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Abstract 

In the present paper the problem of substance identification in FTIR spectroscopy is considered. The 

spectral library hitlist search is chosen as the main tactic. In the paper the Pearson correlation coefficient as 

the similarity criteria between two spectra is suggested. The situation when one of the measured spectra has 

an additive delta-correlated white noise component with Gaussian distribution is considered. In this сase 

the probability density of correlation coefficient is found. The definition of correct detection probability is 

formulated and theoretical expression is found. In addition, we consider the threshold correlation coefficient 

search algorithm, which allows to find a threshold value providing the required correct detection. Computa-

tional experiments have shown the applicability of the method. 
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Introduction 
The problem of remote control of air pollution, as 
well as air chemical control of industrial and other 
important sites is sufficiently relevant to date. The 
reason for this is the increasing growth of the number 
of pollutants, as well as growth of industries whose 
emissions cannot be defined in direct contact.  As 
a result, for more than two centuries technologies 
and methods of contactless identification are be-
ing developed.  One of the characteristic properties 
strictly individual for each substance is its optical 
spectrum; it can be used as a kind of ID. One of the 
common methods for obtaining spectra of substanc-
es is an infrared (IR) spectrometry. The choice of IR 
range is caused by the fact that the radiation in this 
range excites vibration motion of molecules or their 
fragments, resulting in the weakening of the intensi-
ty only at frequencies of molecular vibrations, so the 
spectrum of each substance is unique, and spectral 
lines are selective and pronounced.
IR spectrometers are divided into diffraction and IR 
Fourier spectrometers based on interferometers. In 
this work a second class of devices will be considered; 
however, the methods described can be used for dif-
fraction method also. Fourier spectrometers special 
feature is their ability to work with lower intensities 

[1] than in diffraction devices, which allows to detect 
their self-radiation spectra.
An important problem arising in the development of in-
frared Fourier spectrometer is the choice of method for 
identifying a substance from the reconstructed spectrum. 
Of course, chemical composition may be analyzed by 
the presence of some specific bands in the spectrum, but 
more reliable and accurate method is consistent compar-
ison of the obtained spectrum with the spectra of already 
known substances stored in the database of reference 
spectra data. It is obvious that identifiable signal may 
contain considerable noise, and it even further compli-
cates the situation. At present we know many different 
methods and tools for solving problems of recognition, 
such as: trained neural networks [2], the use of indistinct 
logic [3], the methods of PCA (principal component 
analysis) [4], as well as introduction of a variety of mea-
sures of similarity between the data [5-11]. Major work 
on search and comparison of spectra of substances in the 
database have been made by Clerc [12] and Luinge [13]. 
Also a fundamental work on calculation of similarity 
measures in the database has been done in [14]. One of 
the possible measures of similarity is Pearson statistical 
coefficient of correlation [15] (hereinafter, we shall as-
sume that the spectra are presented as numerical vectors 
of finite length):
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where  ,x y    are vectors of compared spectra, 
x  is the arithmetic average of the components of the 

vector x ,
x  is Euclidian vector norm.  

Here and further the expression x x  means subtrac-
tion of the same scalar from all the components.
It is known that [ 1,1],r   while equality to unit 
can only be achieved when signals are linearly de-
pendent, that in the case of spectra allows to speak 
about their identity. The less “similar” are spectra, 
the closer is the value of (1) to zero. Note that when 
r (1) approaches unity, spectra difference norm ap-
proaches the global minimum. In [16-22] a method 
is described  for identifying based on correlation 
coefficient: first, the value of (1) is calculated for 
the tested spectrum  with all the spectra in the data-
base, then the substance is selected  with the highest 
correlation coefficient, and if (1) exceeds a prede-
termined empirical threshold, the substance is con-
sidered identified.

Probabilistic characteristics 
of the correlation coefficient

Fisher and Kenney [23, 24] obtained the exact theoret-
ical expression for the function of probability density 
of Pearson correlation coefficient  when two random 
variables are compared with two-dimensional Gauss-
ian distribution with a certain correlation. A signifi-
cant limitation is that both vectors must be random. In 
turn, when identifying on the database in IR Fourier 
spectrometry reference spectra can be considered ex-
actly known because they were obtained in laboratory 
studies by  multiple averaging. It is also impossible to 
know in advance a probabilistic correlation coefficient 
without a set of multiple statistics.
Suppose that the analyzed vector contains white 
noise with a normal distribution, then the resulting 
spectrum will have the same noise characteristics 
due to the properties of the Fourier transformation. 
That is, the analyzed spectrum can be represented as:

* *,x y    
   

, (2)
where *


 is the vector of the reference spectrum, 




 is a noise vector, each component of which has 
a normal distribution with known characteristics   

2(0, ) .
Let us denote by jr  the correlation coefficient of 
spectrum x  with a substance from the database with 
number 1,...,j M , where M is the number of sub-
stances in the database. Let us consider that the da-
tabase includes a substance with *


spectrum, and 

its number is *j .

We will get an explicit expression for correlation co-
efficient in the case where x spectrum is compared 
with 

*


spectrum. Having substituted (2) into (3),  
we will get: 
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is a coefficient of pure noise correlation with the refer-
ence spectrum *


,
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is mean square deviation of noise, 
N  is the number of points in the experimental spec-
trum. 
It is seen that *jr  is a function of two random value s 
(4) a nd (5), having a normal and chi-squared dis-
tribution respectively. Accurate analysis of funct ion 
(3) in this case is presented in [25]. However, we 
can use the fact that in the considered spectra the 
number N  is sufficiently large (usually from 200 to 
800), in order to examine the expres sion (5) as a 
point estimate of dispersion 2

 .
Note that in the denomi nator (3) 2  and the quan-
tity 

*

*2 ˆ jr   are added. If we assume 2 2
   , than 

an error of such an assessment would be 
4

2

(2 2)N

N


 [26], 

and dispersion of the value 
*

*2 ˆ jr   can be obtained 
by the theorem on the sum of random variables: 
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is satisfied, we can take the value 2 as a determined 
variable and equal to 2

 . In the left part of expr ession  
(6) there is the signal/noise ratio (SNR). So, the co n-
dition (6) may be interpreted as a requirement of a sig-
nificant excess of the signal level above the noise level. 
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Taking into account (6), the expression (3) can be rep-
resented as:
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A similar result was obtained in [27], under assump-
tion that 

*
0jr  , that is possible only when N  . 

Correlation coe fficient (7) is a function of only one 
random value with a known distribution: 
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Using the  function (8), moments of all orders can be 
obtained. 
For the case *j j  correlation coefficient will be writ-
ten as follows:  
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where it is introduced: 
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jr  is determined analogously to (4), but for the j


spectrum, j


 is a reference spectrum of  j substance 
in the database.  
Function (9) depends on two random values, and 
we must bear in mind that those values are not in-
dependent. In order to find their joint distribution 
we must know the correlation function of noise. We 
assume that the noise is uncorrelated 2

i j ij      , 
where ij  is the Kronecker symbol. Then, taking 
into consideration (8), covariance of correlation co-
efficients can be written * * *
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and the probabilistic correlation coefficient will 
equal 

*jjr .
Thus, the simplified formulas for correlation c oeff i-
cients (7) and (9) are derived, and also properties of 
random values included in them are found. 

Correct detection of a substance
Since the analyzed spectrum is noisy, it is not always 
possible to identify the substance correctly. There may 
be cases where, for example, another substance will be 
identified, or when the signal is regarded as pure noise 
and omitted. In practice it is necessary to know with what 
probability the detection was made. Let us formulate a 
definition of correct detection. Suppose the spectrum x  
of substance *j  from the database is investigated. Then 

detection is considered correct if correlation coefficient 
*jr  has exceeded correlation coefficient with all other 

substances, and moreover, has exceeded some previously 
predetermined threshold *

*
jr . 

Mathematically, the probability of such an event can 
be written as follows:

   ** * *r *, rj j j
correct jj jP P r r    

 
  (11)

Let us consider separately each of the expressions in 
parentheses. Substituting in (11) previously obtained 
expressions (7) and (9), then 

 * *
1j j jjr r SNR r    . (12)
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Formula (11) shows that probability of correct detec-
tion can be represented as a function 

of only one random vector  *

1 2 , , r, , ,j
M    


 

having the length M (the number of substances in the 
database) , and on the position of *j there is the value *jr . It is evident that all the components of the vec-
tor 


 are statistically dependent and all of them are 

subject to the multidimensional Gaussian distribution. 
To find their joint distribution we construct the cova-
riance matrix for the values i  и j . Let us use  the 
terms from (10) for noise correlation, then 
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where *,i j j . 
Covariance of values 

*jr  and j  will equal 
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Let us con sider the expression in the second bracket in 
(11). Substitu ting (7), we obtain:
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Let us denote the upper and lower bounds of the solu-
tion to this inequation with respect to

 

*jr  as up  and 

down  respectively. 
Combining (13) and (14), we obtain the final covari-
ance matrix:

   
   

* * * *

* * * *

* *

1 1,2 1 2 1

2 1 22, 2

1

1

2

2 1 1 1

1 2 1 11

1 1 1

j j j j

j j j j

j j

r r r r r

r r r r r

N

r r

      
 
     

 
 
 
  
 
 



 

 

    

 
    



Morozov A.N. et al… COMPUTER OPTICS, 2015: 39(4), 614-621

Image Processing, Pattern Recognition 617

The joint probability density for vector 
  will have 

the form 
 

 
11exp .
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As a result, the probability of (11) can be found as an 
integral of (15) over the domain of admissible values: 

 dcorrectP w


   , (16)
where    is the area bounded by , nup dow   an d an 
inequation (12).
Let us briefly describe the resulting algorithm for 
calculating the probability of correct detection:
1. The tested spectrum is compared sequentially with 
all substances from the database,
2. A substance is selected with which the correlation 
coefficient was the highest,
3. If the maximum correlation coefficient exceeds 
empirical threshold, then the substance is considered 
identified.

4. The identified substance index is remem-
bered. 
5. By this index a covariant matrix  is built and re-
gion boundaries of values  are found. 
 6. Accordin g to the formula (16) the probability of 
correct detection is found.

Experimental test 
To verify the obtained results, numerical experiments 
were carried out with the actual base of the spectral 
transmittance coefficients consisting of more than 
50 spectra. Numerical simulation was carried out in 
MATLAB by generating random variables, followed 
by calculation of different statistical characteristics. 
Typically, the experiment was repeated 1000-10000 
times with various substances, and non-biased statis-
tical estimators were found.

Fig. 1. Dependence of average value [ ]jE r   of correlation coefficient on the “signal/noise”( “S / N”)ratio

Figure 1 shows a comparison of the theoretical 
average values obtained from the formulas (7) 
and (9), with mathematical expectations of the 
correlation coefficient (1) (in the figure they 
are shown with points). We see good correla-
tion of results, indicating the applicability of 
the assessment (6) for calculation of the mo-

ments of the first order. Further in Fig.2 exper-
iments are shown on calculation of the mean 
square deviation in comparison to the disper-
sions of correlation coefficients for two pairs of 
test substances. However, in this case discrep-
ancies were already observed at low values of 
the signal to noise ratio. 
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Fig.2. Dependence of the dispersion [ ]jD r  of correlation coefficient on the “signal to noise” r atio  (SNR)

From (15) and (16) we can see that in order to cal-
culate probability of correct detection it is neces-
sary to perform integration over the region of very 
large dimension (in this case dim( ) 58  ). This fact 
significantly slows down the speed of real systems 
and completely eliminates the possibility of working 
in real time. But during the numerical experiments 
it was found out that the estimate of the value (16) 
there may be replaced by the mathematical expecta-
tion of the probability of exceeding the correlation 
coefficient *jr over all others jr  :

   ** * *1 ,j j j
correct j

j
P r P r

M
P r r

 
  

 
 

 
   

(17)

wherein each probability in the sum (17) is expressed 
in terms of the error function:
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 Fig.3. Probability of correct detection correctP  
 from the “s/n” 

ratio (SNR)
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The res ults of com parison (17) with the experi-
ment are shown in Fig.3. Each experimental point 
was calculated 1000 times and then averaged. The 
results are identical even for low SNR value. For 
the case SNR > 1 for all the substances it is shown 
that the probability of the event *j jr r  is ex-
tremely small. Therefore, a crucial role is played 
by the right multiplier in (17):

   
 

 *
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*

*
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*

*
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j
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up

j

r SNR

r S

j
j

NR

j jP r r w r r


 



  
 

(19)

It is possible to express (19) analytically using 
special functions, but the resulting expression ap-
pears too bulky to bring it to the article. Note that 
with the help of (19) we can find thresholds for a 
given probability of correct detection. Although 

the relationship  *
*j correctr P is not expressed ex-

plicitly, determining the detection threshold for a 
given probability can be carried out using an in-
terpolation search algorithm, as  **jP r  is a mono-
tonically decreasing function. Computational 
complexity of such an algorithm [28] may be es-
timated as 

2 2log log 1O
   
       

, 

where   is a permissible error. This result 
makes it possible to find substances detection 
thresholds for different SNR values, ensuring 
a predetermined correct detection probability 
(Figure 4). 

Figure 4. The threshold correlation coefficient depending 
on the signal to noise ratio for a given probability of correct detection.
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Conclusion
The paper presents a method of determining the 
probability characteristics of the Pearson correla-
tion coefficient in the case where one of the signals 
has an addition of Gaussian -correlated noise, and 
the other has no noise. This method is proposed to 
be used to identify substances by their spectra in 
the FTIR spectrometry. The basic assumption of 
the method is based on Replacement of the random 
value with chi-squared distribution by its statistical 
estimator. It is shown that this approach is applica-
ble at high SNR.
Basing on the received probability character-
istics the definition of correct detection prob-
ability was formulated and explicit theoretical 
expression for this probability was found. Also 
simplified expressions, that allow to find the 
probability a lot faster in numerical calculation, 
were found. 
It is shown that the probability of correct detection 
depends on the threshold correlation coefficient, 
which previously was determined empirically. The 
technique is offered, allowing to find the detection 
threshold by a given probability of correct detection 
and signal to noise ratio.
The developed methods were tested on the actual 
database of substances spectra, consisting of 58 
substances, and the applicability of proposed meth-
ods when performing introduced ap proximations 
was shown.
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