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1. Introduction

   Initial stages of salmonid fishes development are carried out in 
freshwater. At the first stage young fishes form structures and systems 
connected with ability to live in freshwater. At the second stage 
a complex of structural, physiological and biochemical changes 
directed on preparation of the organism for downstream migration 
and seawater entry takes place[1]. After completion of smoltification 
under certain conditions young fishes migrate downstream the 
river towards the sea. The cause of migratory state occurrence and 
conditions of young salmonid fishes migration downstream the river 
towards the sea remain obscure. 
   The purpose of this work is to find out probable cause for 
occurrence of the migratory condition stimulating young fishes to 
roll downstream the river towards the sea based on comparative 
analysis of structural, physiological and biochemical processes 
occurring during smoltification. Solving this task has important 
theoretical value and plays an important role in optimization of 
measures to improve reproduction of valuable salmonid fishes in 
industrial conditions at fish farms.

2. Structural,  physiological and biochemical 
transformations at the young salmonid fishes during 
smoltification

   During smoltification organism of the young salmonid fishes 
undergoes two groups of processes. The first group is connected with 
processes determined by preparation of young fishes to the sea mode 
of life (Figure 1, right part). The second group testifies that during 
smoltification the stress reaction (Figure 1, left part) is realized.

2.1. The processes connected with preparation of young 
salmonid fishes to the sea life

   During smoltification hypertrophy and hyperplasia of hypophysis 
somatotropic cells occurs resulted in increased excretion of growth 
hormone[1-4] leading to rising of its concentration in blood[1,5-8]. 
The growth hormone form parameters allowing smolts to survive 
in the seawater[3-6,9,10]. It is shown[11] that the hypophysectomized 
young coho salmon and young chinook survive in freshwater but 
die in seawater. However, if fishes with the removed hypophysis are 
injected with growth hormone period of their survival in seawater 
elongates.
   During the period of smoltification tirotropotsity adenohypophysis 
activate leading to amplified inflow of thyritropic hormone in 
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blood. This hormone stimulates thyroid gland, stimulating release 
of triiodothyronine and thyroxine in blood[1,8,12-14]. Activities of 
thyroid gland hormones are associated with various morphological, 
behavioral and physiological changes, preparing salmons for life 
in seawater[15]. Intensifying of salinous water preference by smolts 
match with rise of thyroxine in fishes blood[16,17]. Increase of thyroid 
hormone level in blood of Pacific salmons results in preference of 
salinous water and its reduction – in preference of freshwater[18,19].
   Salmonid fishes with evident dysfunction of thyroid gland are 
not capable to grow in seawater, and placements of pre-smolts in 
sea water leads to growth inhibition and even death of fishes[10,17]. 
Additionally, to the mentioned functions, hormones of thyroid gland 
stimulate mobilization of lipids, enhance synthesis of proteins, 
influence vitamin and carbohydrate metabolism[20,21], as well as 
control olfactory imprinting during downstream migration[22,23]. 
Thyroid gland of euryhaline fish Fundulus heteroclitus L. participates 
in maintenance of water-salt homeostasis during adaptation to 
seawater[24]. Inhibition of thyroid gland of the individuals of this 
species acclimated to freshwater, does not affect their vitality and 
regulation of osmotic and ion exchange whereas in seawater fishes 
die within 3 weeks. Meanwhile, rising of osmotic pressure and 
concentration of sodium occur in blood serum. It is recorded[15] that 
effects of thyroid gland hormones and growth hormone to the big 
extent complement each other.
   During the period of salmons smoltification structural changes 
are registered in intercellular contacts and chloride cells of gill 
apparatus[25,26], rising of succinate dehydrogenase ferments[2,27] 
and Na+-K+-ATPase[4,9,12,13,27-30] activity in gills. The number, 

size and activity of chloride cells in the gills increase in smolts 
in freshwater[26]. The chloride cells of smolts in freshwater are 
more similar to those of seawater fish than to those of freshwater 
salmon. During smoltification, the intestine, as well as the other 
osmoregulatory tissues, will pre-adapt for a life in seawater, while 
the fish are still in freshwater[31]. The absorptive form of the Na+-
K+-2Cl- cotransporter-like isoform (subapically located Na+-K+-
2Cl- and/or Na+, Cl- co-transporter) of intestinal increased during 
smoltification and further after seawater transfer[32]. It is observed 
that kidneys of smolt rearrange to the sea type of regulation[33-36]. 
Salmo salar exhibited sufficient hypo-osmoregulatory capacity at the 
initiation of downstream migration[37]. It is shown that when smolts 
are moved from freshwater to seawater, they survive in it[2,38-40].
   It is shown that in blood serum, liver, intestines, red and white 
muscles of parr content of polyunsaturated fats is relatively low, and 
content of linoleic acid is high that is typical of freshwater fishes[41]. 
During smoltification concentration of polyunsaturated fats with 
lengthy chain increases in these tissues that is typical for marine fishes.
   The given data show that as a result of smoltification young 
salmonid fishes being in freshwater form structures and systems 
necessary for survival of smolts in seawater. However, formation 
of structures and systems necessary for sea mode of life during 
smoltification is accompanied by negative consequences connected 
with increase of body covers and branchiate epithelium permeability 
to water and ions. It is known[42], that euryhaline species in 
freshwater have low permeability of body covers and gills to ions 
and water, while with moving fishes to seawater permeability sharply 
grows. Increase of excreted urine amount during smoltification[43] 
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Figure 1. Schematic diagram of the conjugated processes related to the general adaptation syndrome (left part) and structures facilitating survival of young 
fishes in the sea (right part) during smoltification.  
ACTH: Adrenocorticotrophic hormone.
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testifies intensifying of water penetration into the organism. This can 
be connected with rising permeability of body covers and gills to 
water. It is registered that losses of ions of sodium and chloride from 
smolts blood to environment dominate[44-46], what points at increase 
of branchiate epithelium and body covers permeability to these ions. 
In order to confront these consequences unfavorable for the organism, 
functions connected with general adaptation syndrome strengthen 
during smoltification (Figure 1, the left part).

2.2. Realization of stress reaction of young salmonid fishes 
during smoltification

   During smolt i ficat ion act ivi ty  of  preopt ic-pi tui tary 
neurosecretory system intensify[47,48], therefore, concentration 
of adrenocorticotrophic hormone in blood plasma increases. This 
hormone stimulates interrenal cells[4,47,49], stimulating release of 
corticosteroid hormones in blood. Therefore, during smoltification 
concentration of cortisol, mainly, in blood plasma essentially 
grows[8,13,28,50-56].
   This hormone affects various aspects of vital activity of 
the organism. Its role in regulation of water-salt exchange is 
acknowledged[57-59]. Removal of freshwater fishes’ interrenal gland 
causes slowing down of sodium uptake from external environment 
into the organism. It is accompanied by fall of salts level in fishes’ 
blood. Injections of cortisol in low doses cause intensifying of 
sodium uptake from freshwater, resulting to recovery of its level in 
fishes’ blood. Consequently, corticosteroids have an effect on fishes 
adapting to freshwater, as the factor intensifying active transport of 
sodium from external environment. Therefore, increase of the level of 
these hormones during smoltification alongside with other functions 
is directed on maintaining ionic homeostasis by means of the increase 
of sodium absorption from external environment.
   During smoltification concentration of catecholamines in blood 
plasma rises[60,61]. These hormones are responsible for various 
functions including regulation of ion exchange between the organism 
and environment. Adrenalin enhances uptake of sodium by gill[62,63] 

and prevents desalination of the fish organism adapted to freshwater. 
Consequently, catecholamines, as well as corticosteroids, compensate 
unfavorable consequences of increased permeability by means of 
intensifying the rate of ions transport from water through gills.
   It is shown[2] that during smoltification activity of hypophysis cells 
intensifies, resulting in rising of prolactin level in blood plasma[8]. 
In teleost fishes, prolactin was identified as the “freshwater-adapting 
hormone”, promoting ion-conserving and water-secreting processes 
by acting on the gill, kidney, gut and urinary bladder[64]. Removing 
hypophysis of freshwater fishes causes essential increase of sodium 
ions and chloride efflux from the organism leading to sharp drop of 
osmotic pressure and concentration of electrolytes in blood[65-67]. 
Injection of repetitive doses of prolactin into hypophysectomized 
animals facilitates recovery of salts level. It is shown that ionic 
disbalance induced by hypophysectomy is conditioned by increase of 
electrolytes efflux from organism whereas their absorption remained 
at the former level. It is concluded[59,68,69] that corrective effect of 
prolactin is directed on reduction of permeability of body covers 
and gills to ions. Prolactin facilitates excretion of water from the 
organism by means of intensifying diuresis[59]. It is shown[65] that 
prolactin stimulates secretion of slime by mucous cells of branchiate 
epithelium and body covers. Slime is considered to be a protective 
factor reducing permeability of branchiate epithelium and body 
covers for ions and water.

   Other data show, that prolactin controls permeability of cellular 
membranes. It is known, that calcium carries out important role in 
maintaining functional integrity of membranes through reducing 
their permeability to sodium and chloride ions[70]. Reduction of 
calcium concentration in water is accompanied by increasing activity 
of prolactin-synthesizing cells of hypophysis. On the contrary, 
adding calcium to water provokes reverse reaction[71]. Survival of 
hypophysectomized bulltrout Salmo trutta L. in freshwater was 
prolonged either by injections of prolactin or by increasing content of 
calcium in environment approximately up to 5 mmol/L[72]. It can be 
concluded that calcium in environment and prolactin in the organism 
substitute each other in the process of regulating permeability 
of branchiate epithelium and body covers to sodium ions. Based 
on physiological role of prolactin, it is possible to conclude that 
intensifying secretion of this hormone during smoltification is 
directed on stabilization of water-salt exchange by means of reducing 
permeability of branchiate epithelium and body covers to ions as well 
as increasing the speed of diuresis.
   Thus, morphological, structural, physiological and biochemical 
reconstruction connected with preparation of young fishes to living 
in the seawater (Figure 1, right part), which takes place during 
smoltification, causes rising of branchiate epithelium and body 
covers permeability to water and salts in the organism of smolts. In 
its turn, it facilitates, on the one hand, water influx, on the other hand, 
intensifying leakage of sodium and chloride ions from the smolts 
organism. Confronting these harmful consequences is implemented 
by means of intensifying protective mechanisms of the general 
adaptation syndrome (Figure 1, the left part) which are directed on 
decreasing permeability of branchiate epithelium and body covers to 
water and ions, increase of dieresis speed and intensive transport of 
sodium from water.
   Augmentation of tension in the organism during smoltification is 
happening gradually due to slow formation of structures and systems 
of the sea type. Because of this permeability of body covers and 
gills to water and ions also rises gradually. Protective mechanisms 
connected with the neuroendocrinal system (Figure 1, left part) 
during initial period of smoltification compensate not only damaging 
consequences provoked by rising of permeability but also function 
in abundance creating a certain “resistance reserve” in the organism. 
There is certain data testifying it. During smoltification, especially at 
an early stage, it is registered that locomotor ability of young fishes 
to stand against water flow[73] increases and speed of loosing sodium 
ions from the organism decreases[74].
   During progressing of smoltification the load level gradually 
strengthens due to further continuation of structural reconstruction 
connected with preparation of fishes to sea life. Simultaneously, 
activity of compensatory systems increases in order to neutralize 
permeability gradually growing during smoltification. It is proven 
by the following fact. It is shown[28], that concentration of cortisol 
in blood plasma of smolts during smoltification gradually rises up 
to maximum values. By the end of smoltification structural changes 
complete, and permeability of body covers and gills reaches its 
maximum value, characteristic for marine fishes. In this situation 
compensatory systems connected with general adaptation syndrome 
are forced to function in intensive regime which cannot continue for a 
very long time. In due course there comes a moment when protective 
functions of the organism exhaust (“exhaustion stage” according to 
Selye[75]), they are not able to completely compensate unfavorable 
processes caused by hyperpermeability of body covers and gills. 
Exhaustion stage of freshwater spawners is observed straight after 
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spawning[76] and demonstrates similar damaging as of smolts.
   Exhaustion is accompanied by decrease in resistance of smolts 
organism to other factors and loads. It is shown that in comparison 
with parr, smolts are more susceptible and less resistant against 
effect of unfavorable factors[51,77-82]. Smolts reveal fall of locomotor 
opportunities[73,83,84]. It has been registered that before the beginning 
and during migration downstream smolts’ protective systems ability 
to keep concentration of chloride[85] and sodium[2,33,36,45,86] in blood 
plasma and body tissues[87,88] deteriorate at stably raised levels. 
Decrease of the content of these ions in blood and tissues of smolts 
correlated with predominance of their losses into environment[44-46,89].
   These facts form the basis for the theory of “demineralization”. It 
has been assumed that a way out of such condition for smolts can 
be only migration[88,90,91]. Series of studies[92-94] have been devoted 
to substantiation of this assumption. However, this point of view is 
criticized because falling of electrolytes levels in blood plasma and 
tissues of smolts does not always reveal.
   In some cases proved decrease of salts in the blood of smolts has 
not found[38,39,82,95,96], and in other studies even rising has been 
observed[27,97]. Chernitskii[98] has observed various scenarios of 
changes in concentration of sodium in blood serum of Atlantic 
salmon smolts: rising of young fishes in the river of Salaca, the 
tendency to decrease of young fishes in the river of Keret, absence 
of changes of fishes in the rivers of Luvenga and Ligma. It turned 
out that identical for all groups is increasing variability of the given 
parameter. Such various reactions are connected with differences in 
environmental factors.

3. Influence of external factors on physiological and 
migratory condition of young salmonid fishes

   Action of external factors reveals in two ways. Favourable 
conditions which improve physiological state of smolts, slow 
down or even completely terminate migration of young fishes 
downstream the river. Unfavorable factors creating additional load 
on physiological processes of smolts enhance migration of young 
fishes downstream the river. This is testified by the data received by 
several researchers.
   During smoltification fatty[77] and carbohydrate[49] exchanges 
increase. As a result, sharp decrease in quantity of muscle fat[4,99], 
glycogen[100] and liver fat[2,4,77], coefficient of fatness and liver index 
of smolts is observed[101]. It is discovered[99] that migration of young 
fishes occurs at sharp decrease in muscle fatness of up to 2.6%. 
Under good feeding conditions ensuring maintaining of muscle fat 
at higher than 2.6% migration does not occur. The proportion of 
Salmo salar that reached Lake Vänern was significantly greater for 
fish fed fat-reduced feed than for fish given rations with higher fat 
content[102]. Also, successful migrants had a lower condition factor 
than unsuccessful ones[102,103].
   It is shown[104], that augmentation of young salmonid fishes 
population in the river leads to deterioration of nutritional conditions 
and intensifying of migration. Reduction of density improves food 
consumption and weakens migration. These data show that at deficit 
of nutrition protective systems of smolts (Figure 1, the left part) are 
quickly being exhausted facilitating migration. At excess of nutrition 
resources the energy is sufficient to maintain adaptable reactions. 
As the result of it migration is being delayed. It is recorded[105] that 
among young salmonid fishes there is a significant part of smolts (up 
to 21%) not migrating down the river. These results can be explained 
as follows: not migrating fishes do not reach the depletion stage of 

their adaptable resources what allows them to remain in the river. In 
this perspective there is very interesting data regarding cultivation 
of salmon in a lake with excessive quantity of feed [106]. Young 
fishes reached migratory condition in the age of 13–14 months, 
however, they did not migrate down from the lake. During further 
cultivation in the lake fishes maintained silvery colour. At the age of 
3+ maturation of males began and at 5+ of females.
   Analysis of the data shows that migratory condition of smolts 
reveals when depletion of energy resources reaches the critical level. 
As a result, deficiency of energy required for functioning of smolts’ 
physiological systems in strained regime arises. In such situation 
adaptable functions in due course exhaust and lose ability to keep 
vital parameters of water-salt homeostasis at stable levels. Such 
situation causes internal discomfort which results in raised motor 
activity of smolts stimulating them to migrate. Unfavorable external 
environmental conditions represent additional load on adaptable 
functions of smolts’ organism. This accelerates reaching depletion 
of compensatory systems enhancing migration of young fishes. 
Improvement of environmental conditions leading to decrease of the 
load on protective functions of the organism weakens or even stops 
migration of young fishes. Migration of young salmons downstream 
the river is predetermined by excessive intensity of active processes 
in the organism back-grounded by energy deficiency. In such 
situation migration of smolts upstream the river demanding 
additional energy and physical efforts is doomed to be a failure.
   Due to different reasons productivity of some commercially 
valuable species of salmonid fishes is dropping. Attempts are being 
made to correct this situation by means of cultivating young fishes 
at fish farms. In such conditions smolts do not realize migration 
downstream the river. Therefore young fishes are delivered to 
stations near the river mouth. This method does not allow to 
“imprint” the migratory route. Therefore return of mature salmons 
from to sea home does not exist. Return of mature fishes is observed 
in case smolts realize natural migration in which memorizing of 
migratory routes takes place. We believe that the basic drawback 
in the technological process of salmonid fishes reproduction is 
maintaining optimal conditions at the end of smoltification process. 
Such situation leads to decrease of load on physiological systems 
preventing reaching of maximum tension and initiation of migratory 
impulse. In our opinion, in order to achieve maximum stress and 
induce migratory impulse it is necessary to stop feeding young fishes 
at the end of smoltification process so that deficiency of energy is 
reached. For initiation of spontaneous migration it is necessary to 
increase load on physiological systems through deterioration of 
environmental conditions.

4. Conclusions

   Analysis of the data has shown that during smoltification processes 
causing preparation of young fishes for the sea mode of life (Figure 
1, right part) are put into effect. As a result of various structural 
changes permeability of body covers and gills to water and salts 
rises, facilitating watering and desalting of the organism. With the 
purpose of neutralizing damaging effects during smoltification 
protective mechanisms connected with the general adaptation 
syndrome (Figure 1, the left part) are activated. In the beginning of 
establishment the sea type structure invoke insignificant damaging 
consequences. Strengthening protective systems compensate 
unfavorable consequences facilitating resistance of the organism 
(stage of resistance according to Selye[75]). Along with developing 
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of smoltification process and further formation of the sea type 
structures degree of increasing permeability of body covers and 
gills also rises. Parallel to this activity of compensatory systems 
increases with the purpose of neutralization of growing negative 
effects. By the end of smoltification structural changes finalize being 
accompanied by reaching maximum rising of permeability of body 
covers and gills. In due course there comes the moment of achieving 
energy deficiency and depletion of protective functions of the smolts’ 
organism (stage of exhaustion according to Selye[75]). Such situation 
invokes internal discomfort and raised motor activity in the organism 
of smolts exciting them to downstream migration.
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