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Introduction
It is possible to attain a considerably higher effi-
ciency in the use of earth remote sensing (ERS) 
data by conducting a detailed analysis of the data 
at different wavelengths [1 – 3]. To these ends, 
compact imaging hyperspectrometers with high 
spatial and spectral resolution have been de-
s ig n e d .  P r i o r  to  th e  a dve n t  o f  th e  i m ag i ng 
s p e c tro m e ters ,  th e  re f l e c t i o n  a n d  ra d i a t i o n 
s p e c tra  o f  th e  E a r th  s u r fa c e  we re  ra re ly 
u s e d  a s  i d e n t i f i c a t i o n  m a rke rs  [ 1  –  4 ] ,  a l -
th o u gh  th e y  h a d  b e e n  we l l  k n ow n  a n d  s tu d -
i e d  fo r  d e c a d e s .  Po o r  ge o m e tr i c  re s o l u t i o n 
o f  th e  a i rb o r n e  s p e c tro m e te rs ,  th e i r  ab i l i ty 
to  p rov i d e  d a ta  o n ly  a l o ng  a  f l igh t  p a th  a n d 
f ro m  ex te n d e d  g ro u n d  o b j e c ts  m a d e  s u c h 
s p e c tra  p o o rly  s u i te d  fo r  th e  p u r p o s e .  T h e 
a dve n t  o f  i m ag i ng  s p e c tro m e te rs  h a s  b e -
c o m e  p o s s i b l e  d u e  to  a dva n c e s  i n  te c h n o l -
o g y :  d eve l o p m e n t  o f  m a tr i x  re c e ive rs  a n d 
p o lyc h ro m a to rs  w i th  h igh  s p e c tra l  re s o l u -
t i o n .  I m ag i ng  s p e c tro m e te rs  a re  m a d e  u p 
o f  two  s ys te m s :  ( 1 )  a n  o p t i c a l  s ys te m  th a t 
b re aks  d ow n  th e  s p a t i a l  re g i o n  u n d e r  a n a l -
ys i s  i n to  a  s e t  o f  a d ja c e n t  p o i n ts  a n d  ( 2 ) 
a n  i m ag i ng  s p e c tro m e te r  th a t  d e c o m p o s e s 
th e  re g i s te re d  e l e c tro m ag n e t i c  ra d i a t i o n 
i n to  s e p a ra te  s p e c tra l  bandwidths. Thus, an 
imaging spectrometer forms a multi-dimension-
al spatial-spectral image with every image pixel 
having its own spectrum. Such an image is called 
a data cube, with two dimensions containing the 
terrain image on a surface and the third dimension 
containing the image spectral properties. State-

of-the art imaging spectrometers have a spectral 
resolution of 1.8 – 2.0 nm, sensing spectral char-
acteristics of the underlying terrain found in the 
instruments’ instantaneous viewing field (1 mrad 
in airborne spectrometers). 
For particular purposes, different types of 
imaging hyperspectormeters are utilized, in-
cluding dispersion, filtering and interference 
hyperspectrometers. Various schemes of hy-
perspectrometers used for earth remote sens-
ing can be found in Ref. [5–31].  The majority 
of tasks can be solved using a conventional 
dispersion hyperspectrometer. A detailed de-
scription of a compact imaging spectrometer 
(COMIS) mounted on board a Korean micro-
satellite STSAT3 can be found in Ref. [7 –10]. 
The microsatellite of size 85x82x100-cm has a 
weight of 150 kg. Alongside the spectrometer, 
the satellite carries a multi-purpose infrared 
imaging system (MIRIS) intended to sense the 
Galaxy in the IR range. 
The dispersive component of the spectrome-
ter may be in the form of both a prism and 
a diffraction grating. An obvious advantage 
of the diffraction grating over the prism is its 
compactness. The imaging spectrometers that 
employ the diffraction grating as a dispersive 
component are usually based on the Offner or 
Dyson scheme [7–31]. 
In this work, we model the performance of an 
Offner hyperspectrometer using a geometri-
cal optics approach, comparing the disper-
sive characteristics of prism-based and grat-
ing-based schemes. 
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1. Mathematical tools to simulate the performance 
of a hyperspectrometer in the geometrical optics 

For a hyperspectral datacube [2, 3] to be generated, 
images obtained by means of hyperspectral facilities 
need to undergo processing and filtering procedures. 
This requires the knowledge of a variety of instrument 
functions, such as the point spread function. When us-
ing the hyperspectral equipment, an image pixel turns 
into a line, with each pixel of the latter containing 
spectrum-related data. 
To be able to calculate the intensity distribution in the 
focal region it is required to trace the rays in the optical 
system. The hyperspectrometer is made up of a tele-
scopic component and a hyperspectral unit (Fig. 1).
The scheme of an Offner spectrometer is composed 
of three mirrors, an input slit, and an image plane 
(Fig. 1). The input slit is located in a plane perpendic-
ular to the z-axis, passing through curvature centers 
of all three mirrors. The first and third mirrors have 
radius R, the second mirror has radius R/2. In some 
schemes, the first and third mirrors are designed as a 
single mirror (Fig. 1). An outgoing ray from the source 
incident on the first mirror experiences reflection 
and falls onto a grating located on the second convex 
spherical mirror. Then, the ray is reflected from the 
third mirror before coming to the registration plane. 
Design techniques for the telescopic component have 
been described elsewhere, e.g. see [32]. The aim of this 
work is to perform geometric-optical modeling of the 
hyperspectral unit.  

Fig. 1. Ray tracing in an optical setup. 

Intersection of the ray with the first mirror
Let there be a ray reflected from a spherical surface
2 2 2 2 0x y z R    . (1)

The ray is assumed to outgo from point x0, y0, 0, ar-
riving at point u1,

 v1,
 Z found at the surface of the first 

sphere. The unit vector is given by 
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The normal vector is  
     1 1 1 1 1 1 1 1 1 1N u v r u v u i v j Z u v k      

   
. (5)

The normalized vector is 
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The reflection law in the vector form reads as 
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, (9)
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The unit vector of the reflected ray takes the form:
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   (11)

Substituting the relations for the unit vector of the in-
cident ray and the normal vector yields:  

  0 1 0 11 1
1 1 1

1 10 1 0 1

2
r r r rr rs u v

r rr r r r

      
   

   


    . (12)

In this case, the ray transform takes the form: 
     1 1 1 1 1 1 1 1r u v l r u v s u v l     

 
. (13)

Intersection of the ray with the second sphere
Following the reflection at the first sphere, the ray 
intersects the second sphere, experiencing reflection. 
The equation of the second sphere is 

 2 0F r 


. (14)

For a sphere of radius / 2R , the equation takes the form:

   
2

2 0
4
RF r r r   

  
. (15)

The intersection point with the ray is derived from the 
condition 

  2 1 1 0F r u v l  


, (16)

   
22
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4
Rr u v s u v l 

 
 

    
 

. (17)

This equation can be reduced to a quadratic form 

     
2

2 2
1 1 1 1 1 1 1 1 1 1 12 0

4
Rl r u v s u v l r u v 

 
 

       
 

. (18)

Solving Eq. (18) for 1l , the intersection point with the 
second sphere is given by 

   2 1 1 1 1 1 1 1r r u v s u v l   
  

. (19)
The intersection point with the second sphere is given 
by the coordinates 2 2( )u v : 
     2 2 2 1 1 1 1 1 1 1u v r r u v s u v l       

  
.

The unit vector of the ray reflected from the second 
sphere is 
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    (20)

2 2 2( )n u v


is the normal to the second surface drawn 
at the intersection point 2 2( )u v after reflection from 
the first surface. With a diffraction grating located on 
the second sphere, there are several reflected rays. The 
diffraction grating is a particular case of a diffractive 
optical element (DOE) on a curvilinear surface. In 
Section 2, the general theory of diffraction of light by a 
DOE located on a curvilinear surface is set forth. 
Intersection of the ray with the third sphere 
Following reflection from the second sphere, the ray 
intersects the third sphere, experiencing reflection. 
The ray reflected from the second sphere is given by  

     2 1 1 1 1 1 1 1 2 2 2r r u v s u v l s u v l     
   

. (21)
The intersection with the third sphere of radius R is 
described by the equation: 

     
2 2

1 1 1 1 1 1 1 2 2 2 2 0r u v s u v l s u v l R 
 
 

      
  

. (22)
Solving Eq. (22) for l2, we get the intersection point 
with the third sphere of radius R . The coordinates

3 3( )u v  of the intersection point with the third sphere 
are derived from the relation: 

   
   

3 3 3 1 1 1

1 1 1 1 2 2 2 2 .

u v r r u v
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   (23)

The unit vector of the ray reflected from the third 
sphere is 
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3 3 3( )n u v


 is the normal to the third sphere of radius R  
drawn at the point of intersection of the ray reflected 
from the second surface at point 3 3( )u v . 
Ray intersection with the output plane 
Following reflection from the third sphere, the ray in-
tersect the output plane. The ray reflected from the 
third sphere is described by the equation  
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2 2 2 2 3 3 3 .

r r u v s u v l

s u v l s u v l
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The intersection with the output plane is given by
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    (26)

Solving Eq. (26) for l3, the point of intersection with 
the output plane is given by   

   
   
1 1 1 1 1 1 1

2 2 2 2 3 3 3 3 .
outr r u v s u v l

s u v l s u v l

    

   

  

   (27)

Considering that 2 2( )u v  and 3 3( )u v  depend on the 
coordinates of the point of ray intersection with the 
first sphere, the coordinates of the point of intersec-
tion with the output plane is a function of u1,

 v1:

 1 1out outr r u v 
 

. (28)

Calculating the illuminance within a geometrical optics
approach 
In this section, we calculate the field from an optical 
element located on a curvilinear surface in a plane 
( )x y   found at distance z from the origin.
The energy conservation law is given by

     
 
1 1 0 1 1 1 1 1 1d d

d d ,

u vI u v r r s u v n u v u v

I x y x y

 
  
 

       

 

   
 (29)

   1 1outx y r u v 
 
 

  


, (30)

where l is the distance from the ray output point to the 
ray input point, and 2S


is the direction of the outgoing 

ray from the surface. 

1 1( )T u v  is the transmission coefficient for the ray that 
intersects the first sphere at point 1 1( )u v . Then, mak-
ing use of the property of the Dirac-function, the il-
luminance in the plane can be given by  

     

 
1 1 0 1 1

1 1 2 1 1 1 1( ( ) )d d .

out

u v

I r r r u v I u v

T u v r r S u v N u v

         
     

    

 

    (31)

For practical purposes, when calculating Eq. (31) the 
Dirac -function is replaced with the approximate re-
lation: 2 2

2( , ) exp x yx y a
 

    
. (32)

2. Asymptotic methods for calculating a coherent 
field from a DOE located on a curvilinear surface 

using the scalar theory
Let us analyze diffraction by a DOE located on a 
curvilinear surface and having a zone structure. 
Assume a diffractive microrelief coated on a curvi-
linear surface. Let the surface be described by the 
equations:  

( ) ,
( ) ,
( ).

x x u v
y y u v
z z u v

 
  
  

 (33)

In the surface vicinity, we can introduce the curvilinear 
coordinates   

2 ( ) ( ) xx X u v x u v N t     , (34)

2 ( ) ( ) yy Y u v y u v N t     , (35)

2 ( ) ( ) zz Z u v z u v N t     . (36)
Designate the permittivity in the surface vicinity as  

   2( ) ( ) exp , ,nu v t g t ikn u v k
n


      


  (37)

where  is the wavelength. In a number of cases, the 
physical meaning of the function ( )u v   coincides 
with the eikonal function of the DOE. 
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Calculating a local DOE period on a curvilinear 
surface
Assume that the surface under study and the eikonal 
function on the surface are described by parametric 
relations: 

( ) ,
( ).

r r u v
u v

  

   

 
 (38)

Let on the surface there be a curve described by the 
equation 
( ) ( ( ) ( ))r t r u t v t 
 

. (39)
Let us find a surface direction along which the func-
tion remains unchanged. This direction can be derived 
from the condition given in the vector form:   

d d d( ) ( ) ,
d d d

d d( ) ( ) 0.
d d

u v

u v

r u vr u v r u v
t t t

u vu v u v
t t


   


     

 


 (40)

By expressing d / dv t  from the second equation and 
substituting it into the first equation, we find the rela-
tion for the tangent vector along the curve 
( ) ( ( ) ( ))r t r u t v t 
 

, (41)

  1
3

d d( )
d dv
r uu v B
t t

     




, (42)

where 3 ( ) ( ) ( ) ( )v u u vB u v r u v u v r u v       
  

. (43)
The direction of the vector 3B


 coincides with that of 

the tangent vector to the curve in question. 
The unit vector 3b


along this direction can be giv-

en by
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3
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,
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. (44)

Let us find the direction of the fastest change of the 
function. This direction is perpendicular to the vector

3b


 and to the normal vector N


to the surface:
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Making use of the vector algebra relation 
[ [ ]] ( ) ( )a b c b ac c ab    , 
we obtain  

 1 ,
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Now, we can determine how the increments du, dv are 
changing when the position of a surface point changes 
along the vector 1b


 by dl :
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( )d ( )d du v
Br u v u r u v v l
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. (47)

Performing sequential scalar multiplication of the vec-
tor equation by ( )ur u v


, ( )vr u v


, we get a set of linear 
equations: 
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where 1 ( )u uB r u v D 
 
 

  
 

, (50)
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Solving the set of linear equations gives 
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Substituting the relations for du, dv into the ex-
pression that describes the change of the function 
 (u, v) by 2

2( )d ( )du vu v u u v v
k


      , (55)

where k is the wavenumber, we obtain the relation for 
a local period of the diffraction grating:  

3

2d Nl
kB


 . (56)

Below, the local period is designated as d.

Calculating the direction of reflected and refracted 
rays upon diffraction by a DOE located on a curvilin-
ear surface 
Let us find a change in the direction of a ray refracted 
at a curvilinear surface coated with a diffractive mi-
crorelief. Assume that the surface is an interface be-
tween two media with refractive indices 1, 2. Let the 
ray be incident on the surface from the medium 1. The 
ray direction is described by a vector 1S


. The reflect-

ed rays are defined by the direction ( )
1
nS



. The refracted 
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rays have the direction ( )
2
nS



.
The directions of the refracted rays satisfy the follow-
ing relations: 

   

 

( )
2 1 2 1 2

( )
2 3 2 3

( ) ( )
2 2

2 ,
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 (57)

The vector’s directions (0)
2 2S S


 are related with the 

incident ray vector 1S


 by the refraction law.  
Directions of the reflected rays satisfy the relations: 
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 (58)

Here, n is the number of the ray. 1S


 is related with the 
incident ray direction by the reflection law. To be able to 
find the directions of the reflected and refracted rays at 
the medium interface where the DOE is located the inci-
dent ray direction needs to be known. 
Let the eikonal 0 (u, v) in a medium with permittivity  be 
defined on a surface described by parametric equations 

0

( ) ,
( ).

r r u v
u v

 
   

 
 (59)

Let us derive the direction of rays generated by a wave-
front with eikonal 0 (u, v). The direction of ray prop-
agation can be found by solving the set of equations:
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 (60)

The unit vector of the ray can be expanded in terms of 
tangent and normal vectors of the surface on which the 
eikonal of the incident field is defined: 

,u vS pr qr tn  
  

 (61)
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 (62)

It is seen from the relations above that the projection 
of the unit vector onto a tangent surface to the eikonal 
surface is given by

0
1 2( )S B D  


, (63)
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The refraction law for the DOE takes the form: 

1
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2 1 2
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 (65)

Thus, we have derived an expression for the re-
fracted ray at a diffractive element located on a 
curvilinear surface, which we will below employ 
to calculate the intensity within a geometrical op-
tics approach. 

Calculating the illuminance within a geometrical op-
tics approach 
In this section, we calculate the field in a plane ( )x y   
found at distance z from the optical element located 
on a curvilinear surface  
      
    

2 d d

d d ,

u vI u v r r S u v N u v u v

I x y x y
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 (67)

where l is the distance from the ray output point to the 
input point, 2S


 is the unit vector of the outgoing ray. 

The energy conservation law is 
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 (68)

where v is the transmission coefficient on the sur-
face. 
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Calculating the local period of a DOE on a spherical 
surface 
In this Section, we calculate the local period of 
a DOE located on a spherical surface. A partic-
ular case is presented by a diffraction grating on 
a spherical mirror, which is used in an Offner 
hyperspectrometer. The grating has no radial 
symmetry. Then, the parametric equation of the 
surface and the phase function of the grating 
are given by 

 

2 2 2
1

,
,

,
( ).

x u
y v

z R u v
u


 


  
  

 (69)

It is worth noting that the parameters u, v represent 
the Cartesian coordinates on the sphere. The vectors
( )vr u v


, ( )vr u v


 are given by  

 
( ) 1 0u
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z u v

 
       


, (70)

 
( ) 0 1v
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.

The normal vector to a sphere of radius R for the sur-
face defined by the above parametric equations takes 
the form: 

   

( ) ( ) ( )

1 .

u vN u v r u v r u v

u v
z u v z u v

       
 

      

 

We can write 3
3

3

B
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, where 3B


 is given by

3 ( ) ( ) ( ).u vB u v u v r u v    
 

 (71)
Let us find the direction of the function fastest growth. 
This direction is perpendicular to the vector 3b


and to 

the normal vector N


to the surface.

1
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1( ) .u v v u u u v vB u v r r r r r r   
   
   

      
      

The local period is given by 

3

2 ( )
( )
N u vd

kB u v
 




. (73)

The relations derived in the previous sections 
make it possible to calculate the direction of 
rays reflected from a convex mirror in the Offner 
scheme. The calculation procedures for ray tracing 
in the first and third mirrors remain unchanged. 
The relation to describe the intensity of the rays 
having arrived to a point also remains unchanged. 
An essential disadvantage of the proposed ap-
proach is that the intensity of a ray reflected from 
the diffraction grating cannot be calculated by 
means of geometrical optics. The reflection coef-
ficient can be calculated only using the wave the-
ory or, in some cases, even the vector electromag-
netic theory [33].

Simulation of image acquisition in an Offner scheme 
with prisms using the Zemax software package
An Offner scheme with prisms depicted in Fig. 
2 was described in Ref. [7]. In the left-hand side 
of the scheme there is a telescopic unit of fo-
cal length 300 mm, whereas the right-hand side 
unit contains dispersive elements in the form of 
two prisms P1 and P2 made of quartz glass. The 
right-hand side also has three spherical mirrors 
M1, M2, and M3 with respective radii -161.3 mm; 
-74.9 mm, and -153.5 mm. The image is registered 
in the plane of detector D. 

Fig. 2. Offner scheme with prisms.

The simulation results for the scheme of Fig. 2 pre-
sented in Figs. 3 and 4 have been derived using the 
Zemax software package [34].
The spread of spectral orders in a registration plane of 
diameter 16 mm for different wavelengths is shown in 
Fig. 3. The simulation was conducted for visible wave-
lengths (ranging from 0.4 μm to 1 μm) and IR wave-
lengths (ranging from 1.6 μm to 2.6 μm). 
Patterns in Fig. 4 were acquired for the wavelengths 
presented in Fig. 3.
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а)   b) 
Fig. 6. Spread of the spectral orders in the registration plane for different wavelengths i

with a diffraction grating put in the scheme: (a) visible wavelength range; (b) IR wavelength range. 

а)  

b) 
Fig. 3. Spread of spectral orders in the registration plane for 
different wavelengths i : (a) visible range; (b) IR range.

а)   b) 
Fig. 4. Acquisition of a dispersed image of letter F: (a) 
visible wavelengths; (b) IR wavelengths. 

From the simulation results, the spread of spec-
tral orders is seen to be essentially different for 
different ranges of wavelengths. For the visible 
wavelengths, the spread is seen to be nonuni-
form. 
Ac qu i s i t i o n  o f  a  d i s p e rs e d  i m age  o f  l e t-
te r  ‘ F ’  fo r  d i f fe re n t  wave l e ng th  ra nge s  i s 
s h ow n  i n  F ig .  4 .  T h e  n o nu n i fo r m i ty  o f  th e 
s p re a d  fo r  th e  v i s i b l e  wave l e ng th s  i s  a l s o 
we l l  s e e n .  

Simulation of image acquisition in an Offner scheme 
with a diffraction grating  
An Offner scheme with a diffraction grating coat-
ed on the mirror surface is presented in Fig. 5 [7, 
8]. The left-hand side of the scheme contains a 
telescopic unit of focal length 300 mm, where-
as the right-hand side contains a unit with two 
spherical mirrors M1 and M2 of respective radii 
–159.6 mm and –80.6 mm, and a dispersive ele-
ment in the form of a diffraction grating coated 
on mirror M2. The image is registered in the plane 
of detector D. 

Fig. 5. Offner scheme with a diffraction grating. 

The simulation results for such a scheme obtained 
using the Zemax software package are depicted in 
Figs. 6 and 7. 
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From the simulation results, the spread of spec-
tral orders is seen to be uniform for different 
wavelength ranges. When compared with the 
prism-based schemes, this also offers an ad-
vantage (in addition to a lighter weight) as it 
simplifies image processing. It is worth noting 
that in the IR range the spread is larger. These 
factors contribute to the enhancement of spec-
tral resolution. 
Dispersed images of letter ‘F’ obtained at dif-
ferent wavelength ranges are shown in Fig. 7. 
The wavelengths used are the same as in Fig. 
6. The spread for different wavelengths (vis-
ible and IR) is seen to have a linear depen-
dence, with the spread for the IR range seen 
to be larger.  

Conclusion 
We have analyzed a geometrical-optical modeling 
of an imaging Offner hyperspectrometer based on 
prisms or a diffraction grating.  
The use of the diffraction grating instead of prisms 
has been shown not only to lighten the overall 
weight of the optical system but also to result in a 
more uniform spread of dispersed image spectral 
components. 
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