
29

Review article            https://doi.org/10.12980/jclm.5.2017J6-207                                    ©2017 by the Journal of Coastal Life Medicine. All rights reserved.

Marine bacterial extracellular polysaccharides: A review

Devesh Parkar1*, Rahul Jadhav1*, Mukesh Pimpliskar2 
1Zoology Research Laboratory, Vidyavardhini’s E. S. Andrades Science of College, Vasai West, 401202, India

2Department of Biotechnology, G. M. Momin Women’s College of Science, Bhiwandi, 421302, India

Journal of Coastal Life Medicine 2017; 5(1): 29-35

Journal of Coastal Life Medicine

    *Corresponding author: Devesh Parkar, Zoology Research Laboratory, 
Vidyavardhini’s E. S. Andrades Science of College, Vasai West, 401202, India.
      Tel: +91 8007682079
      E-mail: deveshparkar@yahoo.com
    Rahul Jadhav, Zoology Research Laboratory, Vidyavardhini’s E. S. Andrades 
Science of College, Vasai West, 401202, India. 
      Tel:  +91 9527303223
      E-mail: jadhav2010@rediffmail.com
Fundation project: Supported by the University Grants Commission, India for the 
research project under Minor Research Project [Grant No. UGC, F-47-1470/10 
(WRO)].
    The journal implements double-blind peer review practiced by specially invited 
international editorial board members. 

1. Introduction

   Marine biotechnology has been one of the emerging and key areas 

of research since 1940s due to diverse functional areas (marine 

natural products for medicine, marine nutraceuticals, marine 

bioenergy, marine bioremediation). Moreover, marine organisms 

have the capacity to produce unique bioactive compounds which 

can be utilized for human and industries. Bioactive compounds 

from marine sources have found various implications in the 

progress of mankind due to their diverse biological properties such 

as anticancer, antiviral, etc. In addition to bioactive compounds, 

extracellular polysaccharides from marine organisms have found to 

be beneficial in various industries.

   Due to diverse biological properties and physiological parameters, 

exopolysaccharides has been found to be implicated in various 

industries such as food, textile, etc. (Table 1)[1]. Significant studies 

of microbial extracellular polymeric substances (EPS) have been 

carried out extensively for decades, which further enhances 

the researches to figure out the mechanism of EPS biosynthesis 

providing divergent directions to the study of EPS. EPS have been 

isolated from many natural sources such as soils, fresh water, 

hydrothermal vents, etc. Researchers focus on isolating EPS 

producing microorganisms from marine sources as many marine 

microbes are useful for the human. Thus, this leads to new insights 

in exploring the EPS production from marine bacteria and other 

microbes. This review article focuses on the new insights of 

exopolysaccharides from marine bacteria, along with its chemical 

properties and applications in the industries. 

Table 1 
Various commercial applications of EPS.

EPS Producer bacteria Commercial applications

Kelcogel/ gelrite Sphingomonas paucimobilis Gelling, Stabilizing agent in 
food industry

Xanthan Xanthomonas campestris Viscofying agent

Emulsan Pseudomonas fluorescence Emulsifiers

Dextran Streptococcus mutans, Leuconostoc 
mesenteroides

Purification

Curdlan Agrobacterium and Rhizobium spp. Antithrombotic

Adapted and modified from the table made by Madhuri and Prabhakar[1].
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2. Classification and chemistry of bacterial EPS

   On the basis of structural composition, microbial EPS can be 

classified into three groups[2] which are depicted in the following 

Figure 1. Homo-EPS consist of single type of monosaccharide 

usually α-D-glucans, β-D-glucans, fructans and other polygalactan. 

Hetero-EPS consist of different types of monosaccharides mainly, 

D-glucose, D-galactose, L-rhamnose and their derivatives[3,4]. The 

differences arise between the homopolysaccharides on the basis 

of their primary structures such as patterns of main chain bonds, 

molecular weights and branch structures[4].

Exopolysaccharides

Linear homo-EPS Branched homo-EPS

Homo-polysaccharides Hetero-polysaccharides Polysaccharides with
irregular structures

Figure 1. Classification of EPS on the basis of structures. 

   Furthermore, on the basis of their functions[5], EPS were classified 

into 7 groups, including the constructive or structural, sorptive, 

surface active, active, informative, redox active, and nutritive.

   Exopolysaccharides consist of linear, branched repeating units of 

sugars or sugar derivatives. These sugar units are mainly glucose, 

galactose, mannose, N-acetylglucosamine, N-acetyl galactosamine 

and rhamnose in variable ratios[6]. In addition to sugar moieties, 

some non-carbohydrate substituents such as acetate, pyruvate, 

succinate and phosphate are also present[7]. The typical composition 

of bacterial EPS is tabulated in Table 2.

Table 2
Typical components of bacterial EPS.

Components Examples
Pentose sugars D-arabinose, D-ribose, D-xylose
Hexose sugars D-glucose, D-galactose, D-mannose, 

D-allose, L-rhamnose, L-fucose
Amino sugars D-glucosamine, D-galactosamine
Uronic acids D-glucuronic acids, D-galacturonic acids, 

D-mannuronic acid
Organic substituents Acetate, succinate, pyruvate, glycerate, 

hydroxybutanoate
Inorganic substituents Sulfate, phosphate

Adapted and modified from researches of Kenne and Lindberg[8] and 
Laurienzo[9].

3. Possible biosynthesis pathways of marine bacterial EPS

   Extracellular polysaccharides biosynthesis is a complex process 

due to the involvement of various enzymes. Various studies have 

been carried out to figure out the exact mechanisms of biosynthesis 

of EPS in bacteria, but mechanisms of biosynthesis of EPS in 

the marine bacteria have still remained unclear. Generally, the 

precursor sugars are synthesized and activated inside the cell and 

the polymerization takes place in the inner cell membrane. Several 

reviews and studies suggested three possible biosynthesis pathways 

of EPS in marine bacteria, namely Wzx/Wzy-dependent pathway, 

ATP-binding cassette (ABC) transporter-dependent pathway, and 

synthase-dependent pathway (Figure 2).

3.1. Wzx/Wzy-dependent pathway

   The Wzx/Wzy-dependent mechanism has been widely studied 

in Gram-negative bacteria especially for heteropolysaccharide 

production[10]. Wzx/Wzy-dependent pathway occurs in the 

cytoplasm with the help of series of the membrane-spanning 

proteins[11]. The initiation of the pathway occurs through the initiator 

protein known as phosphoglycosyl transferases which harbours 

the first osidic residue to the undecaprenyl phosphate resulting in 

the sugar repeat units linked to undecaprenyl pyrophosphate[12,13]. 

These undecaprenyl pyrophosphate-linked sugar repeat units are then 

flipped across the cytoplasm to the periplasm of the inner membrane 

using Wzx protein known as flippase, where these repeating 

units are then polymerized by Wzy protein, namely, polymerase, 

through a putative catch and release mechanism[14]. Wzy mediated 

polymerization is carried out at the negative terminus end of the 

growing chain and the length of the repeating unit is controlled by 

another protein known as Wzz.

3.2. ABC transporter-dependent pathway

   ABC transporter-dependent pathway of EPS biosynthesis is 

quite similar to the Wzx/Wzy-dependent pathway since the 

initiation of EPS biosynthesis takes place with the action of various 

phosphoglycosyl transferases in the cytoplasm[15]. The only 

difference between the Wzx/Wzy-dependent pathway and the ABC 

transporter-dependent pathway is the export of sugar linked moieties 

from the cytoplasm to the periplasm of the inner membrane. Export 

of sugar linked repeated moieties occurs due to the ABC transporter 

proteins spanning the inner membrane and the periplasmic 

polysaccharide co-polymerase and outer membrane polysaccharide 

export families[16-18]. Polysaccharides produced through this 

pathway carry a conserved glycolipid at the reducing end composed 

of phosphatidylglycerolandapoly-2-keto-3-deoxyoctulosonicacid 

linker[14].

3.3. Synthase-dependent pathway

   The unique feature of synthase-dependent pathway is the secretion 

of the complete polymer strands across the membranes and the cell 

wall which is independent of a flippase[14]. The polymerization as 
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well as the translocation process is performed by a single synthase 

protein[11]. Synthase-dependent pathways are often utilized for 

the assembly of homo-polymers requiring only one type of sugar 

precursor.

   Most of the enzymatic steps for exopolysaccharide precursor 

biosynthesis occur inside the cell while the polymerization/ 

secretion is localized in the cell envelope. The genes involved in the 

different biosynthesis pathways encode various types of glycosyl 

transferases, polymerizing and branching enzymes, as well as 

enzymes responsible for addition of substituents or modifications of 

sugar moieties[14]. The genes encoding these enzymes can be found 

in most of the EPS producing microbes clustered within the genome 

or on large plasmids[11]. EPS biosynthesis gene clusters are often 

located on plasmids[19,20].  

4. EPS producing marine bacteria

   Marine bacteria, such as Bacillus, Halomonas, Planococcus, 

Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, 

Rhodococcus, etc,, are the primary EPS producers and have been 

extensively studied till date[21]. Most of the EPS producing marine 

bacteria are Gram-negative in nature, while very few are Gram-

positive. It was observed that marine bacterium Saccharophagus 

degradans (S. degradans) produced EPS in high amounts from 

several carbohydrates sources including starch and xylose. Thus, the 

production of EPS from S. degradans was enhanced by nutritional 

limitation[22]. Vibrio furnissii strain VB0S3 was isolated and 

characterized from coastal regions of Goa and showed to produce 

highest EPS in batch cultures during the late exponential growth 
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Figure 2. Possible pathways of EPS biosynthesis in marine bacteria[7].
ATP: Adenosine tri-phosphate; ADP: Adenosine di-phosphate; FAD: Flavin adenine dinucleotide; NAD: Nicotinamide adenine dinucleotide; GDP: 
Guanosine di-phosphate; GDP-Fuc: Guanosine di phosphate-fucose; TDP: Thymidine di phosphate; TDP-Rha: Thymidine di phosphate-rhamnose; NMP: 
Nicotinamide mono phosphate; UDP: Uridine di phosphate; TPR: Tetratricopeptide repeats; TCA: Tri carboxylic acid; Man-1-P: Mannose 1’-phosphate;  
TDP-Glc: Thymidine di phosphate-glucose; Glc-1-P: Glucose 1’-phosphate; UDP-Glc: Uridine di phosphate-glucose; GDP-Man: Guanosine di phosphate-
mannose; UDP-Gal: Uridine di phosphate-galactose; UDP-GlcA: Uridine 5’-diphosphoglucuronic acid; NADH: Nicotinamide adenine dinucleotide 
(reduced form); FADH2: Flavin adenine dinucleotide (reduced form);  GTs: Glycotransferases; OPX, Outer membrane polysaccharide export.
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phase[23]. Planococcus maitriensis Anita I was isolated from the 

coastal sea water area of Bhavnagar, India[19]. This bacterium was 

able to produce an EPS which can be further used for bioremediation, 

enhanced oil recovery and cosmetic applications. Enterobacter 

cloacae, isolated from marine sediments in India produced an acidic 

EPS that showed excellent emulsifying properties as comparable to 

other commercial gums[24]. EPS production by Pseudoalteromonas 

CAM025 and CAM036, isolated from Antarctica sea water and sea 

ice were described[25]. Marine bacteria such as Halomonas maura, 

Halomonas ventosae, and Halomonas alkaliantarctica were isolated 

and evaluated for the EPS production[26-28]. Some exopolysaccharide 

producing marine bacteria have been tabulated in Table 3.

Table 3
Some exopolysaccharide producing marine bacteria.

Marine bacteria Sources References

Planococcus maitriensis Anita I Coastal sea water of Bhavnagar 
District, India

[19]

S. degradans - [22]

Vibrio furnissii strain VB0S3 Coastal region of Goa [23]

Enterobacter cloacae Marine sediments [24]

Halomonas spp. - [26]

Halomonas anticariensis - [27]

Halomonas ventosae - [27]

Alteromonas haloplanktis KMM 156 - [29]

Alteromonas infernus (A. infernus) Deep sea hydrothermal vent [30,31]

Alteromonas macleodii 2MM6 Intertidal zone of Halifax, Nova 
Scotia

[32]

Bacillus licheniformis (B. 
licheniformis)

Volcano island [33,34]

Bacillus marinus Marine sediment [35]

Bacillus strain B3-15 Shallow water, marine hot spring [36]

Bacillus strain B3-72 Shallow vent [37]

Bacillus thermoantarcticus Ischia island [37]

Geobacillus sp. - [37]

Desulfovibrio sp. strain Indl Indonesian coast [38]

Flavobacterium uliginosum - [39]

Hahella chejuensis - [40]

Pantoea sp. BM39 Seafloor sediments [41]

Pseudoalteromonas atlantica - [42,43]

Pseudoalteromonas sp. strain S9 Marine sediment [44-46]

Pseudomonas sp strain NCMB 2021 Madilyn fletche Halifax, Nova 
Scotia

[47]

Rhodococcus erythropolis PR4 - [48]

Shewanella colwelliana Eastern oyster [49]

Vibrio alginolyticus Marine fouling material [50]

Vibrio parahaemolyticus Marine water [51]

Zunongwangia profunda SM-A87 [52]

5. Potential applications of marine bacterial EPS

   Bacterial EPS have been implicated in industries such as 

pharmaceutical, biomedical, food, bioremediation and so on 

due to their stringent physical and chemical parameters. The 

applications of EPS in industries are mainly determined by their 

physical and chemical properties[19]. Rheological, emulsifying, 

solidifying properties of bacterial exopolysaccharides have been 

the key properties for the diverse applications. In addition to EPS 

extracted from terrestrial bacteria, marine bacteria have found 

their role in the pharmaceutical and biomedical industries (Table 

4).

5.1. Medical and pharmaceutical applications

   EPS  s ec re ted  by  B.  l i chen i formis  and  Geobac i l lus 

thermodenitrificans are evaluated and it is found that they are 

powerful stimulators of Th1 cell mediated immunity[54]. Thus, 

these can be potentially used as immunomodulatory agent for 

therapeutic purposes. Following sulfation and depolymerisation 

of EPS produced by A. infernus, the EPS derivatives can be used 

in the treatment of lipemia and arteriosclerosis[55,56]. HE800 

EPS produced by Vibrio diabolicus was found to be strong bone 

healing material without any inflammatory and hypersensitivity 

reactions[57]. It was demonstrated that HE800 EPS enhanced 

collagen structuring in engineering connective tissue model and 

promoted fibroblast settled in extracellular matrix. Furthermore, 

it was observed that during collageneous matrix building, the 

addition of HE800 EPS, increased and accelerated collagen fibrils 

formation with 67 nm periodic striations[58]. Polysaccharide 

B1 from the marine bacterium, Pseudomonas sp., was found to 

be more cytotoxically active to the central nervous system and 

lung cancer cell lines since the EPS induced apoptosis in the 

cells[59,60].

Table 4
Some potential biotechnological applications of marine bacterial EPS. 

Marine bacteria Biotechnological applications
A. infernus strain GY785 Anticoagulant activity, increased the viability and proliferation of chondrocytes, cartilage tissue 

engineering
Alteromonas macleodii subsp. fijiensis Thickening agent in food industry, detoxification of waste water, bone healing, treatment of cardiovascular 

diseases, protection of sensitive skin against chemical, mechanical and UVB aggressions
B. licheniformis B3-15 Antiviral activity
Bacillus thermodenitrificans strain B3-72 Immunomodulatory and antiviral activity
Geobacillus sp. strain 4004 Pharmaceutical applications
Paracoccus zeaxanthinifaciens subsp. payriae Bioremediation of toxic metals
Polaribacter sp. SM1127 Food, cosmetic, pharmaceutical, biomedical
Pseudoalteromonas strain 721 Gelling properties
Pseudoalteromonas strain CAM025 Cryoprotection
Pseudoalteromonas strain CAM036 Trace metal binding
Pseudoalteromonas strain SM9913 Flocculation behaviour and biosorption capacity
Vibrio diabolicus strain HE800 Bone regeneration 

Adapted and modified from researches of Poli et al.[34] and Donato et al.[53].
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5.2. Environmental applications

   It has been found that the EPS produced by marine bacteria 

have strong affinity for heavy metals and thus EPS can be used 

for bioremediation of heavy metals from the environment. It was 

found that the strong interaction of EPS produced by Altermonas 

sp. strain 1644 between divalent and monovalent cations[56,61]. 

The EPS produced by A. infernus also showed a very strong 

affinity for lead, cadmium, and zinc[62].    

6. Recent advances

   In vitro studies conducted in Italy found that the EPS1-T14 

produced by marine bacterium, B. licheniformis T-14 inhibited 

the biofilm formation of clinical isolates Escherichia coli 463, 

Klebsiella pneumoniae 2659 , Pseudomonas aeruginosa 445 and 

Staphylococcus aureus 210 to a considerable extent dependent 

on the dosage and concentrations of the EPS1-T14[63]. According 

to them, this antibiofilm activity of EPS1-T14 was due to the 

surfactant properties of EPS1-T14 which could influence bacterial 

cell surface hydrophobicity and thereby interfere with the initial 

adhesion step, which was essential for the biofilm formation. 

Authors also suggested that the presence of fructose and fucose 

in the EPS1-T14 could interfere with the surface lectins of various 

bacteria such as Pseudomonas aeruginosa, thereby interfering 

with the assembly of adhesions in the cell wall. Thus, EPS1-

T14 could be fascinating anti-adhesive drug in medical and non-

medical prospects, which needs further researches and studies.  

7. Conclusion

   Due to the rheological, emulsifying and solidifying properties 

of exopolysaccharide, it has become one of the most fascinating 

fields of research in terms of marine science. Bone regeneration 

activity of some EPS has facilitated enormous researches in order 

to explore the pros and cons of the EPS as bone regeneration 

agent. Antitumor and antiulcer activities of marine EPS can be 

further explored in terms of its mechanisms and other aspects. 

These various activities of EPS have facilitated the enormous 

findings to figure out the enhanced production of these EPS by 

modifying the organisms using genetic engineering principles. 

Thus, EPS can be more fascinating as the EPS from marine 

sources is an emerging field.
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