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Introduction
We have many works currently known, in which a 
mathematical unit of the theory of cellular automata 
is used for digital image processing. This unit is ap-
plied to improve image quality [1,2], segmentation 
[3,4], edge detection and test recognition [5-9], and to 
construct secret separation schemes based on the use 
of digital images [10], as well as in computer stegan-
ography while incorporating digital watermarks into 
images [11,12].
This paper focuses on the cellular automata approach 
to construction of orthogonal transformations applied 
in digital signal processing, particularly, to compress 
digital images.
It is to be reminded that the most common orthogo-
nal transformations which are used in digital image 
compression are Karhunen-Loeve transform, Walsh-
Hadamard transformation, the discrete cosine trans-
formation, and the discrete wavelet transform (a trans-
formations family) [13-16] .
In addition to the above, there are also other 
discrete orthogonal transformations. For ex-
ample, in paper [17] is described the discrete 
pseudo-cosine transformation as faster operat-
ing approximation of the integer discrete cosine 
transformation.
The paper [18] describes the digital image compres-
sion method based on the orthogonal transformation, 
the bases of which are constructed from the evolving 
states of cellular automata in Moore-von-Neumann 
neighborhood.

The author of this paper offers in his works to con-
struct orthogonal bases from the evolving states of 
one-dimensional cellular automata with the binary al-
phabet of internal states interpreted as a set of values
 1,1 , wherefore some special-form local functions 
are to be defined that shall provide pairwise orthog-
onality of gradually produced vectors. However, the 
binary alphabet restricts the space dimension of trans-
formations obtained hereby, which are no more than a 
particular case of the famous Walsh-Hadamard trans-
formation.
The obtained results were used by other researchers, 
for example, in computer steganography [12], how-
ever the special literature review has shown that any 
evolvement of the described approach, in terms of in-
creasing the capacity of the internal states alphabet, is 
currently missing.
In this paper we offer for the construction of orthog-
onal bases to use cellular automata with the internal 
states alphabet of the random capacity determined 
by the value 2m  thus simplifying computations, and 
to provide research results for the bases construct-
ed for 2m  with further increase of this value. In 
order to formalize the proposed approach a new 
extension of the classical model of cellular automa-
ta – cellular automata with the code set – has been 
introduced. Besides, the peculiar feature of the pro-
posed approach is not to construct separate orthog-
onal bases, but their entire families to further select 
the best of them in the context of the problem here 
to be studied.

[12] Research 
of the discrete orthogonal 
transformations received with the use 
of the dynamics of cellular automata
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1. Mathematical model of cellular automata
A mathematical model of cellular automata is 
described by the following set of components: 
CA , , , ,nZ A  L Y . Its detailed description can 
be found in [19,20]. Please note that this model cor-
responds to cellular automata with a finite lattice that 
seems to be more natural for applied tasks.
Let us introduce an idea of cellular automata with the 
code set CA CA, ,K K   as the extension of the 
classical model of cellular automata, where CA  is cel-
lular automata with the internal bases alphabet A, K— 
is the ordered set of values, such that AK  , and the 
transformation KA :  shall place elements of the 
code set K in correspondence with characters of the 
internal bases alphabet A.
In this paper we use block cellular automata (parti-
tioning cellular automata) as the base of cellular au-
tomata with the code set, which represents one of the 
existing expansions of the classical model of cellular 
automata [21]. The main difference between the given 
cellular automata and the classical cellular automata 
model is that at any specific time the states of not indi-
vidual, but block cells are renewed, to which the cellu-
lar automata lattice is partitioned, where a block par-
titioning scheme of the cellular automata lattice varies 
from step to step. Block cellular automata is described 
with the set of components pCA , , , , ,nZ A  L B P ,
where nZ , L  and A  correspond to similar compo-
nents of the classical model;  1, , nb bB  , 0ib  
and i ib l , 1,i n  — is the vector which assigns di-
mensions of the partitioning block;

 1, , mp pP  ,
   10, , 1 0, , 1j np b b       , 1,j m  

— is the vector which assigns the set of block parti-
tioning schemes of the cellular automata lattice and 
identifies the subsequence of their applications;   — 
is a block transition function which renews the state 
of each block of the cellular automata lattice at any 
specific time.
One of the important features of block cellular autom-
ata is its reversibility in case when the block transfer 
function is defined in the form of substitution of the 
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2. Construction of orthogonal bases families 
using the dynamics of cellular automata 

Orthogonal bases are constructed from the evolv-
ing states of cellular automata as follows: one-di-
mensional cellular automata CA  is identified, for 
which  NL ; cellular automata with the code 
set CA CA, ,K K   is defined above it, and for 
some initial lattice state we analyze the evolving his-

tory of cellular automata – the subsequence of the lat-
tice states at time 1, 2,t    As a result of using the 
transformation : A K   at the initial lattice state, 
we determine the first base vector, after that some 
more 1N   vectors are selected from the evolving 
history of cellular automata, so that their pairwise or-
thogonality might happen to be. 
An orthogonal bases algorithm to be built using the 
dynamics of block cellular automata has been defined 
in paper [20]. Selection of block cellular automata re-
sults from the fact that due to its inherent reversibility, 
which occurs when the block transfer function is a bi-
jection, its evolving histories do not contain the cycles 
with an indefinite length.
We shall designate the set of orthogonal bases obtained 
from the evolving states of cellular automata with the 
code set CA CA, ,K K   for all possible initial 
sates of the lattice as the orthogonal bases family, and 
shall denote it as  CAK . We may also speak of the 
orthogonal transformations families based on the bas-
es from  CAK .
It was experimentally found that some of the families 
(for 8N  ), in general, may contain up to several 
hundreds of thousands of different bases. This fact 
has determined the need to partition the bases families 
to bases subfamilies, consisting of orthogonal bases 
whose transformations are similar in their properties, 
and to create an appropriate algorithm which allows 
assign the given base to a particular subfamily. Such 
algorithm has been defined in paper [22]. It is aimed 
at identifying the ability of the orthogonal transform 
to partition data elements into frequency components. 
For this purpose, the spatial redundancy vector shall 
be defined and transformed by formula

  G F D C  (1)

where   1

N
i i
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, 1,i j N – is a diagonal normalization matrix.
After the vector F has been transformed, we may de-
termine which of the transformed data elements may 
be referred to low-frequency components containing 
the basic (average) information on the initial vector 
F, and which of them – to high-frequency elements 
which show the variance between separate elements 
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of the vector F. For this purpose the parameter   is 
introduced identifying the minimum ratio between the 
element value ig , 1,i N , the vector G and the value

 1

1 N

j
j

M f
N 

  , 

wherein this element is considered to be a low-fre-
quency component.  
We shall note that the term “frequency components” is 
introduced similarly to the classical orthogonal trans-
formations being used in digital image processing.
B, in the considered algorithm we compute the value 
of data scattering for low-frequency components by 
formula 

 
 

ˆmin
ˆmax
i

i

g
v

g
  (2)

where ˆ ig , 1,i r , 0 r N   — are elements of the 
vector G referred to low-frequency components.
Therefore, as the subfamily of the orthogonal bases 
family  CAK , we shall call the set of such bases 
belonging to  CAK , so that the orthogonal trans-
formations built on their basis have in their frequency 
spectra r  low-frequency components satisfying the 
specified values of the determining coefficient   and 
the dispersion index  , and we shall insymbol as fol-
lows  , , CAr K  ,    , , CA CAr K K    .
Thus, changing the parameters r ,  ,  , we can ob-
tain different kinds of orthogonal transformations 
including approximations of the known trans-
formations. In particular, we shall note that the 
foregoing discrete pseudo-cosine transformation may 
be described in terms of cellular automata as a rep-
resentative of the bases subfamily   1, 2, 1,1, 2CA    
for some cellular automata CA , where 0,4   (the 
dispersion parameter   is meaningless at 1r  ).
In this paper we construct and analyze the orthogonal 
transformations similar to the discrete wavelet transform, 

when  0 mod 2N   and 
2
Nr  .

In order to build the orthogonal bases we used the dy-
namics of cellular automata pCA CA , ,K K   with 
the code set  2 , 2 1, 2 1, 2s s s s

sK      ,
where s – is a true value defined above the block cel-
lular automata    pCA , 8 , 2 , , ,Z A  P ,
where the alphabet of internal states is 

 0,1, 2, 3A  , a set of partitioning schemes is 
   0 1   P  and the block transition function is  

  0 8 4 3 5 15 12 11 14 6 7 9 13  . 
  has been naturally defined as 0 2s ,
 1 2 1s  , 2 2 1s  , 3 2s . 
Table 1 presents quantitative characteristics of the 
constructed families and subfamilies of orthogonal 
bases for 1, 9s  .

Table 1. Number of constructed orthogonal bases 

Value s
Family 

capacity

 CA
sK

Subfamily 
capacity

 4, 0,45, 0,85 CA
sK

1 75052 4
2 226036 142
3 226863 196
4 226863 213
5 226863 223
6 226863 234
7 226863 201
8 226863 188
9 226863 184

You can see that the number of bases in the formed 
subfamilies is much less than the capacity of corre-
sponding families, however, it still remains quite large 
and it determines the necessity to choose the best of 
them in the context of the problem here to be solved. 
With regard to the foregoing problem of loosy com-
pression of digital images, the best will be those or-
thogonal bases whose transformations will result in 
less distortion of the restored data items at equal level 
of information losses produced under compression.

3. The procedure of selection 
of the best transformations by restoration error

Suppose that   ,

1, 1

w h

ij i j
p

 
P ,  0,1, ..., 255ijp  , 

1,i w , 1,j h  — is a pixel matrix of the digital image (for 
simplicity we will take a half-tone image); the problem of 
loose information compression is to be defined then as de-
tecting of this image : l P , where  0,1 kl that at 
specified value of the restoration error mink .
The solution to this problem based on the use of discrete 
orthogonal transformations is to eliminate spatial re-
dundancy from the image which demonstrates relatively 
equal values   of neighboring pixels in local image areas. 
This is achieved by partitioning the data elements into 
components containing the basic image information and 
determining insignificant details. The removal of com-
ponents of the second type from the transformed data 
elements followed by entropy coding of the remaining 
elements shall provide the image compression.
In reference with the above, the efficiency of orthogonal 
transformations shall be evaluated in terms of the num-
ber of zero values obtained as a result of transformation 
followed by quantization. Information losses herewith 
occurred shall result to restoration of distorted images 
which use different methods in their evaluation [23]. In 
this paper we use the base value which identifies the res-
toration error of digital image data elements – the root 
from the root-mean-square-error (RMSE) – computed 
by formula 
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 2

1

1RMSE
N

i i
i

f g
N 

   (3)

Designations used herein correspond to those entered 
above.
Another classical factor of quality of images resto-
ration is the peak signal-to-noise ratio computed by 
formula  

10

max
PSNR 20log

RMSE
if  (4)

These values inversely proportional to each other are 
two equal criteria suitable for the basic evaluation of 
the quality of image restoration. Within this paper we 
have identified the root from the root-mean-square-
error, which requires less computation in its estima-
tion that is more convenient in processing of many 
thousands of orthogonal bases subfamilies.
The procedure of selection of the best orthogonal 
transformations by restoration error shall be deter-
mined by the following stage subsequence.

1. Formation of the set (the subfamily or the set of sub-
families)   of orthogonal bases of the N  – order using 
the dynamics of cellular automata with the code set.

2. Formation of the set of integer matrices (simple test 
images) that simulate some basic behavioral features typ-
ical for real digital images at local sites: the smooth color 
transition, the presence of several distinct areas with the 
smooth color transition, the presence of an object in the 
course of the smooth color transition, and the presence 
of lines in the course of the smooth color transition.
The paper offers to use for 8N   the set of 33 half-
tone digital images with the dimension of 8 8  pixels 
provided in different combinations of dark, mid and 
light halftones (Fig. 1).

Fig. 1. The set of simple test images 

3. The use of orthogonal transformations based on 
each of the built bases C  to each of the spec-
ified test images followed by quantization of the 
transformed data elements according to a simple 
scheme with two coefficients SQ=(qL,qH), where 
qL— is the quantizer of low-frequency components 
and qH— is the quantizer of high-frequency compo-
nents.

4. The converse of each transformation with comput-
ing the RMSE value and the number of zeros among 
the transformed data elements for each of the images, 
and the estimation of the following statistical charac-
teristics: the average number of zeros among quan-
tized data elements, the variation coefficient of this 
value, the average RMSE value and the variation co-
efficient of this value,  which, for some basis C , 
shall be designated, respectively, as  z C ,  zV C , 

 RMSE C ,  RMSEV C .

5. Partitioning of the set   into l  of noncrossing sub-
sets 

i
i

   , where i , 1,i l , 

is determined as follows: a segment of the number line





 2

4
3,0 N

which composes the set of possible values of Z charac-
teristic is partitioned into l  parts, and if  Cz , C  
enters into the i -segment, then iC .
6. Selection of the best orthogonal bases in each 
subset i , 1,i l , for which the mean RMSE val-
ue is the minimum value, and their  integration 
into the set ̂   . When considering the bas-
es С1,С2, so that    1 2RMSE RMSEC C ,
the best one is supposed to be the basic with the small-
est scattering of RMSE values.

7. The use of orthogonal transformations based on the 
bases from ̂  to each of the specified simple test im-
ages so that the level of information losses would be-
come equal that is approximately expressed by equal 
count of zeros among the transformed data elements 
and is achieved by varying the values of quantization 
coefficients.

8. The resulting selection of the best orthogonal trans-
formation by restoration error.
Let us consider this procedure to be used in the low-ca-
pacity bases subfamily  1

4, 0.45, 0.85
CAK . Values 

of all entered statistical bases characteristics, 
which comprise this subfamily obtained when 
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using the quantization scheme  10, 20SQ , 
are given in Table 2. The bases defining matrices are 
not given herein to reduce the description; instead, 
the initial state of the cellular automata lattice is 
pointed out for each base as the code in the alpha-
bet A  which defines the first base vector that clearly 
specifies the total set of base vectors in the known 
transition function. The length of these codes ex-
ceeds N  and is defined by formula  2 1N b  , 
where b  — is the length of the partitioning block, 
since the processing of boundary cells during the 
cellular automata evolving process is performed not 
using the wrapping capability, but by means of sup-
plement of the cellular automata lattice.

Table 2. Bases characteristics of the subfamily 
 1

4, 0.45, 0.85
CAK

Lattice
initial state 

z Vz RMSE VRMSE

2302300312 7.79 70.0 5.046 8.02

3203231002 9.06 60.5 5.040 9.61

2033023303 13.24 72.9 4.780 11.23

0233323033 16.09 58.2 4.617 12.92

It is not hard to note that the bases given in Table 2 
possess the following property:

 11 2 4, 0.45, 0.85
, CAK C C ,

so from that    1 2z zC C  it follows that 
   1 2RMSE RMSEC C . 

Therefore, there is no need to use steps 7 and 8 of 
the proposed procedure, i.e. in  1

4, 0.45, 0.85
CAK  the 

base C  is clearly the best, for which  z 16.09C  
and  RMSE 4.617C .
We won’t discuss in details the use of this pro-
cedure in other subfamilies of orthogonal bases 
having built in this paper because of extensionali-
ty of corresponding tables, so we will be restricted 
with only conclusive results. It should be noted 
herewith that the value l  at 8N   shall be nat-
urally assumed as equal to , since in this case 

 0 z 48 C .
Hence, in each of the subfamilies

 
 1

4, 0.45, 0.85
CAK , 

1, 9s  , the orthogonal bases with the best char-
acteristics have been selected. Table 3 gives, as an 
example, one representing value for each sub-
family. The given bases characteristics have been 
obtained when using the quantization scheme 

 10, 20SQ  .

Table 3. Examples of bases with the best characteristics

s
Lattice 

initial state 
z Vz RMSE VRMSE

1 0233323033 16.09 58.2 4.617 12.92
2 2113331322 21.97 46.4 4.337 16.71
3 2000113232 27.97 40.8 4.068 23.65
4 0112232332 27.61 35.4 4.263 21.50
5 2312331012 26.64 33.1 4.074 24.69
6 3333301112 26.70 33.0 3.904 28.13
7 0322032211 26.70 31.8 3.902 28.64
8 3013230311 26.58 32.5 3.932 27.10
9 1313323232 26.55 32.7 3.934 27.46

You can see that when changing the value s  from 
1 to 7, the improvement in characteristics of the re-
sulting bases can be observed, i.e. the restoration 
error is reduced simultaneously with the increasing 
(or comparability) of the number of zeros among the 
transformed data elements, that will allow to great 
effect to use orthogonal transformations based on 
these bases to compress digital images. Please note 
here that such behavior happens to be not only for 
the given bases, but also for the respective subfam-
ilies in whole.
Numerical experiments with the built bases were 
carried out using classical bodies of the test imag-
es (half-color and full-color) containing Baboon, 
Barbara, Boat, Goldhill, Lenna, Peppers, etc. images 
with the resolution of 512 512 pixels.
The performed experiments have shown that the use 
of the RMSE value as a criterion for the quality of im-
age restoration enables to correctly identify the best 
transformations in the investigated subfamilies using 
the proposed procedure. It is necessary to give some 
explanations here. 
It has been discovered that artifacts appearing on the 
restored images for different orthogonal transforma-
tions, even from the same subfamily, shall diverge in 
their structure. For example, some typical artifacts 
are presented in Figure 2, which gives the segment 
of the classical test image Lenna restored after dif-
ferent orthogonal transformations from the subfam-
ily  1

4, 0.45, 0.85
CAK

 
when completely removing all 

high-frequency first-level components from the ma-
trix. You can see that in some cases “a net” appears 
(Fig. 2а); sometimes the artifacts can rather form “a 
grid” (Fig. 2b), and different “blocking effects” may 
also occur (Fig. 2c, d). The use of the foregoing quan-
tization scheme  10, 20SQ   provides the same 
picture but with less expressed artifacts.
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а)  b)

c)  d) 
Fig. 2. Examples of artifacts for particular transformations

The root of the root-mean-square-error doesn’t allow 
to measure the difference between these artifacts – the 
performed experiments have shown no apparent rela-
tionship between structural features of the artifacts, 
which are demonstrated on the restored images, and 
the proper ranges of RMSE values.
However, if we add the image shown in Fig. 3 to the 
above images, we can see that it doesn’t contain any 
significant artifacts.

Fig. 3. Image segment restored with no significant artifacts

In addi tion to the above,  for  the orthogonal 
transformations,  by means of  which the im-
age shown in Fig.  3  was obtained,  the RMSE 
value computed at  s tage 7 of  the above pro-
cedure has  seemed to be substantial ly  small-
er  than that  for  the orthogonal  transforma-
tions,  by which the images shown in Fig.  2 
were obtained.   These computations were 
performed after  gaining the equal  number of 
zeros among the transformed data elements 
for  al l  transformations reviewed.  Therefore, 
i t  might  be noted that  though the RMSE cri-
terion doesn’t  a l low us to compare various 
arti facts ,  i t  enables  to  divide the s tudied 
transformations into two classes ,  i .e .  those 
for  which detectable  arti facts  are  developed 
at  the given level  of  information losses  on 
the restored images,  and those for  which 
there are  no s ignif icant  dis tortions observed 
at  the same level  of  information losses .  Thus, 
the selected cri terion al lows us  to come to a 
proper decis ion of  the problem on how to se-
lect  the  best  transformations in  constructed 
subfamil ies .
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Conclusion
The paper offers the approach to construction of the bas-
es families of orthogonal transformations with the use of 
the dynamics of cellular automata and proposes the selec-
tion procedure for the best transformations by restoration 
error using the RMSE value as the quality criterion. The 
performed experiments have shown that in order to 
build orthogonal transformations we may use not only 
classical binary cellular automata, as it was in previ-
ous works, but also cellular automata with the internal 
states alphabet of more capacity. Thus the obtained 
orthogonal transformations may be used in digital 
image compression algorithms, e.g. for integer (or ra-
tional numbers) approximation of the known transfor-
mations, i.e. the discrete cosine transformation and the 
discrete wavelet transform.
The work will be continued to construct and in-
vestigate orthogonal transformations using code 
sets of the mode differed from the approach dis-
cussed in this paper. Besides, the proposed proce-
dure may be supplemented by much more sophis-
ticated criteria of discrepancy evaluation between 
the original and restored images after the trans-
formation with information losses, than the root 
of the root-mean-square-error or the peak signal-
to-noise ratio.
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