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1. Introduction

   Seagrasses are the main plant group able to grow in 
unconsolidated substrata, which support a species-rich community 

of epiphytic organisms composed of prokaryotes and eukaryotic 

micro- and macro-organisms[1,2]. Compared to seagrasses, the 

epiphytic community has a low biomass but its primary productivity 

can be of the same order of magnitude[2,3]. Therefore, seagrass 

epiphytes can make a significant contribution to the flow of carbon 

and nutrients through the community[2,4,5]. Epiphytes of seagrass 

play an important role in ecosystem functioning and they are 

considered as an important food resource for many organisms[6,7]. 

Moreover, epiphytes of seagrass are considered as sensitive 

indicators of natural and anthropogenic disturbance. Changes in the 

abundance and composition of their assemblages occur in relation to 

variation in environmental conditions[8,9]. In addition, they provide 

an early warning of ecosystem change revealing first-order changes 

in organism function since molecular, biochemical, and/or cellular 

changes triggered by pollutants are measurable in cells, tissues, 

and/or cellular fluids[10,11]. In the Mediterranean Sea, Posidonia 

oceanica (P. oceanica) represents the most important seagrass in 

terms of productivity, distribution and habitat structuring. It provides 

substratum to a species-rich epiphytic community[12,13], which 

achieves maximum biomass between the end of spring and the 

end of summer[1,14]. Monitoring of epiphyte of P. oceanica beds is 

becoming a useful tool to test the health of coastal environment and 

several countries have developed programs to study the distribution 

and the characteristics of seagrass beds and their epiphyte[1,15-18]. 

The effect of different kinds of human-induced disturbances on 
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seagrasses in Tunisian coast include such phenomena as reduced 

water clarity (e.g. sediment loading resuspension, eutrophication), 

direct mechanical damage (e.g. dredging and filling, propeller 

scarring) and the release of toxic compounds into coastal waters 

(e.g. oil spills, industrial discharge) has been discussed by Ben 

Brahim et al.[1,19] and Mabrouk et al.[20]. But no studies deal with 

the effect of natural disturbances such as exposure to wind, wave and 

tide, on the composition and the abundance of leaf epiphytes in P. 

oceanica meadows. In particular, small variations of these physical 

factors may limit growth and distribution of seagrass and their 

epiphytes standing in habitats under stress conditions of temperature 

and salinity[21,22]. The aim of this study was therefore to assess 

spatial and seasonal epiphyte distribution and biomass according to 

natural disturbance such as expose to wave, tide and wind. We thus 

compared the biomass and assemblages of macro-epiphyte of P. 

oceanica at a station exposed to natural disturbance to two sheltered 

stations and examined their spatial and seasonal variability using a 

hierarchical sampling design[23]. We expected that epiphyte load and 

percentage cover would be low on the sites exposed to northern wind 

on the two seasons since these physical factors were disadvantageous 

for recruitment and installation of epiphytes. 

2. Materials and methods

2.1. Study area and sampling station

   The study was carried out in the Islands of Kuriate which are 

two emergent shoals, located off the Bay of Khnis north-east of the 

Cape of Monastir and about 18 km from the Monastir City (Figure 

1). They mainly include a small island (Qûrya Essaghira) about 70 

ha and a larger island (Qûrya El Kabira) about 270 ha of area and 

perimeter of 6.9 km and a distance of about 2.5 km from the first[24]. 

These islands are home to a remarkable terrestrial and marine flora 

and fauna richness. These two Islands are characterized by a flat 

and low morphology not exceeding 4.5 m in the highest region, 

with multiple depression areas. The substrate is mainly composed 

of sandstone and carbonate rocks, covered by sand. The average 

rainfall is between the isohyets 400 mm and 500 mm and the 

average temperature is 20 °C. The temperature difference between 

the average of the coldest month (January) and warmest (August) is 

relatively moderate (15.4 °C)[25]. The P. oceanica meadow is well 

represented around the Kuriat Archipelago where it extends from 

0 to 27 m[25-29]. On soft bottoms, these meadows cover almost the 

entire perimeter of the islands. The shoot densities vary between 600 

and 700 shoot/m2 with a lower cover (70%).

2.2. Sampling 

   Three sites in the greatest Island of Kuriate distant by 1.5 to 2 km 

from each other were chosen for the samplings. The site El Boret 

(35°47'53 N, 11°01'25 E) located on the west side of the Big Island 

Kuriate. In winter, it is windy permanently from the north side; 

during the summer, it is especially southern and south/east side 

windy. Given the shallow depth, this site is a shelter for fishermen 

during storms. Meadow of P. oceanica is on a rocky bottom at a 

depth not exceeding 1 m. The meadow is dense and has tiger type.  

P. oceanica cords have a length of 1.5 to 3 m and take an east-

west direction. In this meadow, a dense flora composed mainly of 

Cymodocea nodosa, Caulerpa prolifera, Caulerpa racemosa, Padina 

pavonica and Cystoseira crinita was associated.
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Figure 1. A map of the study area with a focus on sampling sites in the 
Kuriate Islands. 

   The site El Gouze (35°47'09 N, 11°01'50 E) is located on the 

southern shores of the great Kuriate. At this level, there is a 

circulation of sea current between the two islands Kuriate (personal 

observation and fishermen). This site is characterized by a dense 

Posidonia seagrass with different form: tiger, plain and fragmented 

with a large abundance of Caulerpa racemosa in association; there 

is also the presence of Cymodocea nodosa, Caulerpa prolifera, 

Halimeda tuna, Padina pavonica and Cystoseira crinita.

   The site Skala (35°47'42 N, 11°02'37 E), located at the east side of 

the large Kuriate, is protected in winter of the action of the dominant 

northern winds while in summer, it is subjected to the action of 

the wind from the south side. P. oceanica meadow is very dense 

and takes different forms: tiger, isolated tufts and plain meadow. 

The depth is of the order of 2 m. In this meadow, a dense flora 

of Caulerpa prolifera, Padina pavonica, Cymodocea nodosa and 

Caulerpa racemosa was associated. Within each site, two subsites 

were randomly selected. Each subsite was also randomly divided 

into three plots, each plot then being divided into four quadrats 20 

cm apart. We examined variability at tens of centimeter-scale by 

collecting samples from the same quadrat.

2.3. Data collection

   Five shoots were randomly collected on both seasons from each 

quadrat during scuba diving and preserved in seawater-formalin (5%) 

solution for species identification in the laboratory. The samples were 
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examined for leaf surface per shoot and the coverage (expressed as a 

percentage of leaf surface) of each morphological group which was 

estimated with a binocular lens, then carefully scraped with a razor 

blade[30]. Epiphytes and scraped leaves were oven-dried at 60 °C for 48 

h before weighing. Biomass was expressed in g dry weight/shoot[31,32].

2.4. Data analysis

   Permutational multivariate analysis of variance (PERMANOVA)
[33] was used to test the hypothesis that the biomass and the structure 

of epiphytic assemblages differed between seasons and to evaluate 

variability at different spatial scales[34]. PERMANOVA gives the 

permutation P-value and also the Monte Carlo asymptotic P-value 

for each test it performs. When very few permutations are possible, 

the Monte Carlo P-value should be given preference[33]. We used 

999 random permutations for the test at an α-level of 0.05[35]. The 

analysis consisted of a 4-way model with subsites (two levels) being 

nested within sites (three levels), plots (three levels) being nested 

within subsites, quadrats (four levels) being nested within plots. 

Sites, subsites, plots and quadrats were random in the analysis. The 

data were transformed where necessary to meet the assumption of 

homogeneity of variances (homogeneity confirmed by non-significant 

Cochran’s C-test). Variance components of all assemblages were 

calculated for seasons and for all spatial scales.

3. Results

   The biomass of epiphytic leaves of macro-epiphytes showed seasonal 

variation. The high values were detected during the summer (Figure 

2). The highest value of epiphytic leaves biomass [(0.602 ± 0.220) g 

dry weight/shoot] was detected in summer whereas the lowest value 

[(0.417 ± 0.200) g dry weight/shoot] was registered during winter. 

The biomass of macro-epiphytic leaves showed a significant seasonal 

variability (Table 1). No significant difference at the scale site, subsite 

and plot was detected, while significant difference at the smallest scale 

quadrat was revealed and the seasonal effect was obvious on the sites 

since significant interaction was observed. 

   The assemblage of epiphytes showed seasonal variation almost 

similar to all taxa except for Hydrozoa (Figure 3 and Table 2). The 

percentage of coverage of Bryozoa was higher in summer than in 

winter except for the site El Gouze. Algae proliferated for all sites in 

summer than in winter. Incrusted Annelida showed an even distribution 

between seasons and between sites, whereas the percentage cover of 

Hydrozoa was homogenous for all seasons and sites.
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Figure 2. Variability in mean biomass of epiphytic leaves (± SD g dry 
weight/shoot) of P. oceanica on the three sites of Kuriate Islands during 
the winter and summer.

Table 1 
Results of the PERMANOVA on biomass of macro-epiphytic leaves of P. 
oceanica in the Islands of Kuriate. 

Source of variation df MS F P(perm) P(MC)

Se    1 9 017.74 80.62 0.001 0.001

Si    2 1 174.88 3.28 0.141 0.090

Su(si)    3   358.23 0.19 0.917 0.978

Pl(su(si))  12 1 863.64 0.96 0.494 0.517

Rp(pl(su(si)))  36 1 922.51 6.55 0.001 0.001

Se × Si    2  509.13 4.55 0.107 0.045

Se × Su(si)    3  111.86 1.00 0.420 0.437

Se × Pl(su(si))   12  111.54 0.64 0.827 0.872

Se × Rp(pl(su(si)))   36  175.14 0.59 0.997 0.998

Residual 324  293.34

Cochran's C-test           C = 0.578 .ns

Transformation           Ln(x + 1)

Se: Seasons; Si: Site, Su: Subsite; Pl: Plot; Rp: Replicat; df: Degree of 
freedom; MS: Mean square; P(perm): Probability; P(MC): Probability of 
Monte Carlo. Significant probability is on bold.

   ANOVA showed that Kuriates Islands functioned as a single 

ecosystem in terms assemblage of macro-epiphytic leaves since 

no significant variation was detected at the scale site. Significant 

variability is raised at the scales subsite and replicat for the 

percentage of coverage of all macro-epiphytic leaf analyzed.

   Biomass of epiphytic leaves and the percentage cover of the 

algae, Bryozoa, Hydrozoa and incrusted Annelida showed a 

different spatial variability (Table 3). For algae, incrusted Annelida 

and Hydrozoa, the largest variability of the percentage cover was 

detected at the scale subsite and replicat, while for the Bryozoa, the 

greatest variability was detected at the scale subsite. For the biomass 

of epiphytic leaves, most of the variability was revealed at the scale 

quadrat. 

El Boret

Algae Bryozoa Hydrozoa Incrusted Annelida
El Gouze Skala

Figure 3. Mean percentage cover of the macro-epiphyte groups at the 
three nested sites in Kuriate Islands.
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Table 3
Variance of macro-epiphytic biomass of leaves and percentage cover of 
algae, Bryozoa, Hydrozoa, incrusted Annelida in the Islands of Kuriates.

Source of 
variation

Algae Bryozoa Hydrozoa Incrusted 
Annelida

Biomass of 
epiphytic leaves 

Season   5.45   6.13 0.00   0.00 11.60
Site   0.00 15.46 8.43   0.00   0.00
Subsite 29.77 20.99    52.42 30.56   0.00
Plot   0.00   7.98 0.00   8.87   2.50
Quadrat 39.60 14.40    33.42 46.38 45.50
Residual 25.19 34.86 5.73 14.19 40.41
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4. Discussion

   The present study documented significant differences in biomass 

of macro-epiphytes and on the structure of epiphytic assemblages on 

leaves of P. oceanica between seasons. Both biomass and percentage 

cover of macro-epiphytic leaves show a seasonal variability with the 

high values detected in summer. The variability of assemblages and 

biomass founded in the present study agrees with those described 

for P. oceanica meadows in the southern coast of Tunisia by Ben 

Brahim et al.[25,36] and by Mabrouk et al.[20] in the region of 

Mahdia eastern coast of Tunisia, where biomass of macro-epiphytes 

on leaves of P. oceanica was high in summer and low in winter. 

Similar results were reported by Zakhama-Sraieb et al.[37] in Port El 

Kantaoui, Tunisia where summer appears a sensitive season marked 

by the high development and dominance by encrusting Corallinaceae 

and opportunistic macroalgal species which can reach high cover. 

Moreover, the epiphyte load and percentage cover of assemblages of 

different taxa were similar and no variability between the different 

sites was detected. The relationship between spatial patterns of 

macro-epiphytic leaves of P. oceanica and natural disturbance 

highlighted in the present study is not completely in agreement with 

patterns described in previous investigations carried out in different 

localities. In fact, Wahl et al.[2] observe that exposure to waves and 

currents is considered to have a negative effect on the accumulation 

of epiphyte biomass on seagrass leaves and it might contribute to 

between-site variability of epiphyte load on P. oceanica shoots. 

In our study, natural disturbance has no effect on the assemblage 

distribution and the biomass of macro-epiphyte on the leaves of P. 

oceanica between the scales site. The site El Boret marked as the 

most exposed site to northern wind didn’t manifest any difference 

compared to the other protected sites. This situation suggests that 

the sector of Kuriate Islands is a region considered as homogeneous 

habitats. In contrast to other studies, epiphytic composition and 

abundance resulting from the interplay between bottom-up and 

top-down forces are mainly controlled by nutrient availability, 

physical constraints (hydrodynamic flows, sediment features) 

and by biological interactions (grazing by herbivores, dispersion, 

competition for nutrients, light and space)[38]. In addition to all these 

factors, the discharge of the products of several human activities 

such as industrial effluents[39], mining wastes[40], fish farming[41,42], 

drilling fluids[43], sewage and agricultural runoff[16,44,45] or effluents 

from desalination plants[46] can alter the composition and abundance 

of the epibiota. Changes on the composition of epiphyte assemblages 

following nutrient enrichments have also been confirmed under 

controlled field experiments[47]. Our study also shows that natural 

disturbance such as exposition to permanent northern wind has 

no significant effect on the variability of the epiphytic community 

composition. This pattern found in shallow meadows was influenced 

by variability in the seagrass leaf length, which is often associated 

to natural processes such as herbivore pressure or hydrodynamism. 

Those natural processes are attenuate in deep meadows, where 

the fish Sarpa salpa and the sea urchin Paracentrotus lividus, the 

main macroherbivores of P. oceanica, are functionally absent[48]. 

Depth seems to be an important source of natural variability, 

which modifies the responses of the epiphytic community to the 

deterioration gradient. Epiphyte communities in deep meadows 

responded more evidently to differences in environmental quality 

than in shallow ones. Despite that the reduced number of shallow 

meadows sampled could have precluded the detection of clear 

patterns, some relevant functional differences between shallow 

and deep meadows seem to account for the different behaviour 

of their respective epiphytic communities. Moreover, variations 

at the largest scale (between sites) might reflect differences in the 

ecological setting at the localities, such as wave exposure, substrate 

sediment characteristics and/or biological impacts, such as grazing 

pressure or anthropogenic impacts. Factors such as physical 

disturbance, topographic complexity and nutrient availability[49,50] 

might operate on smaller scales to modify morphological epiphytes 

variables. Variations observed at the smallest scales (cm to m) 

are more difficult to explain, but they could be attributable to a 

defined nested components of variation[51] and/or differences in the 

microhabitat[36,49,50,52].

   We highlight that natural heterogeneity in epiphyte composition at 

different spatial scales may interact with the environmental quality 

gradient, obscuring the interpretation of results and making their use 

difficult in monitoring programs[53]. While some epiphyte features 

did not respond to the environmental change gradient, they showed 

an important between-meadows variability or within-meadow 

Table 2
ANOVA on mean percentage cover of macro-epiphytes of P. oceanica during summer and winter.

Source of variation Algae Bryozoa Hydrozoa Incrusted annelida
df MS F P(perm) P(MC) MS F P(perm) P(MC) MS F P(perm) P(MC) MS F P(perm) P(MC)

Se   1 4 660.5 9.89 0.04 0.02 4 729.92 16.9 0.01 0.00 561.95 3.39 0.16 0.13 1 620.66 11.09 0.05 0.02
Si   2  798.5 0.24 0.66 0.90 1 649.94 0.71 0.52 0.60 8 630.67 1.23 0.38 0.35   250.56 0.05 0.92 0.99
Su(si)   3 3 280.2 7.96 0.00 0.00 2 324.51 4.61 0.02 0.01 6 977.98 26.29 0.00 0.00 5 366.32 5.07 0.01 0.01
Pl (su(si))  12 411.7 1.12 0.36 0.35 504.13 1.62 0.12 0.07 265.32 0.34 0.99 0.99 1 057.34 0.81 0.64 0.72
Rp (pl(su(si)))  36 365.3 2.18 0.00 0.00 311.51 2.03 0.00 0.00 772.39 8.21 0.00 0.00 1 312.44 5.97 0.00 0.00
Se × Si   2 810.9 1.72 0.32 0.25 3 463.61 12.4 0.01 0.00 126.01 0.76 0.55 0.54   381.05 2.61 0.21 0.13
Se × Su(si)   3 471.1 1.37 0.29 0.26 278.66 1.77 0.18 0.14 165.71 3.15 0.07 0.04   146.16 0.42 0.77 0.83
Se × Pl(su(si))  12 324.7 0.68 0.78 0.83 157.61 1.02 0.45 0.46 52.55 0.38 0.98 0.99   351.63 1.33 0.23 0.21
Sa × Rp(pl(su(si)))  36 505.6 3.02 0.00 0.00 153.71 1.00 0.45 0.48 138.04 1.46 0.02 0.02   264.22 1.20 0.17 0.16
Residual 324 167.2 153.24   94.00 219.93
Cochran's C-test C = 0.320 .ns C = 0.376 .ns C = 0.399 .ns C = 0.430 .ns
Transformation Ln(x + 1) Ln(x + 1) Ln(x + 1) Ln(x + 1)

Se: Season; Si: Site; Su: Subsite; Pl: Plot; Rp: Replicat; df: Degree of freedom; MS: Mean squrae; P (per): Probability; P (MC): Probability of Monte Carlo. 
Bold numbers indicate significant effects.
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variability by the high values of mean square for all taxa as in Table 

2. Therefore, sampling in deep meadows appears more adequate 

for a more cost-effective monitoring than that in shallow meadows. 

At a larger scale, geographic variability caused by differences 

among northern and southern meadows can also influence the 

epiphyte composition[47]. However, the north-south differences in 

epiphyte composition at smallest scales, can partially correspond to 

natural nutrient differences derived from the hydrodynamic bottom 

morphology and water motion influences in the region[54]. Finally, 

monitoring these epiphyte features in relatively deep meadows seem 

to reduce to a strict minimum natural sources of variability other 

than those associated to anthropogenic gradients. Therefore, they can 

be used in biomonitoring programs to extract ecologically-relevant 

information useful for environmental policy, and management goals. 

However, more research is still needed on the early warning capacity 

of this approach to give a possible predictive value.
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