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Introduction
The work aims to create theoretical and software 
means of analysis of geomagnetic field parameters and 
perturbation selection in the period of high solar activity. 
It is known that the study of Earth’s magnetic field 
variations is the basis for evaluation of properties and 
state of electromagnetic fields in the near-Earth space 
[1]. As a result of the impact of solar activity on the near-
Earth space magnetospheric perturbations of various 
scale and duration occur, which negatively impact on 
modern technological systems [1, 2]. The magnetic field 
may also exhibit natural catastrophic events or processes 
at their preparation stage [2]. 
Observations of the magnetic field are carried out 
in more than 70 countries. Traditionally ground 
magnetometers are used for this. Especially important 
are observation in high-latitude regions, and space 
weather forecast is required for reliable operation 
of technical infrastructure in the Arctic region. The 
recorded variations of geomagnetic field have a complex 
non-stationary structure. Fig. 1, as an example, shows 
horizontal components of geomagnetic field in the 
quiet period and during a magnetic storm. At night time 
geomagnetic activity increases, and sharp emissions and 
vibrations may occur during magnetic storms [1, 3, 4]. 
In addition to the daily course, geomagnetic data have 

seasonal, secular course and are subject to the 11-year 
cycle of solar activity [1]. 

a)  b)
Fig. 1. H-components of the magnetic field of the Earth: 
a) quiet diurnal variation; b) perturbed diurnal variation

The complex structure of geomagnetic field variations 
considerably complicates the process of their studying, 
and classical data analysis methods become of little ef-
fect to solve the task set [1, 4-6], for they do not allow 
to identify certain regularities and lead to loss of im-
portant information. The disadvantage of use of clas-
sical methods and approaches is also their insufficient 
degree of automation, which is very important for the 
tasks of rapid processing of near-Earth space data and 
of space weather forecast.
As shown by recent studies [4, 7-17], the natural and 
the most effective way of describing such data are 
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non-linear adaptive approximating schemes. Based on 
this approach, empirical mode decomposition methods 
(EMD) [16, 17] and adaptive wavelet decompositions 
[4, 8-15] are currently receiving intensive development 
in processing and analysis of complex data structures 
[4, 8-15]. Both of these methods take into account the 
particular structure of the signal and make it possi-
ble to describe the processes with complex structure 
[18, 19]. The advantage of wavelet analysis is a large 
number of orthogonal bases with compact support 
and the availability of fast computational algorithms 
[19]. The main difficulty in its use is the non-obvious 
choice of the basis for a specific task solution [19-21]. 
At the same time, for function approximation tasks 
there are proposed criteria for selection of wavelet ba-
sis and constructed computational algorithms which 
allow to pick basis adaptively and to minimize the er-
ror of approximation obtained [19, 21]. Unlike wave-
let transform in the EMD-method basis functions are 
determined directly from the data, and the constructed 
basis is a posteriori [20, 22]. Therefore, in most cases 
extracted approximating components can be effective-
ly used only for processing of the signal from which 
they were extracted. Such a basis is an empirical, and 
for approximation of the geomagnetic field variations 
with a continuously changing structure it is not effec-
tive enough. The disadvantage of EMD is also not fully 
developed theoretical basis [18, 20]. In particular, the 
linear independence of approximating components is 
not mathematically proven, and the orthogonal prop-
erty of selected empirical modes can only be checked 
a posteriori [23]. In turn, wavelet analysis has a well 
developed mathematical apparatus and is becoming  
widespread in the field of geophysics. Based on the 
wavelet transformation the methods are proposed for 
the analysis of features that occur in the geomagnet-
ic field during periods of strong solar flares [24, 25], 
the algorithms are developed that automatically detect 
periods of the initial phase of the storm [26] and algo-
rithms for noise removal and elimination of the peri-
odic component caused by rotation of the Earth [27, 
28]. In this paper wavelet analysis was used in con-
junction with neural networks. The neural networks 
apparatus is widely used in images recognition tasks  
and data analysis [29-31]. Neural networks also are 
effective in the field of geophysics [14, 32, 33]. This 
apparatus allows to reproduce complex nonlinear de-
pendence of data [32-34], to reveal hidden patterns in 
the data, and is easy to be implemented in automatic 
mode [35, 36].
The basis of the method developed by the authors is 
multiresolution wavelet decomposition (MWD) [19] 
and radial neural networks [36]. In the work on the ba-
sis of MWD variations of the geomagnetic field are de-

composed on different scale components that charac-
terize the field perturbed, and the noise is suppressed. 
Selected components enter the radial neural networks 
that perform assessment of their disturbance degree. 
A detailed study of geomagnetic data structure (on the 
example of the horizontal component of Earth’s mag-
netic field (H-component)) performed on the basis of 
MWD made it possible to identify signs of  field per-
turbations  and on their basis to generate images of the 
classes for the radial layers of neural networks. This 
improved the quality of the task solution on the basis 
of neural networks and, in contrast to the traditional 
architecture, has allowed to significantly reduce the 
number of used examples in their radial layer. 
To solve the problem six radial neural networks, 
united in electronic expert team, were formed in this 
paper. Formation of conclusion on the state of the 
geomagnetic field is carried out on the basis of a de-
cision rule that uses combinations of the decisions 
of experts team.
Geomagnetic data of the Paratunka station 
(Paratunka village, Kamchatka region, Insti-
tute of Cosmophysical Research and Radio 
Wave Propagation of FEB RAS performs regis-
tration) for the period 2002-2008 were used to 
test the method. The executed analysis of data 
in high geomagnetic activity periods has shown 
the prospects of application of the developed 
method and the possibility of its use in tasks of 
forecasting space weather and strong magnetic 
storms predictions.

Description of the method
Decomposition of the geomagnetic field 
variations at different scale components

As a basic space of recorded discrete data )(0 tf  is 
considered an enclosed space with a resolution 0j :

):))2(2 00
)(0 (2 ZkktclosV RL   ,

generated by the scaling function )(2 RL [19]. 
Basing on multiresolution wavelet decomposition to a 
levelm  you can present data as a sum of approximating 
and detailing components: 
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In this paper we used wavelets )(, tnj and scaling 
function )(, tkm  Daubechies order 3.
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Data representation diagram based on the base of (1) 
is shown in Fig. 2.

Fig. 2. The scheme of data decomposition to the level of m

Introduction of classes of the geomagnetic 
field states and defining their attributes

A characteristic of the magnetic field state is the index 
of geomagnetic activity K [1]. The paper considers three 
possible geomagnetic field conditions, and there were 
accepted: 1) “quiet” condition (class 1), if the total sum 
of the daily index of geomagnetic activity is 10K  ;
2) ”weakly disturbed” condition (class 2), if the 
10 18K  ; 
3)”disturbed” condition (class 3), if 18K  . 
A detailed study of geomagnetic data structure showed 
[4, 14, 15, 37, 38] that coefficients njd ,  of the detailing 
components  tg j2  of the scales 6,...,2,1 j
characterize disturbance of the field, and in the periods 
of increased geomagnetic activity their absolute values 
significantly increase. Fig. 3, as an example, shows de-
tailing components of geomagnetic  field variations of 
scale 4j  in the periods of “quiet”  and “ disturbed” 
field states. Following these results,   the absolute values 
of the component coefficients njd ,  will be taken as a 
measure of their geomagnetic disturbance. As a mea-
sure of geomagnetic disturbance of  tg j2  component a 
maximum of the absolute values of its coefficients will 
be taken: njng dV

j ,max .  
In accordance with considered field states let us 
assume that the component  tg j2   can have one of 
the three possible states: “quiet”, “weakly  disturbed”, 
or “disturbed”. As shown above, the state of the 
components  tg j2 , 6,...,2,1 j  defines the 
state of the geomagnetic field. In order to assess its 
condition let us introduce the following decision rule:  

1) if all the components have a «quiet» state, or only one 
of the components has a «weakly disturbed» state, the 
geomagnetic field has a «quiet» state (class 1); 
2) if at least one of the components has a “disturbed” state, 
the geomagnetic field has a “disturbed” state (class 3); 
3) in other cases it is considered that the field has a        
“weakly disturbed” state (class 2). 
Assessment of each of the 6 selected components 
state will be performed on the basis of radial neural 
networks, whose forming method is described below. 

a)  b) 

Fig. 3. Detailing components of geomagnetic field variations of  
scale j = -4, obtained using Daubechies wavelet of order 3: 
a) – periods of «quiet» state of the field, 
b) – periods of «disturbed» state of the field. 

Forming a radial layer of the neural 
network 

Radial neural networks traditionally have three layers 
[36]: the input layer; hidden layer of examples (radial 
layer) containing signs of classes; linear output layer, 
defining if input image belongs to the class.
In the radial layer the following conversion of input 
data is performed [36]:
1. Assessment of the state of neurons based on weigh-
ing function bwpr  , where p  is the entry vec-
tor,  w is example vector, and b  is bias.
2. Using a threshold activation function, evaluation  
proximity measure of the input vector and example.
When the r  distance between the p  input vector and 
the w  examples vector is reduced, the output of ac-
tivation function approaches the value “1”, otherwise 
– to the value “0”.
In accordance with the set task, the input vector of the 
neural network is the  tg j2  component. The task of the 
neural network is estimating of its condition. The mea-
sure of geomagnetic perturbation of  tg j2 component 
is the above mentioned value

 
njng dV

j ,max . 
Presented in Fig.4, values of 

2g
V and 6g

V , deter-
mined for components in periods of “quiet”, “weakly 
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disturbed” and “disturbed “ field conditions indicate 
that the ranges of their values have significant over-
lap. This is due to complex nature of the process and 
the lack of clear boundaries between the considered 
classes. Given these characteristics of the process, let 
us introduce the following subclasses of the component 
states: 
1) for a “quiet” state – a subclass « – quiet» ( 1k ):

1
,max 

jnjn
Td   and «  – quiet» ( 2k ):

11
,max 

jnjnj TdT  .

2) for “weakly disturbed ” state – a subclass « -weak-
ly disturbed » ( 3k ): 21

,max 
jnjnj TdT   and 

« -weakly disturbed » ( 4k ): 22
,max 

jnjnj TdT  .

3) for “disturbed ” state – a subclass « -disturbed» 
( 5k ): 32

,max 
jnjnj TdT   and «  -disturbed» 

( 6k ): 3
,max 

jnjn
Td  .

When training the neural network the thresholds 
32211 ,,,, 

jjjjj TTTTT , determining the input fea-
ture membership to a subclass, can be estimated by 
minimizing network error on a set of training vectors.

Fig.4 The values of 
2g

V  and 
6g

V , defined for the com-
ponents in the periods of “quiet”, ‘weakly disturbed” , and 
“disturbed” states of the field (100”quiet”, 190 “weakly 
disturbed”,and 86 “disturbed” field variations were used in 
estimation). 

The introduced above measures of geomagnetic 
disturbance define characteristics of considered 
subclasses. Using disturbance measure of the 
coefficient,  its absolute value njd , , for each 
introduced subclass ik  

let us create one example 
ikj

P ,
 in the radial layer of the neural network according to 

the rule: 

 i

U

u
uj

kj U

D
P

i

i

i

i


 1

,

, ,

 

(2)

where  i

j

ii

i

u
Nj

u
j

u
juj dddD ,2,1,, ,...,, , iu  –

the number of the component of subclass ik , jN – 
the length of the component of the scale j ,

iU  
– quantity of the components of the 

subclass ik .
Applying the rule (2) in the formation of radial layer 
of the neural network, in contrast to the traditional 
approach [36], can significantly reduce the number of 
examples used and optimizes network performance. 
Obtained according to the rule (2) examples of sub-
classes ijP ,

 
for the scale 6j

 
are shown at Fig. 5.

 
 

Analysis of the Fig. 5 shows that separation of images 
is the best  at night, due to the nature of the geomag-
netic process   and increase of disturbances in times of 
storms at night.  

Fig. 5 Examples of subclasses of the radial layer of the neural 
network for the scale 6j . 
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Fig. 6 shows the architecture of the neural network 
obtained.

Fig. 6 Architecture of the neural network 

Designed structure of the neural network team that 
performs evaluation of the geomagnetic field state 
is shown in Fig.7. The team consists of six radial 
neural networks, each of which performs assess-
ment of the state of a specific  detailing  compo-
nent of variation of the geomagnetic field. Forma-
tion of conclusion on the state of the geomagnetic 
field is based on decisions of the team  neural net-
works  and is  performed using the entered above 
decision rule. 

Fig.7 The structure of the neural network team. 

Evaluating the effectiveness of the method
With the help of the constructed neural networks  
team  assessment was performed of the geomagnetic 
field variations state, obtained at the Paratunka station 

(Kamchatka Region) for the period 2002-2008. The 
results of the team work are presented in Table 1. To 
evaluate the effectiveness of the proposed method a 
comparison of the gained results was made with the 
working results of conventional radial neural network, 
which is fed to the input with the original variation 
of the geomagnetic field (without the use of wavelet 
transform). Exemplary images of radial layer of such 
a network, in accordance with the procedure (2) were 
created as follows:

i

U

u
u

k U

f
P

i

i

i

i


 1

,0

where 
iu

f ,0  is the original variation of the subclass ik ,

iu  is the number of variation of the subclass ik , iU is 
the  quantity of variations of the subclass  ik . 
The working results of the traditional neural network, 
presented in Table 1 (right column), confirm the 
effectiveness of the proposed method and the 
possibility of its use to automatically determine the 
perturbations extent of recorded geomagnetic field 
variations.

Table 1. Accuracy of operation of neural networks 

Analyzed period Error of net-
work collective, 

%

Error of tradi-
tional network, 

%
2002 18,58 48,82
2003 11,96 71,4
2004 19,89 51,16
2005 18,39 54,52
2006 18,57 55,7
2007 23,01 60
2008 18,85 54,37

Analysis of  work of the developed team of neural 
networks in the periods of high geomagnetic 
activity showed that in more than 70% of events on 
the eve of  strong and moderate magnetic storms  
weak perturbations of the geomagnetic field are 
recorded (97 events have been analyzed). Fig. 8, 
9, as an example, show results of the team work in 
times of two events: a magnetic storm with a sudden 
beginning on 2 October, 2013, and a magnetic 
storm with a gradual beginning on April 20, 2005. 
For two days before the start of the first magnetic 
storm, 29 September, at the Sun occurred proton 
C1.2 class flare with duration of 200 minutes, 
whose maximum was observed at 23:39 UT. The 
solar wind speed increased gradually on 1 October 
from  250 to 400 km / sec., a gradual onset of 
the storm at 07.48 UT have been registered in the 
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high latitudes[39]. The upper part of Fig. 8 shows 
the values of the indices of geomagnetic activity K 
(K-index), below the variations are shown  of the 
geomagnetic field (H-components). The bottom 
of Fig. 8 shows the results of evaluation of the 
geomagnetic field variations with the help of built 
team. It is seen that on the eve of the magnetic storm 
on October 1 collective of neural networks recorded 
weak perturbations. At the analyzed mid-latitudes 
the sudden onset of magnetic storm was registered 
on 2 October at about 01:52 UT [39]. 
Gradual start of the second analyzed magnetic storm 
was registered at mid-latitudes on 20 April, at about 
03:00 UT. The solar wind speed from the beginning of 
the day increased from 380 to 540 m / s. As the analy-
sis  of Fig. 9 shows, two days before the event the team  
of neural networks recorded weak perturbations of the 
geomagnetic field.  
Results obtained are consistent with the results of [13, 
14] and are important for condition forecast of near-
Earth space and for prediction of strong magnetic 
storms.

Fig. 8. The results of evaluation  of condition  of variations 
of the geomagnetic field during the period 30.09.2013-
04.10.2013 years.

Fig. 9. The results of evaluation of condition of variations of the 
geomagnetic field during the period 17.04.2005-21.04.2005 
years. 

A detailed analysis of the spectral-temporal charac-
teristics of field variations during magnetic storms 
showed that in most cases geomagnetic disturbances  
fall in  various detailing components. Fig. 10, 12 show 
trees of wavelet decomposition of the geomagnetic 

field variations  for magnetic storms under consider-
ation, gray colour marks the components that have 
been identified by neural networks as “disturbed”. It 
is evident that in the first case the geomagnetic dis-
turbances are recorded in all components, which in-
dicates the complex spectrum of variations and mul-
tiscale nature of the process. In the second case devi-
ations are recorded in detailing components of 3 – 6 
th scale. Also, in Fig. 10, 12 are shown the original 
variations of the geomagnetic field and their disturbed 
constituents, obtained by restoring “disturbed” detail-
ing components. Built wavelet spectra of perturbed 
components of field variations, shown in Fig. 11, 13, 
confirm a complex multiscale nature of the analyzed 
processes.

Fig. 10. Variation of the geomagnetic field during mag-
netic storm 2 October 2013 and its disturbed compo-
nent. 
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Fig. 11. The wavelet spectrum of the disturbed component of 
the geomagnetic field variation during the magnetic storm, 2 
October 2013. 

 

Fig. 12. Variation of the geomagnetic field during the magnetic 
storm 20 April, 2005. and its disturbed component.

Fig. 13. The wavelet spectrum of the disturbed component of the 
geomagnetic field variation during the magnetic storm 20 April, 2005.

Conclusion
The paper describes an automatic method for 
assessing the state of the geomagnetic field, based 
on a combination of wavelet transform with radial 
neural networks. Analysis of the   constructed neural 
networks team work has confirmed the effectiveness 
of the proposed method. The study of spectral-
temporal characteristics of magnetic storms (86 
events analyzed) showed that disturbances arising 
in the geomagnetic field  in the majority have a 
complex spectral structure and appear in various 
components of the field variations. It is noticed that 
on the eve of storms the proposed method recorded 
weak perturbations of the geomagnetic field, which 
is important for forecasting the state of near-Earth 
space and predicting strong magnetic storms.
In the experiments the variations of the geomag-
netic field were used that had been obtained at 
Paratunka station in the Kamchatka region (data 
logging performed by Institute of  Cosmophys-
ical Research and Radio Wave Propagation of 
FEB RAS). 
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