / 2)2 ( )
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Here, g(ωj) is the density of states in the heat bath; N1, 
N2, and N3 are average numbers of photons in the heat bath 
on the transitions 2 → 1, 3 → 2, and 3 → 1 respectively: 
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Averaging Eq. (13) over realizations of the stochastic 
field, one can obtain 
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where 
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In derivation of Eq. (20) we assumed that average 
values of all random functions and the two-point correla-
tion functions not presented in (22) are equal to zero. We 
also discarded terms of higher degree of smallness in re-
spect to V̂(t), which appear when expending average val-
ues of expressions that contain a product of a random 
function and the density matrix operator ρ̂. 

2. Solution method 

In the matrix representation, Eq. (20) takes the form 
of a system of ordinary differential equations for ele-
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ments of the density matrix <ρ̂(t)>. Matrix realization of 
the operators Ĵ+, K̂+, L̂+, Ĥ1, and Ĥ2 can be selected to be 
the following: 
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Substitution of (23) in (20) gives  
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3. Calculation of radiation line shapes 

By definition, the radiation line shape of an atom on 
the transition i→j is calculated as 

( ) ( ) ( )
0

ˆ ˆRe 0 di t
ijg e A A t t

∞

ω
+ −ω = ∫ , (33) 

where by the angle brackets a two-point correlation func-
tion is denoted; Â+ and Â- are transition operators between 
the levels i and j.  

The two-point correlation function of a creation oper-
ator Â+ and an annihilation operator Â- can be calculated 
by a shift of the initial conditions for the atomic subsys-
tem density matrix [17]: 
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For example, the correlation function of operators Ĵ+ and 
Ĵ- can be written 
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Other correlation functions have similar form. 
In the case when the stochastic field is given by a del-

ta-correlated process, the integrals of correlation func-
tions (22) become  

( )
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1 12( / ) d ( / )

t

t

K t t tα α α α α= σ ν δ − = σ ν∫ , (36) 

where α = ξ, ζ, λ, Ω, and Ξ; σα2 are the variances of corre-
sponding random processes; να are frequencies of exter-
nal influences on the considered system. 

Finally, the radiation lines shapes have Lorentzian 
form: 
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12 0 0 23 0 13 0 0( /2), ( /2), .ω = Ω + ω ω = ω ω = Ω + ω (41) 

To obtain radiation lines shapes of the atoms with one 
of its transitions forbidden by the optical selection rules it 
is necessary to set in Eq. (38) - (40) equal to zero the con-
stants of the forbidden transition. Further, everywhere, 
when considering atomic configurations, for a V-atom the 
constants δ2, η2, and σζ have to be taken equal to zero, for 
a Ξ-atom – the constants δ3, η3, and σλ, for a Λ-atom – the 
constants δ1, η1, and σξ. 

In [14] we obtained radiation line shapes for a three-
level atom interacting with a heat bath and a weak sto-
chastic field. We used perturbation theory to consider the 
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impact of the interaction between the atom and the sto-
chastic field. Analysis shows that the radiation lines 
shapes in [14] equal to the first two terms in the expan-
sion series of (37) by the stochastic field intensity. 

Fig. 2a and b illustrate the differences between the 
shapes of the radiation line of a V-atom on the transition 
2 → 1 obtained by perturbation theory in [14] and by 
Eq. (37). The following values of parameters are used: 
Ω0/ω0 = 2, δ1/ω0 = 0.5, δ2/ω0 = 0, δ3/ω0 = 0.5, η1/ω0 = 0.5, 
η2/ω0 = 0, η3/ω0 = 0.5, σΩ/ω0 = 0.1, σΞ/ω0 = 0.1, ω0/νΩ = 1, 
ω0/νΞ = 1, ω0/νξ = 0.7, ω0/νζ = 0, ω0/νλ = 0.7, σζ/ω0 = 0. The 
stochastic field intensity is varied by parameters σξ and σλ.  

а)  

б)  
Fig. 2. Shapes of the radiation line of a V-atom on the transition 

2 → 1 for the values of the delta-correlated process intensity: 
σξ/ω0 =  0.4 and σλ/ω0 =  0.4 (a), σξ/ω0 =  0.7 and σλ/ω0 =  0.7 (b). The 
line 1 denotes the radiation line shape when the field is absent, the 
line 2 – the radiation line shape obtained by perturbation theory 

in [14], the line 3 – the radiation line shape given by (37) 

In the case when the stochastic field can be represent-
ed by a Kubo-Anderson process, Eq. (22) takes the form 

( )1

0

2
1d

t
t t

t

K e tα−ν −
α α= σ∫ , (42) 

where notation (41) is used.  
When the frequencies of collisions are sufficiently 

high, i.e. max (σα2 / να2) << 1 and (ω0+Ω0) / max (να) << 1, 
contours of the radiation lines are Lorentzian 

( ) ( )( )2
2(1/ )( / [ ])ij ij ij ij ijg ω = π Γ Γ + ω − ω + ∆ω , (43) 

where Γij are given by the same expressions as in the case 
of a delta-correlated process (38) – (40), ωij are defined 
by (41), ∆ωij represents a shift of the central peak  
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σ σ σ
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2 2 2
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σ σ σ
∆ω = −ω + ω + ω

ν ν ν
, (45) 

2 2 2

13 12 23 132 2 2
2ξ ζ λ

ξ ζ λ

σ σ σ
∆ω = ω + ω + ω

ν ν ν
, (46) 

where notation (41) for the transition frequencies is used. 
In Fig. 3a and b, we show the differences between the 

shapes of the radiation line of a V-atom on the transition 
2→1 given by Eq. (43) and obtained in [14]. Here, the fol-
lowing values of parameters are used Ω0/ω0 = 2, δ1/ω0 = 0.5, 
δ2/ω0 = 0, δ3/ω0 = 0.5, η1/ω0 = 0.5, η2/ω0 = 0, η3/ω0 = 0.5, 
σΩ/ω0 = 0.1, σΞ/ω0 = 0.1, ω0/νΩ = 0.1, ω0/νΞ = 0.1, 
ω0/νξ = 0.1, ω0/νζ = 0, ω0/νλ = 0.1, σζ/ω0 = 0. Parameters σξ 
and σλ specify the intensity of the stochastic field. 

a)  

б)  
Fig. 3. Shapes of the radiation line of a V-atom on the transition 

2 → 1 for the values of the Kubo-Anderson process intensity: 
σξ/ω0 =  2 and σλ/ω0 =  2 (a), σξ/ω0 =  1 and σλ/ω0 =  1 (b). The line 1 
denotes the radiation line shape when the field is absent, the line 2 
– the radiation line shape obtained by perturbation theory in [14], 

the line 3 – the radiation line shape given by (43) 

The proposed method of averaging of specific realiza-
tions of the random processes Ω(t), Ξ(t), ξ(t), ζ(t), and λ(t) 
leads to a zero contribution from the first term in the right 
part of (11) into the final expression for the master equation 
(20), which describes only relaxation processes in the con-
sidered case. The external stochastic field acts like a heat 
bath, which is reflected in Eq. (20). Here, the constants de-
scribing the photon heat bath and the correlation functions of 
the stochastic fields are included in the same way.  

This leads to the situation when the equations for the 
diagonal density matrix elements (24), (28), (32) form a 
closed system, and the equations for the non-diagonal el-
ements are decoupled. As a result, the radiation lines 
shapes for a delta-correlated process (37) and a Kubo-
Anderson process (43) are Lorentzian.  
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The finiteness of the correlation time for a Kubo-
Anderson process lead to a shift of the center of a radiation 
line shape by ∆ωij, which is dependent on the resonance fre-
quencies of atomic transitions and parameters of the stochas-
tic field. Numeric modeling of the obtained results for radia-
tion line shapes and comparing them with the results from 
[14], derived with help of perturbation theory, show that the 
radiation line shapes are in good agreement in the area of va-
lidity of the perturbation theory. Increasing of the stochastic 
fields intensity lead to growing difference between the Lo-
rentzian line shapes (37) and (43) and the radiation line 
shapes from [14], the emergence of a valley (Fig. 2b) and 
significant deformation (Fig. 3b). 

Conclusion 
In the present paper, the efficiency of the method of 

averaging over stochastic fields realizations at the stage 
of deriving of the master equation is showed. The method 
is used for describing relaxation of a QDS interacting 
with a photon heat bath and an external stochastic field, 
which can model the stochastic character of the dipole-
dipole interaction between the QDS and the environment 
or a fluctuating component of the broadband laser radia-
tion. The exact solutions are obtained. A delta-correlated 
process and a Kubo-Anderson process are examined. Ex-
plicit expressions for radiation lines shapes, containing 
parameters of the stochastic processes, are derived. It is 
showed that the radiation lines shapes are Lorentzian. For 
the Kubo-Anderson process an explicit expression for a 
shift of the center of the Lorentzian contour is obtained. 
The presented approach allows to define the times of lon-
gitudinal (T1) and transverse (T2) relaxation of a three-
level atom in a stochastic field and also to find the rela-
tionship between T1 and T2. It will be the subject of our 
further research.  
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