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MINIMUM CONVEX COVER OF SPECIAL NONORIENTED GRAPHS  

Radu BUZATU 

State University of Moldova 

 
A vertex set S of a graph G is convex if all vertices of every shortest path between two of its vertices are in S. We 

say that G has a convex p-cover if ( )X G  can be covered by p convex sets. The convex cover number of G is the least 

2p   for which G has a convex p-cover. In particular, the nontrivial convex cover number of G is the least 2p   for 

which G has a convex p-cover, where every set contains at least 3 elements. In this paper we determine convex cover 

number and nontrivial convex cover number of special graphs resulting from some operations. We examine graphs 

resulting from join of graphs, cartesian product of graphs, lexicographic product of graphs and corona of graphs. 

Keywords: nonoriented graphs, convex covers, convex number, operations, join, cartesian product, lexicographic 

product, corona. 

 

ACOPERIREA CONVEXĂ MINIMĂ A GRAFURILOR SPECIALE NEORIENTATE  

Mulţimea de vârfuri S ale grafului G se numeşte convexă dacă pentru orice două vârfuri x, y din S toate vârfurile ce 

aparţin tuturor lanţurilor de lungime minimă cu extremităţile x, y se conţin în S. Se spune că G conţine o p-acoperire 

convexă dacă ( )X G  poate fi acoperită cu p mulţimi convexe. Numărul acoperirii convexe al lui G este cel mai mic număr 

2p  , pentru care G conţine o p-acoperire convexă. În particular, numărul acoperirii convexe netriviale al lui G este 

cel mai mic număr 2p  , pentru care G conţine o p-acoperire convexă, în care orice mulţime constă din cel puţin 3 vârfuri. 

În această lucrare noi determinăm numărul acoperirii convexe şi numărul acoperirii convexe netriviale al unor clase 

speciale de grafuri obţinute din următoarele operaţii pe grafuri: suma, produsul cartezian, produsul lexicografic, coroana. 

Cuvinte-cheie: grafuri neorientate, acoperiri convexe, numărul acoperirii convexe, operaţii, suma grafurilor, produs 

cartezian, produs lexicografic, coroană. 

 
 

Introduction 

In this paper we consider only connected and nonoriented graphs. We denote by G a graph with vertex set 

( )X G  and edge set ( )U G . An edge joining two vertices x and y in G is denoted by xy. The distance between 

vertices x and y in G is denoted by ( , )d x y . The diameter of a graph is the length of the shortest path between 

the most distant nodes.  

A set ( )S X G  is a clique if every pair of vertices of S is adjacent in G. The neighborhood of a vertex x 

of ( )X G  is the set of all vertices y of ( )X G  such that x and y are adjacent, and it is denoted by ( )x . A 

vertex x is called simplicial if ( )x  is a clique. Also, a vertex x is called universal if ( ) ( ) \{ }x X G x  .  

Let S be a subset of ( )X G . We say that [ ]G S  is the subgraph of G induced by S.  

Now we remind some concepts from [1]. The metric segment ,x y  is the set of all vertices lying on a 

shortest path between vertices x and y in G. A set ( )S X G  is called convex if  ,x y S  for all ,x y S . 

The convex hull of ( )S X G , denoted ( )d conv S , is the smallest convex set containing S.  

A family of sets is called convex cover of );( UXG   and is denoted by )(GP  if the following 

conditions hold: 

(i) Every set of )(GP  is convex in G. 

(ii) 
( )

( )
S G

X G S



P

. 

(iii) 
( ),C G C S

S C
 


P

, for every ( )S GP . 

If ( )G pP , then this family is called convex p-cover of G and is denoted by ( )p GP  [2].  
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A convex cover ( )GP  of graph G is called nontrivial convex cover if every set ( )S GP  satisfies the 

inequalities: 3 ( ) 1S X G   . The minimum number of cliques that cover all the vertices of a graph is 

known as a clique cover number ( )G , introduced by Berge [3].  Also, convex cover number ( )c G  was 

defined as the least 2p   for which G has a convex p-cover [2]. Similarly to ( )c G , we introduced 

nontrivial convex cover number ( )cn G  [4].  

Note that there are graphs for which there are no nontrivial convex covers. For instance, every convex 
simple graph has no nontrivial convex covers. A graph G is called convex simple if it does not contain 

nontrivial convex set [5]. Let us remark that if G has a nontrivial convex cover, then we have ( ) ( )c cnG G  . 

The minimum convex cover ( )
c

GP  is the convex p-cover of graph G such that ( )cp G . In the same 

way, we define minimum nontrivial convex cover ( )
cn

GP  and minimum clique cover  ( )GP  of graph G. 

By ( )P G  we denote a family of convex sets, where 
( )

( )
S P G

X G S


 . We denote by ( ( ))P GP  a 

convex cover of G that consists of sets, which belong to ( )P G .  

A nonempty subset S of ( )X G  is a nonconnecting set in G if for every pair of vertices , ( ) \x y X G S  

with 2),( yxd  we have  Syx  )()( . 

A map : ( * ) ( )Gp X G H X G , (( , ))Gp g h g , is the projection onto G and 

: ( * ) ( )Hp X G H X H , (( , ))Hp g h h , the projection onto H, where G and H are two graphs and * is 

one of two operations: cartesian product, lexicographic product.  
Convex cover of a graph was studied by many mathematicians. Any latest results on graph convex covers 

are given in [2, 4, 6-8]. Deciding whether a graph G has a convex p-cover or a nontrivial convex p-cover for 

a fixed 2p  , it is known to be NP-complete [2, 4]. Besides, convexity was studied in some graph 

operations [9-11]. Further, there is particular interest in establishing of convex cover number and nontrivial 
convex cover number for special graphs resulting from graph operations, such as join of graphs, cartesian 
product of graphs, lexicographic product of graphs and corona of graphs. 

Preliminary Results 

Firs, note that for a given ( )P G , which has no set ( )X G ,  we can easily obtain ( ( ))P GP  by removing 

from ( )P G  all sets contained in the union of other sets of the family ( )P G . It can easily be checked that 

Propositions 1, 2 and 3 are true. 

Proposition 1. Let G be a connected graph of order 2n  . Then for every vertex ( )x X G  there is a 

convex set ( )S X G  such that x S and 2S  . 

Proposition 2. Let G be a connected graph of order 3n . There exists ( )
c

GP  such that for every set 

( )
c

S GP  condition 2S  holds. 

Proposition 3. Let G be a connected graph of order 3n . There exists ( )GP  such that for every set 

( )S GP  condition 2S  holds.   

Theorem 1. Let G be a connected graph of order 3n   that contains a universal vertex. Then for every 

vertex ( )g X G  there is a convex set ( )S X G  such that g S and 3S  . 

Proof. Let x be a universal vertex of G and ( ) ( ) \{ }x X G x  . Suppose that [ ( )]G x  is a disconnected 

graph. This means that there are two connected components 1[ ( )]G x  and 2[ ( )]G x . Further, for every two 

vertices 1 1( [ ( )])x X G x   and 2 2( [ ( )])x X G x   we get a convex set 1 2{ , , }x x x , and this set is nontrivial.  

Now suppose that [ ( )]G x  is a connected graph. In this case every vertex y of ( ) \{ }X G x  has an  

adjacent vertex ( ) \{ }z X G x . Hence, set { , , }x y z  is convex and consists of three vertices. □ 
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Consequence 1. Let G be a connected graph of order 4n   that contains a universal vertex. Then, G has 

a nontrivial convex cover.   

Consequence 2. Let G be a connected graph of order 4n   that contains a universal vertex. Then, 

( ) ( )c cnG G  .  

Join of Graphs 

The join of graphs G and H, denoted HG , is a graph with )()()( HXGXHGX   and 

)}(),(:{)()()( HXyGXxxyUHUGUHGU   . 

Theorem 2 [9]. Let G be a connected graph and mK  the complete graph of order m. Then a proper subset 

1 2C S S  of )( mKGX  , where )(1 GXS   and )(2 mKXS  , is convex in mKG    if and only if either   

(i) 1S  is a clique in  G, or  

(ii) SGXS \)(1   and )(2 mKXS   for some nonconnecting set S of G. 

Theorem 3. Let G be a noncomplete graph on n vertices with diameter 2 and mK  the complete graph of 

order 1m  . Let 1 2C S S  be a proper convex subset of )( mKGX  , where )(1 GXS   and )(2 mKXS  .  

Then 1S  is convex in G. 

Proof. By Theorem 2, let us consider two cases. Firstly, if 1S  induces a complete subgraph of G, then 

evidently it is convex in G.  Without loss of generality it can be assumed that 1S  does not induce a complete 

subgraph of G. Thus, SGXS \)(1   and )(2 mKXS   for some nonconnecting set S of G. Assume further 

that 1S  is not convex in G. Let x and y be two vertices of 1S  such that there exists a vertex ,
G

z x y  that 

does not belong to 1S . Since diameter of G is 2, we obtain ( , ) ( , ) 2
mG G Kd x y d x y   and ( ) ( )G Gz x y  . 

Hence, 1z S . From definition of nonconnecting set, ( ) ( )G Gx y S    and consequently z S . 

Thus, Theorem 2 is satisfied and therefore  there is a contradiction. Furthermore, S is convex in G. □ 

Theorem 4. Let G be a connected graph on 1n   vertices and mK  the complete graph of order 1m  . 

Then, the following statements hold.  

1) If G is complete, then ( ) 2c mG K   .  

2) If G is complete and 4mn , then ( ) 2cn mG K   . 

3) If G is noncomplete with diameter 2,  then ( ) ( ) ( )c m cn m cG K G K G      .  

4) If G is noncomplete with diameter at least 3,  then ( ) ( ) ( )c m cn m cG K G K G      . 

Proof. 

1) Suppose nKG  . Then, by definition of the join of two graphs, it follows that mKG   also is complete. 

Here graphs nK  and mK  are nonempty. Further, we obtain 2)(  mnc KK .  

2) Suppose nKG   and 4mn . As before, mKG   is complete. Since every nontrivial convex set 

has at least three elements, we have 2)(  mncn KK .  

3) Suppose G is noncomplete graph with diameter 2. Let C be a proper convex subset of )( mKGX  , 

which satisfies conditions of Theorem 2. It follows from Theorem 3 that ( )X G C  is convex set in G. Let 

( )
c mG K P  be a minimum convex cover of 

mG K . We get family of sets 
( )

( ) { ( ) }
mc

S G K
P G X G S

 P
= . 

It is clear that ( )P G  has no set ( )X G . This yields that ( ( )) ( )c mP G G K P . In fact, we obtain 

inequality ( ) ( )c c mG G K   .  



S TUD IA  UN IVERS I T AT I S  MO LDAV I A E ,  2016, nr.2(92) 

Seria “{tiin\e exacte [i economice”  ISSN 1857-2073   ISSN online 2345-1033   p.46-54 

 

 49 

By Proposition 2, a connected graph G on 3n  vertices has a minimum convex cover ( )
c

GP  such that for 

every set ( )
c

S GP  condition 2S  holds. Hence, we obtain a nontrivial convex cover ( )mG KP  of 
mKG , 

adding )( mKX  to iY , where ( )
ciY GP , for 1 ( )ci G  . Note that ( ) ( )m cG K G P  and 

( ) ( ) ( )c m cn m cG K G K G      . Continuing this line of reasoning, we see that  ( ) ( ) ( )c m cn m cG K G K G      .  

4) Now, assume that G is noncomplete and its diameter is at least 3. As above, it is easy to prove that 

every minimum convex cover of G, which satisfies Proposition 2, generates a nontrivial convex cover of 

mKG  . Thence, ( ) ( )cn m cG K G   . Note also that there are noncomplete graphs W, with diameter at 

least 3, for which strict inequality ( ) (W)cn m cW K    holds. For instance, graph represented in Figure 1 

is the join of graphs W and 1K , where  1( ) { }X K k . This graph has minimum nontrivial convex cover 

1 1 7 9 2 8 10 3 5 4 6( ) {{ , , , },{ , , , },{ , , },{ , , }}
cn

W K x x x k x x x k x x k x x k  P , but graph W has minimum convex 

cover  
1 3 5 7 2 4 6 8 9 10( ) {{ , },{ , },{ , },{ , },{ },{ }}

c
W x x x x x x x x x x P  and further 

1( ) 4cn W K   ,  but ( ) 6c G  . 

We stress that nontrivial convex cover is a particular case of convex cover. Since any vertex of ( )mk X K  is 

universal in mG K , Consequence 2 implies that the equality holds ( ) ( )c m cn mG K G K    . Thus, we 

obtain ( ) ( ) ( )c m cn m cG K G K G      . □ 

 

 
 

Fig.1. 

 

Theorem 5 [9]. Let G and H be noncomplete connected graphs. Then a proper subset 21 SSC   of 

)( HGX  , where )(1 GXS   and )(2 HXS  , is convex in G H   if and only if 1S  and 2S  are 

cliques in G and H respectively. 

Theorem 6. Let G and H be noncomplete connected graphs. Then, the following equalities hold: 

( ) ( ) ( ) max{ ( ), ( )}c cnG H G H G H G H          .  

Proof. From Theorem 5, we know that every convex set of HG  is a clique. Further, every convex 

cover of HG  is a clique cover. Therefore, we have ( ) ( )c G H G H    . Let ( )
c

G H P  be a 

minimum convex cover of G H . By Theorem 5, we obtain a family of sets 
( )

( ) { ( ) }
c

S G H
P G X G S

 P
= . 

It is clear that ( )P G  has no ( )X G  and every set of ( )P G  is a clique. This implies 

inequality ( ( )) ( )cP G G H P . Thus, ( ) ( )cG G H   . Continuing in the same way, we see that 

( ( )) ( )cP H G H P , where 
( )

( ) { ( ) }
c

S G H
P H X H S

 P
= , and further ( ) ( )cH G H   . 

Hence, max{ ( ), ( )} ( )cG H G H    .  

By Proposition 3, consider minimum clique covers ( )GP  and ( )HP  of graphs G and H, such that 

every set of ( )GP  and ( )HP  has at least to vertices. If ( ) ( )G H   then we construct a nontrivial 
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clique cover ( )G HP , which satisfies the equality ( ) ( )G H G P . Since every convex set of HG  

is a clique, we unify sets iX  and iY , where ( )iX GP  and ( )iY HP , for 1 ( )i H  , and after iX  

unify with 
1Y , for ( ) 1 ( )H i G    . Similarly, if ( ) ( )G H  , then it can be constructed a nontrivial 

clique cover ( )G HP , where ( ) ( )G H H P . We obtain ( ) ( ) max{ ( ), ( )}c cnG H G H G H       . 

So, ( ) ( ) max{ ( ), ( )}c cnG H G H G H       . □ 

Cartesian Product of Graphs  

The cartesian product of graphs G and H is a graph G H  on vertex set ( ) ( )X G X H  in which vertices 

),( 11 hg  and  ),( 22 hg   are adjacent if and only if either 
1 2g g  and )(21 HUhh   or 1 2h h  and 

1 2 (G)g g U .  

Theorem 7 [9]. Let G and H be two connected graphs. A set ( )C X G H  is convex in G H  if and 

only if ( )Gp C  is convex set in G, ( )Hp C  is convex set in H, and ( ) ( )G HC p C p C  . 

Theorem 8. Let G be a connected graph on 1n   vertices and mK  the complete graph of order 1m   

such that 3n m  . Then, the following statements hold. 

1) If 1m  , then ( ) ( )c m cG K G  .  

2) If 1m   and 4n  , then ( ) ( )cn m cnG K G  .  

3) If 2m  , then ( ) 2c mG K  . 

4) If 2m   and 3n   or 3m   and 2n  , then ( ) 2cn mG K  . 

Proof.  

1) Suppose m = 1. Here we see that 1G G K . Since 3n m  , it is obvious that ( ) ( )c k cG K G  . 

Further assume that 4n  . In this case 1G K  has a nontrivial convex cover if and only if graph G has a 

nontrivial convex cover. Consequently, we have ( ) ( )cn m cnG K G  . So, statement 2) also holds. 

3)  Suppose 2m  . We choose two different vertices 1 2, ( )mk k X K  and obtain two sets: 

1 1{( , ) : ( ), ( ) \{ }}mC g k g X G k X K k    and 2 2{( , ) : ( ), ( ) \{ }}mC g k g X G k X K k   . 

Since mK  is a complete graph, both sets 1C  and 2C  satisfy Theorem 7.  Furthermore, sets 1C  and 2C  

form a convex 2-cover of graph mG K  and ( ) 2c mG K  . If 3n  , then we see that 1C  and 2C  form a 

nontrivial convex 2-cover of mG K  and further ( ) 2cn mG K  . Similarly, if 3m   and 2n  , then we 

also get ( ) 2cn mG K  .  Thus, statement 4) also holds. □  

Theorem 9. Let G and H be two noncomplete connected graphs and 
( )

( ) { ( )}
c

GS G H
P G p S




P
. Then 

( ) 1P G   or ( ) \{ ( )} 2P G X G  . 

Proof. Let ( )
c

G HP  be minimum convex cover of G H . Let ( ) 1P G   and ( )C P G . It means 

that ( )C X G . Now, assume that ( ) \{ ( )} 1P G X G  . Further, for a set ( ) \{ ( )}S P G X G  there is 

' ( )
c

S G HP  such that ( ')Gp S S . If { ( )} ( )X G P G , then we obtain a contradiction, because 

( ) \X G S  , which means that G H is not covered by convex sets. Suppose further { ( )} ( )X G P G . 

From definition of convex cover, we know that every set of ( )
c

G HP  has at least one vertex that belongs 

only to this set. Hence, there is ( )h X H  for which there is a vertex ( , )g h  of G H  that belongs to 'S  

and does not belong to '' ( )
c

S G HP , where ( '') ( )Gp S X G . By Theorem 7, for h that we fixed before, 

and ( ) \g X G S , vertices ( , )g h  remains uncovered in G H . It is a contradiction. □ 



S TUD IA  UN IVERS I T AT I S  MO LDAV I A E ,  2016, nr.2(92) 

Seria “{tiin\e exacte [i economice”  ISSN 1857-2073   ISSN online 2345-1033   p.46-54 

 

 51 

Consequence 3. Let G and H be two connected noncomplete graphs and 
( )

( ) { ( )}
c

HS G H
P H p S




P
. 

Then ( ) 1P H   or ( ) \{ ( )} 2P H X H  . 

Theorem 10. Let G and H be two connected noncomplete graphs. Then, the following equalities hold: 

( ) ( ) min{ ( ), ( )}c cn c cG H G H G H     . 

Proof. First, note that 3G   and 3H  . By Proposition 2, there is a minimum convex cover ( )
c

GP  

of G such that every set of ( )
c

GP  has at least two elements. Further, by Theorem 7, we obtain a nontrivial 

convex cover ( )G HP , which consists of sets {( , ) : , ( )}i iC g h g S h X H   , where ( )
ciS GP , 

1 ( )ci G  . Note that ( ) ( )cG H GP . Thus, ( ) ( )cn cG H G  . For the same reason, if ( )
c

HP  

is a minimum convex cover of H, then we obtain a nontrivial convex cover ( )G HP  of G H such that 

( ) ( )cG H HP and further ( ) ( )cn cG H H  . We have ( ) ( ) min{ ( ), ( )}c cn c cG H G H G H     . 

Let ( )
c

G HP  be a minimum convex cover of graph G H . Using Theorem 7, we get 

( )
( ) { ( )}

c
GS G H

P G p S



P

, 
( )

( ) { ( )}
c

HS G H
P H p S




P
. Evidently, equalities ( ) 1P G  and ( ) 1P H   

do not hold at the same time. By Theorem 9 and Consequence 3, let us consider three cases: 

Suppose ( ) 1P G  . In this case inequality ( ) \{ ( )} 2P H X H   holds. Consequently, for convex cover 

( ( ))P HP  of G we get ( ( )) ( )cP H G HP  and ( ) ( )c cH G H  . Now, suppose ( ) 1P H  . As 

above, we have ( ( )) ( )cP G G HP  and ( ) ( )c cG G H  . Similarly, if ( ) \{ ( )} 2P G X G   and 

( ) \{ ( )} 2P H X H  , we have ( ) ( )c cG G H   and ( ) ( )c cH G H  . Combining these three cases, we 

obtain that min{ ( ), ( )} ( )c c cG H G H   . Finally, we have ( ) ( ) min{ ( ), ( )}c cn c cG H G H G H     .□ 

Lexicographic Product of Graphs 

The lexicographic product of graphs G and H, denoted HG  , is  a graph on vertex set )()()( HXGXHGX  , 

where vertices ),( 11 hg  and  ),( 22 hg   are adjacent if and only if either )(21 GUgg   or 21 gg   and 

)(21 HUhh  . The graph HG   is called nontrivial if both graphs have at least two vertices.  

Theorem 11 [11]. Let C be a proper subset of a nontrivial connected lexicographic product HG  . If C 

induces a noncomplete subgraph of HG  , then C is convex if and only if the following conditions hold: 

(i) ( )Gp C  is convex in G,  

(ii) { } ( )g X H C  for every nonsimplicial vertex ( )Gg p C , 

(iii) H is complete. 

Consequence 4. Let C be a proper subset of a nontrivial connected lexicographic product HG  , where 

H is noncomplete. Then C is convex if and only if it induces a complete subgraph of HG   and the following 

conditions hold: 

(i) ( )Gp C  induces a complete subgraph of G,  

(ii) For every ( )Gg p C , set ( )g

Hp C  induces a complete subgraph of H, where  

{( , ) : }gC g h C for any h H   . 

Theorem 12. Let G be a connected graph on 1n   vertices and mK  the complete graph of order 1m    

such that 3n m  . Then, the following statements hold. 

1) If G is complete, then ( ) ( ) 2c m c mG K K G   .  

2) If G is complete and 5n m  , or 2n   and 2m  , then ( ) ( ) 2cn m cn mG K K G   .  

3) If G is noncomplete and 1m  , then ( ) ( ) ( )c m c m cG K K G G    . 
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4) If G is noncomplete, 4n   and 1m  , then ( ) ( ) ( )cn m cn m cnG K K G G    . 

5) If G is noncomplete, it has  a simplicial vertex and 2m  , then ( ) ( ) 2c m cn mG K G K   . 

6) If G is noncomplete, it has no simplicial vertices and 2m  , then ( ) ( ) ( )c m cn m cG K G K G    . 

7) If G is noncomplete and 2m  , then ( ) ( ) ( )c m cn mK G K G G    . 

Proof. 

1) Suppose G is complete. Then, it is obvious that obtained graph is complete and we have  

( ) ( ) 2c m c mG K K G   . In addition, suppose 5n m  , or 2n   and 2m  . Obtained complete 

graph with at least 4 vertices has a nontrivial convex 2-cover. Whence, ( ) ( ) 2cn m cn mG K K G   . 

Statement 2) also holds. 

3) Suppose G is noncomplete. If 1m  , then graphs mG K  and mK G  are equal to G and further we 

have ( ) ( ) ( )c m c m cG K K G G    . In the same way, with condition 4n  , statement 4) holds. In 

other words ( ) ( ) ( )cn m cn m cG K K G G    . Assume that 2m  . If G has a simplicial vertex 'g , then 

we choose two different vertices 1 2, ( )mk k X K  and obtain two sets: 

1 1( ( ) \{ '} ( )) {( ', ) : ( ) \{ }}m mC X G g X K g k k X K k    and 

2 2( ( ) \{ '} ( )) {( ', ) : ( ) \{ }}m mC X G g X K g k k X K k   . 

Evidently, sets 1C  and 2C  satisfy Theorem 11 and these sets form a nontrivial convex 2-cover of mG K . 

Further, we have ( ) ( ) 2c m cn mG K G K   . Statement 5)  is satisfied.  

Now assume that G has no simplicial vertices. We know from Theorem 11 that for every convex set C of 

mG K  the projection ( )Gp C  must be convex in G. Let ( )
c mG KP  be a minimum convex cover of 

mG K . We get family
( )

( ) { ( )}
mc

GS G K
P G p S

P
= . Since noncomplete graph G has no simplicial 

vertices, it follows that ( )P G  has no set ( )X G . Obviously, for convex cover ( ( ))P GP  of graph G we 

have ( ( )) ( )cP G G HP . Consequently, ( ) ( )c c mG G K  .    

Let ( )
c

GP  be a minimum convex cover of G. Then, sets ( )i i mS C X K  ,1 ( )ci G  , form a 

convex cover of mG K , where ( )
ciC GP , 1 ( )ci G  , and further we get ( ) ( )c m cG K G  . We 

have ( ) ( )c m cG K G  . From Proposition 2 we obtain ( ) ( ) ( )c m cn m cG K G K G    . So, 

statement 6) also holds.  

It follows from Consequence 4 that every proper convex subset of mK G  is a clique and further by 

Proposition 2 and Proposition 3 we have ( ) ( ) ( )c m cn mK G K G G    . Furthermore, statement 7) also 

holds. □ 

Theorem 13. Let G and H be two connected noncomplete graphs. Then, the following equalities hold: 

( ) ( ) ( ) ( ) ( )c cn c c cG H G H G H G H       .  

Proof. From Consequence 4 we know that every convex set of G H  is a clique. Further, we have 

( ) ( )c cG H G H  . Moreover, it can be checked that ( ) ( ) ( )c c cG H G H   . Taking into account 

Proposition 2 and Proposition 3, we get ( ) ( )c cnG H G H  . Finally, we have inequalities 

( ) ( ) ( ) ( ) ( )c cn c c cG H G H G H G H       . □ 

Corona of Graphs  

The corona of graphs G and H is the graph G H  obtained by taking one copy of G and n copies of H, 

where ( )X G n , and then joining by an edge the ith vertex of G to every vertex in the ith copy of H.  
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We consider a general version of corona of graphs. Let G be a connected graph on n vertices. Let 

1 2{ , ,..., } ( )kg g g X G  and 
1 2
, ,...,

kg g gH H H , where 1 k n  , be connected graphs of order at least one. 

Then by 
1 21 2( ;{ , ,..., }) ( , ,..., )

kk g g gG g g g H H H  is denoted a graph obtained by taking one copy of G and 

after joining every vertex 
ig  to every vertex of 

igH , where1 i k  . If 
1 2 kg g gH H H H    , then we 

simply denote 1 2( ;{ , ,..., })kG g g g H . If also k n , then 1 2( ;{ , ,..., })kG g g g H  is the corona G H . 

Theorem 14 [10]. Let G be a connected graph and H be any graph, with 1 2{ , ,..., } ( )kg g g X G  and 

1 2
, ,...,

kg g gH H H being the corresponding copies of H. A nonempty set ( )C X G H  is convex in G H  

if and only if it satisfies one of the following conditions:  

(i) C is a convex set in G.  

(ii) C induces a complete subgraph of gH  for a vertex ( )g X G .  

(iii) 
1 2

* * *

1 2[ ] ( [ ];{ , ,..., }) ( , ,..., )
ll s s sG C G S s s s H H H , S is convex in graph G, 1 2{ , ,..., }ls s s S , 

1 2 1 2{ , ,..., } { , ,..., }l ks s s g g g  and 
*( )
ii sX s H  is convex in 

ii ss H  for each 1,2,...,i l .  

Theorem 15. Let G and H be two connected graph on 1n   and 1m   vertices, with 
1 2{ , ,..., } ( )kg g g X G , 

where 1 k n  . Then, the following statements hold. 

1) If 1n   and H is complete, then ( ) 2c G H  .  

2) If 1n  , H is complete and 3m  , then ( ) 2cn G H  . 

3) If 1n  , H is noncomplete with diameter 2, then ( ) ( ) ( )c cn cG H G H G    .  

4) If 1n  , H is noncomplete with diameter at least 3, then ( ) ( ) ( )c m cn m cG K G K G    . 

5) If 2n  , then 1 2(( ;{ , ,..., }) ) 2c kG g g g H  . 

6) If 2n   and * 4k m n  , then 1 2(( ;{ , ,..., }) ) 2cn kG g g g H  . 

Proof. Suppose 1n  . In fact, 1 1( ) ( )c cK H K H   . Consequently, statements 1), 2), 3), 4) follow 

from Theorem 4.   

5)  Suppose 2n  .  It can easily be checked that sets 
1

( )gX H  and 
2

( ) ( )
i

k

gi
X G X H


 satisfy 

conditions of Theorem 14 and further form a convex 2-cover of graph 1 2( ;{ , ,..., })kG g g g H .  This 

implies that 1 2(( ;{ , ,..., }) ) 2c kG g g g H  . 

6)  Now suppose that * 4k m n  . In other words, the cardinality of set  1 2(( ;{ , ,..., }) )kX G g g g H  

must be at least 4. Taking into account Theorem 14, we show nontrivial convex 2-covers of  

1 2( ;{ , ,..., })kG g g g H  in two cases:  

a) If 1m  , then we choose a vertex  ' ( ) \ ( )gg g X H  for a vertex 1 2{ , ,..., }kg g g g , that yields a 

nontrivial convex 2-cover: 

1 2
2 1 2 '''' { , ,..., }, ''
(( ;{ , ,..., }) ) {{ , '} ( ), ( ) ( )}

k
k g gg g g g g g

G g g g H g g X H X G X H
 

P . 

b) If 2m  , then we choose a vertex gh H  for a vertex 1 2{ , ,..., }kg g g g  and obtain a nontrivial 

convex 2-cover: 

1 2
2 1 2 '' { , ,..., }, '
(( ;{ , ,..., }) ) {{ } ( ),{ } ( ) ( )}

k
k g gg g g g g g

G g g g H g X H h X G X H
 

P . 

The theorem is proved. □  
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