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Introduction
 Development of laser systems with high average power 
and small beam divergence, particularly with the prog-
ress of optical fiber lasers, has recently become one of 
leading tendencies in the development of laser tech-
nologies. However in most cases, increasing the maxi-
mum radiation power at near-diffraction output beam 
divergence shall restrict non-linear and thermooptic 
processes in active laser medium [1]. One of solutions 
to this problem is related to implementing the idea of 
laser beam summation, i.e. creation of multichannel 
laser radiators. Performance limits of this system may 
be achieved at coherent summation of laser beams at 
the output of all channels. 
There are over 20 various engineering solutions to the 
problem of coherent summation of laser beams [2, 3]. 
Among them of key importance are the methods based 
on active control of a radiation phase of every laser in 
the system (active phase-locking methods). In most 
cases they are implemented by means of a distribut-
ed adaptive optical system. Currently, the most widely 
implemented system is the adaptive aperture sensing 
system based on the algorithm of parallel stochastic 
gradient approximation [4, 5]. It is impossible to use 
the traditional for adaptive optics wave front sensors 
(WFS), for example, a Shack-Hartmann wave front 
sensor, in this multiaperture system, because their 
work is based on the principle of constructing contin-
uous maps of phase aberrations. 
In this paper we have considered a phase-locking sys-
tem for laser radiators with a multiaperture wave front 
sensor (MWFS) based on the Gerchberg-Saxton algo-
rithm [6, 7]. Numeric analysis and simulation of this 

algorithm have been performed in the paper, and it has 
been shown that its characteristic feature for retrieving 
phase information is the availability of stagnation con-
ditions. A global optimization strategy for retrieving 
phase information is proposed, and the system reduc-
tion block-structure method is considered. Numerical 
simulation of the system has been performed for dif-
ferent configurations of a multiaperture matrix. 

1. Phase-locking system based 
on the Gerchberg-Saxton algorithm 

The algorithm proposed in 1972 by Gerchberg and 
Saxton enables to retrieve complex fields on the 
lens aperture and in its focal plane based on their 
intensity distributions. The mathematical formula-
tion of the problem is to build the complex function 
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 and by the Fourier trans-
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 is the inverse Fourier 

transform )(E 
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. A scheme of iterative procedure is 
given in Fig.1. 

Fig.1. Algorithm scheme for retrieving the field amplitude 
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For the selected initial phase approximation and the 
module distribution measured in the aperture plane А, 
the complex field amplitude is calculated in the focal 
plane B.  Then, the obtained amplitude module is re-
placed by the measured module. Reversed beam prop-
agation is calculated hereafter. The module is replaced 
in the aperture plane, and the phase obtained thereat 
is selected as the next approximation. 
The Gerchberg-Saxton algorithm is mathematically 
written as the following iterative procedure 
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where )()0(~ 


E  is the initial aperture phase estimate 
(approximation); )(~)(~ 


ÒEM  is a known (mea-

sured) module in the aperture plane; )()( rErM Ò
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  

is the known (measured) module in the focal plane; P1 

and P2 are operations on module replacement in focal 
and aperture planes; FT and FT-1 are direct and inverse 
Fourier transforms, respectively.
A structural flowchart of the active phase-locking sys-
tem based on the Gerchberg-Saxton algorithm is given 
in Fig.2. 

Fig.2. The structural flowchart of the phase-locking system (1 
–a driving generator; 2 – phase modulators; 3 – laser amplifi-
ers; 4 – the object plane; 5,6 – CCD-cameras; 7 – a computer; 
8 – a beam divider; L1, L2 – lenses).

Optical signal from the integrated driving generator 
is divided into N–number of laser beams. Radiation 
is divided into two beams after it has passed through 
a unit consisting of phase modulators and one-mode 
laser amplifiers. The phase at the output of each am-
plifier is random due to different optical distances in 
separate laser channels. The main beam falls on the 
exit aperture and is focused on the object by the lens 
L1. The second beam, in turn, is also divided into 
two sub-beams to register intensity distributions on 
CCD-cameras in focal and aperture planes of the lens 

L2. Measured distributions shall go to the computer, 
where during implementation of the iteration algo-
rithm (1), the phase distribution )(~arg)(~ 


E

E
is to 

be determined, which forms control signals on phase 
modulators for phase-locking the laser channels.      
Thus, the beam divider, CCD-cameras and the com-
puter build up a phase regenerator in the multichan-
nel system, i.e. the multiaperture wave front sensor 
(MWFS).

2. Numerical analysis of the Gerchberg-
Saxton algorithm for the phase-locking 
system with MWFS

Numeric analysis of the Gerchberg-Saxton algorithm 
convergence was performed for a hexagonal packing 
model for laser radiators with the Gaussian amplitude 
distribution in every channel. 
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where a0 is the sub-beam equivalent radius; A0 is the 
constant value which depends on the defined trans-
mitting power at the input of radiating aperture. 

A total number of sub-apertures in this system shall be 
determined as follows [8]
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where n is a whole number defining the number of 
“contours” around a central channel. 
The phase in each channel was randomly selected 
within ±  rad. The quality of retrieving complex 
functions )(~ 


E  and )(rE


 was evaluated based on two 

characteristics. Based on normalized module errors in 
the aperture plane
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 is the module error at the first iteration,                                                
and also based on values of the normalized function of 
image sharpness [9]
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where SPH is the sharpness function of the phased 
system (with equal phases in every channel);   

2)()( rErI kk


 . 
To understand the Gerchberg-Saxton algorithm be-
havior for retrieving phase information in MWFS, let 
us analyze, as an example, the 19-channel laser sys-
tem. The amplitude distribution in the focal plane of 
the lens L1 for phased and non-phased systems is giv-
en in Fig.3.
Fig. 4 shows the algorithm behavior as starts from two 
various random initial points )()0(~ 


E

. 
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а)  b) 

Fig.3. Amplitude distribution in the focal plane of the 19-chan-
nel laser system (а – the phased system; b – the non-phased 
system)

а) 

b) 

Fig.4. The convergence of iterative procedures (а – the con-
vergence to the true solution; b – the convergence to the local 
extremum; 1 - mod

~
 ; 2 - ES ~ ).

It is seen from the figure that in the first case (Fig. 4а) 
the module error (4) (curve line 1) goes to zero during 
iterations, and the sharpness function (5) goes to its 

maximum, i.e. the modules
 

)(~ 


E  and )(rE
  shall be 

retrieved here in the only way. Whereas in the second 
case (Fig. 4b) the algorithm didn’t converge and fall 
to the stationary state differed from the true state (the 
so-called ‘stagnation condition’). These conditions are 
typical for projection image retrieval algorithms and 
are often associated with local exrema, for example, 
in the phase problem, where the retrieval algorithm is 
based on the limited optimization problem which can 
be solved using the gradient projection method [10]. 
Therefore, the iteration procedure (1) may be consid-
ered as the local optimization of the functional (4). 

3. Optimization strategy 
for retrieving phase information 

The existence of stagnation conditions or local extrema 
in the Gerchberg-Saxton algorithm is considered to be 
a severe restriction to be used in the phase informa-
tion retrieval problem in MWFS. The algorithm, being 
in itself rather simple and fast, is reduced to the true 
solution )(~ 


ÒE  only under certain conditions. For 

example if the initial approximation )(~0 


E  is located 
closely to )(~ 


ÒE , when the number of phased channels 

is small, etc. In these circumstances the guaranteed al-
gorithm convergence may be ensured by means of the 
global optimization methods. 
There are a lot of approaches to solve multi-exper-
imental problems; however, there is no universal 
standard practice how to solve them. The choice of 
the optimal method for a particular problem is in-
fluenced by various factors caused by specifics of the 
problem. The specific feature of the Gerchberg-Sax-
ton algorithm is quickness and easiness of the local 
optimization, when no time-consuming calculation 
of partial derivatives required. In fact, simplicity of 
performing the operations P1 and P2 (replacement of 
the obtained module with the known one) ensures a 
high speed of iterations almost regardless of the di-
mension of problem. Therefore, when constructing 
the global optimization procedure, it is reasonable 
to focus on the approach based on multiple search-
ing for local extrema from different starting points 
located randomly thorough the whole optimization 
set, and on further selection of the best one. The al-
gorithm of this type is called a “random multistart” 
[11]. Its definite advantage, in addition to the speed 
of iterations, is the possibility for simultaneous 
searching for local extrema from different starting 
points that allows one to implement it on a parallel 
computer consisting of similar processors perform-
ing similar operations, the main of which is the fast 
Fourier transform. In this case, the global extremum 
search time won’t exceed the performance time for 
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an individual iteration procedure. As it is shown in 
paper [12], for the phase-locking problem in the 
multi-channel laser system based on this algorithm, 
the number of parallel processors linearly increases 
with increasing the number of phased sources.
However, at the large number of phase-locking chan-
nels the increase of the number of parallel processors, 
which corresponds to the dimension L of the initial re-
trieval }..1),({ )0(

~ Li
iE




, doesn’t practically influence 
the result. Fig. 5 gives the dependence of the percent-
age of the algorithm convergence to the global extre-
mum Conv, depending on the number of laser sources 
N at L=100 of independent local iteration procedures. 
While calculating, the number of iterations is k=150, 
and the maximum module error, at which the algorithm 
convergence was fixed, is 02,0~

 . As is seen from the 
figure, the average percentage of the algorithm conver-
gence shall decrease depending on the increase of the 
number of channels in the laser system. In this case, as 
shown in paper [12], the number of iterations required 
for the algorithm convergence will increase. 

Fig.5. The percentage of the Gerchberg-Saxton algorithm 
convergence depending on the number of phased channels

From the above figure it is seen that even at N=37 the 
percentage of the algorithm convergence halves (Conv 
 50%), and at further increasing the number of chan-
nels there comes a point, when the algorithm fails to 
fall into the global extremum from neither of starting 
points. Therefore, when the number of channels is 
large, it is necessary to use some methods of reduc-
tion (declining) of the dimension of problem, either by 
means of mathematical methods, or in hardware.

4. Phase-locking block-structure system 
One of the possible methods of reduction may be 
based on the block-structure principle. In this case, 
the total system of channels is divided into blocks 
of several channels, in each of which the phase in-
formation is parallely retrieved. The base number 

of channels in the block shall be selected in such a 
way, that the global extremum is achieved practical-
ly during a one-step cycle of iteration procedure. 
Proceeding from Fig.5, for a hexagonal source ar-
rangement structure with round sub-apertures, the 
number of channels in the block should not exceed 
7 (Conv  98%). 
The specific feature of the Gerchberg-Saxton algo-
rithm is characterized by the fact that phase informa-
tion is retrieved in each channel within an accuracy of 
general phase shift in the block. However, this phase 
shift doesn’t coincide between individual blocks that 
result in necessary additional phase “crosslinking” be-
tween separate blocks. In this case, it is possible to use 
the following two options:
1. Dividing the system into blocks with one or sev-
eral common channels and “crosslinking” the phases 
with regard to common channels.
2. Dividing the system into blocks without common 
channels and performing the additional iteration pro-
cedure for the general system.
Let’s rewrite the formula which defines the total num-
ber of sub-apertures in the hexagonal system (3) as 
follows:
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where n is the whole number (for the block system 
n>2). As is seen in the formula (6), in case of hexago-
nal packing, it is convenient to divide the system either 

by 



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 1
2
)1(nn

 independent blocks six channels each 

and one block with seven channels, or by 



 

2
)1(nn

 

blocks with seven radiators each with one common 
channel. Fig.6 shows, as an example, different options 
of block decomposition of the19-channel system in 
case of “crosslinking” with regard to the central chan-
nel (Fig. 6а), and in case of three independent blocks 
(Fig.6b).

a) b) 
Fig.6. Options of block decomposition of the 19-channel 
system (а – the system with the common central channel; b – 
the system without common channels)
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At first glance, the “crosslinking” system with com-
mon channels seems to be more attractive, since in 
this case there is no need to perform any additional 
iteration procedure for the whole system. However, 
in this arrangement the system’s technical complexi-
ty increases, because the problem of optimal radiation 
decomposition with common channels available hasn’t 
been solved yet. Therefore, let’s further consider the 
Gerchberg-Saxton algorithm convergence for multi-
channel laser systems with independent blocks with 
several channels each. 
The results of retrieving the 19-channel block system, 
when the common central channel available (Fig.6b), 
are given in Fig.7 (curve line 1). In this option in the 
end of iteration procedure the value of the central 
channel is deducted from every channel. In this case, 
the value of the central channel becomes zero in every 
block; therefore, in order to have a general idea of the 
field, it is required to simply add the retrieved phase 
distributions of all three blocks. 

Fig.7. The convergence of iteration procedures (1 – the 6-chan-
nel block; 2 – the 19-channel system without blocks)

From the point of view of the algorithm convergence, 
in case of 19 channels, the difference in iteration quan-
tity for the whole system and for each separate block is 
not so big. However, when the algorithm converged in 
the block system practically in each case, for the whole 
system the algorithm may not go into the global extre-
mum at least six times in sequence.
Similarly, for 37 laser channels the system is divided 
into six blocks (five blocks by six channels and one 
block with seven channels). In such decomposition 
the time required for phase-locking of one block shall 
remain at the same level as for seven channels (less 
than 15 iterations), i.e. further increasing the number 
of phased sources should not result in increasing the 
phase-locking time; so, only the number of parallel 
processes may increase (by one or two per each block). 
Whereas the total number of all necessary iterations 
for a “non-crosslinking” system shall be composed of 
the maximum number of iterations for retrieving the 
7-channel system and the n-channel system, where n 
is the number of blocks (Fig. 8). 

Fig.8. Algorithm convergence at various construction options 
for the 37-channel system; 1 – a two-stage block system; 2 – a 
system without blocks 

Within this framework, we can construct the depen-
dence of the number of iterations, required for conver-
gence, on the number of channels (Fig.9). 

Fig.9. The convergence required iterations depending on the 
number of channels at various options of the system construc-
tion (1 – the system without blocks; 2 – the block-structure 
system)

Conclusion
The paper describes an approach to the problem 
of phase-locking the laser radiators based on the 
iterative image reconstruction algorithms with 
limitations, particularly, on the Gerchberg-Saxton 
algorithm. The specifics of these algorithms is the 
presence of the so-called divergence factor which 
is characterized by obtaining “successful” and 
“unsuccessful” solutions, and may be clarified 
by stagnation conditions available (or by local 
extrema). The use of global optimization meth-
ods allows us to avoid this constraint and to build 
quite an effective strategy for retrieving phase 
information, which provides the guaranteed al-
gorithm convergence, and the application of the 
system reduction block-structure principle makes 
it possible to coherently add the large (over one 
hundred) number of channels.
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