MINIMUM CONVEX COVER OF SPECIAL NONORIENTED GRAPHS

Radu BUZATU
State University of Moldova

A vertex set S of a graph G is convex if all vertices of every shortest path between two of its vertices are in S. We say that G has a convex p-cover if $X(G)$ can be covered by p convex sets. The convex cover number of G is the least $p \geq 2$ for which G has a convex p-cover. In particular, the nontrivial convex cover number of G is the least $p \geq 2$ for which G has a convex p-cover, where every set contains at least 3 elements. In this paper we determine convex cover number and nontrivial convex cover number of special graphs resulting from some operations. We examine graphs resulting from join of graphs, cartesian product of graphs, lexicographic product of graphs and corona of graphs.

Keywords: nonoriented graphs, convex covers, convex number, operations, join, cartesian product, lexicographic product, corona.

ACOPERIREA CONVEXĂ MINIMĂ A GRAFURILOR SPECIALE NEORIENTATE

Mulţimea de vârfuri S ale grafului G se numeşte convexă dacă pentru orice două vârfuri $x, y \operatorname{din} S$ toate vârfurile ce aparţin tuturor lanţurilor de lungime minimă cu extremităţile x, y se conţin în S. Se spune că G conține o p-acoperire convexă dacă $X(G)$ poate fi acoperită cu p mulţimi convexe. Numărul acoperirii convexe al lui G este cel mai mic număr $p \geq 2$, pentru care G conţine o p-acoperire convexă. În particular, numărul acoperirii convexe netriviale al lui G este cel mai mic număr $p \geq 2$, pentru care G conţine o p-acoperire convexă, în care orice mulţime constă din cel puţin 3 vârfuri. În această lucrare noi determinăm numărul acoperirii convexe şi numărul acoperirii convexe netriviale al unor clase speciale de grafuri obținute din următoarele operaţii pe grafuri: suma, produsul cartezian, produsul lexicografic, coroana.

Cuvinte-cheie: grafuri neorientate, acoperiri convexe, numărul acoperirii convexe, operaţii, suma grafurilor, produs cartezian, produs lexicografic, coroană.

Introduction

In this paper we consider only connected and nonoriented graphs. We denote by G a graph with vertex set $X(G)$ and edge set $U(G)$. An edge joining two vertices x and y in G is denoted by $x y$. The distance between vertices x and y in G is denoted by $d(x, y)$. The diameter of a graph is the length of the shortest path between the most distant nodes.

A set $S \subseteq X(G)$ is a clique if every pair of vertices of S is adjacent in G. The neighborhood of a vertex x of $X(G)$ is the set of all vertices y of $X(G)$ such that x and y are adjacent, and it is denoted by $\Gamma(x)$. A vertex x is called simplicial if $\Gamma(x)$ is a clique. Also, a vertex x is called universal if $\Gamma(x)=X(G) \backslash\{x\}$. Let S be a subset of $X(G)$. We say that $G[S]$ is the subgraph of G induced by S.

Now we remind some concepts from [1]. The metric segment $\langle x, y\rangle$ is the set of all vertices lying on a shortest path between vertices x and y in G. A set $S \subseteq X(G)$ is called convex if $\langle x, y\rangle \subseteq S$ for all $x, y \in S$. The convex hull of $S \subseteq X(G)$, denoted $d-\operatorname{conv}(S)$, is the smallest convex set containing S.

A family of sets is called convex cover of $G=(X ; U)$ and is denoted by $P(G)$ if the following conditions hold:
(i) Every set of $\boldsymbol{P}(G)$ is convex in G.
(ii) $X(G)=\bigcup_{S \in \mathcal{P}(G)} S$.
(iii) $S \not \subset \bigcup_{C \in \mathcal{P}(G), C \neq S} C$, for every $S \in \boldsymbol{P}(G)$.

If $|P(G)|=p$, then this family is called convex p-cover of G and is denoted by $P_{p}(G)$ [2].

A convex cover $\boldsymbol{P}(G)$ of graph G is called nontrivial convex cover if every set $S \in \mathcal{P}(G)$ satisfies the inequalities: $3 \leq|S| \leq|X(G)|-1$. The minimum number of cliques that cover all the vertices of a graph is known as a clique cover number $\theta(G)$, introduced by Berge [3]. Also, convex cover number $\varphi_{c}(G)$ was defined as the least $p \geq 2$ for which G has a convex p-cover [2]. Similarly to $\varphi_{c}(G)$, we introduced nontrivial convex cover number $\varphi_{c n}(G)$ [4].

Note that there are graphs for which there are no nontrivial convex covers. For instance, every convex simple graph has no nontrivial convex covers. A graph G is called convex simple if it does not contain nontrivial convex set [5]. Let us remark that if G has a nontrivial convex cover, then we have $\varphi_{c}(G) \leq \varphi_{c n}(G)$.

The minimum convex cover $\mathcal{P}_{\varphi_{c}}(G)$ is the convex p-cover of graph G such that $p=\varphi_{c}(G)$. In the same way, we define minimum nontrivial convex cover $\boldsymbol{P}_{\varphi_{c n}}(G)$ and minimum clique cover $\boldsymbol{P}_{\theta}(G)$ of graph G.

By $P(G)$ we denote a family of convex sets, where $X(G)=\bigcup_{S \in P(G)} S$. We denote by $P(P(G))$ a convex cover of G that consists of sets, which belong to $P(G)$.

A nonempty subset S of $X(G)$ is a nonconnecting set in G if for every pair of vertices $x, y \in X(G) \backslash S$ with $d(x, y)=2$ we have $\Gamma(x) \cap \Gamma(y) \cap S=\varnothing$.

A map $\quad p_{G}: X\left(G^{*} H\right) \rightarrow X(G) \quad, \quad p_{G}((g, h))=g \quad, \quad$ is the projection onto G and $p_{H}: X\left(G^{*} H\right) \rightarrow X(H), p_{H}((g, h))=h$, the projection onto H, where G and H are two graphs and * is one of two operations: cartesian product, lexicographic product.

Convex cover of a graph was studied by many mathematicians. Any latest results on graph convex covers are given in $[2,4,6-8]$. Deciding whether a graph G has a convex p-cover or a nontrivial convex p-cover for a fixed $p \geq 2$, it is known to be NP-complete [2, 4]. Besides, convexity was studied in some graph operations [$9-11]$. Further, there is particular interest in establishing of convex cover number and nontrivial convex cover number for special graphs resulting from graph operations, such as join of graphs, cartesian product of graphs, lexicographic product of graphs and corona of graphs.

Preliminary Results

Firs, note that for a given $P(G)$, which has no set $X(G)$, we can easily obtain $\mathcal{P}(P(G))$ by removing from $P(G)$ all sets contained in the union of other sets of the family $P(G)$. It can easily be checked that Propositions 1, 2 and 3 are true.

Proposition 1. Let G be a connected graph of order $n \geq 2$. Then for every vertex $x \in X(G)$ there is a convex set $S \in X(G)$ such that $x \in S$ and $|S|=2$.

Proposition 2. Let G be a connected graph of order $n \geq 3$. There exists $\boldsymbol{P}_{\varphi_{c}}(G)$ such that for every set $S \in \boldsymbol{P}_{\varphi_{c}}(G)$ condition $|S| \geq 2$ holds.

Proposition 3. Let G be a connected graph of order $n \geq 3$. There exists $\boldsymbol{P}_{\theta}(G)$ such that for every set $S \in \boldsymbol{P}_{\theta}(G)$ condition $|S| \geq 2$ holds.

Theorem 1. Let G be a connected graph of order $n \geq 3$ that contains a universal vertex. Then for every vertex $g \in X(G)$ there is a convex set $S \in X(G)$ such that $g \in S$ and $|S|=3$.

Proof. Let x be a universal vertex of G and $\Gamma(x)=X(G) \backslash\{x\}$. Suppose that $G[\Gamma(x)]$ is a disconnected graph. This means that there are two connected components $G_{1}[\Gamma(x)]$ and $G_{2}[\Gamma(x)]$. Further, for every two vertices $x_{1} \in X\left(G_{1}[\Gamma(x)]\right)$ and $x_{2} \in X\left(G_{2}[\Gamma(x)]\right)$ we get a convex set $\left\{x, x_{1}, x_{2}\right\}$, and this set is nontrivial.

Now suppose that $G[\Gamma(x)]$ is a connected graph. In this case every vertex y of $X(G) \backslash\{x\}$ has an adjacent vertex $z \in X(G) \backslash\{x\}$. Hence, set $\{x, y, z\}$ is convex and consists of three vertices.

Consequence 1. Let G be a connected graph of order $n \geq 4$ that contains a universal vertex. Then, G has a nontrivial convex cover.

Consequence 2. Let G be a connected graph of order $n \geq 4$ that contains a universal vertex. Then, $\varphi_{c}(G)=\varphi_{c n}(G)$.

Join of Graphs

The join of graphs G and H, denoted $G \vee H$, is a graph with $X(G \vee H)=X(G) \bigcup X(H)$ and $U(G \vee H)=U(G) \bigcup U(H) \bigcup U\{x y: x \in X(G), y \in X(H)\}$.

Theorem 2 [9]. Let G be a connected graph and K_{m} the complete graph of order m. Then a proper subset $C=S_{1} \cup S_{2}$ of $X\left(G \vee K_{m}\right)$, where $S_{1} \subseteq X(G)$ and $S_{2} \subseteq X\left(K_{m}\right)$, is convex in $G \vee K_{m}$ if and only if either
(i) S_{1} is a clique in G, or
(ii) $S_{1} \subseteq X(G) \backslash S$ and $S_{2}=X\left(K_{m}\right)$ for some nonconnecting set S of G.

Theorem 3. Let G be a noncomplete graph on n vertices with diameter 2 and K_{m} the complete graph of order $m \geq 1$. Let $C=S_{1} \bigcup S_{2}$ be a proper convex subset of $X\left(G \vee K_{m}\right)$, where $S_{1} \subseteq X(G)$ and $S_{2} \subseteq X\left(K_{m}\right)$. Then S_{1} is convex in G.

Proof. By Theorem 2, let us consider two cases. Firstly, if S_{1} induces a complete subgraph of G, then evidently it is convex in G. Without loss of generality it can be assumed that S_{1} does not induce a complete subgraph of G. Thus, $S_{1} \subseteq X(G) \backslash S$ and $S_{2}=X\left(K_{m}\right)$ for some nonconnecting set S of G. Assume further that S_{1} is not convex in G. Let x and y be two vertices of S_{1} such that there exists a vertex $z \in\langle x, y\rangle_{G}$ that does not belong to S_{1}. Since diameter of G is 2 , we obtain $d_{G}(x, y)=d_{G \vee K_{m}}(x, y)=2$ and $z \in \Gamma_{G}(x) \bigcap \Gamma_{G}(y)$. Hence, $z \in S_{1}$. From definition of nonconnecting set, $\Gamma_{G}(x) \bigcap \Gamma_{G}(y) \bigcap S=\varnothing$ and consequently $z \notin S$. Thus, Theorem 2 is satisfied and therefore there is a contradiction. Furthermore, S is convex in G.

Theorem 4. Let G be a connected graph on $n \geq 1$ vertices and K_{m} the complete graph of order $m \geq 1$. Then, the following statements hold.

1) If G is complete, then $\varphi_{c}\left(G \vee K_{m}\right)=2$.
2) If G is complete and $n+m \geq 4$, then $\varphi_{c n}\left(G \vee K_{m}\right)=2$.
3) If G is noncomplete with diameter 2 , then $\varphi_{c}\left(G \vee K_{m}\right)=\varphi_{c n}\left(G \vee K_{m}\right)=\varphi_{c}(G)$.
4) If G is noncomplete with diameter at least 3 , then $\varphi_{c}\left(G \vee K_{m}\right)=\varphi_{c n}\left(G \vee K_{m}\right) \leq \varphi_{c}(G)$.

Proof.

1) Suppose $G=K_{n}$. Then, by definition of the join of two graphs, it follows that $G \vee K_{m}$ also is complete. Here graphs K_{n} and K_{m} are nonempty. Further, we obtain $\varphi_{c}\left(K_{n} \vee K_{m}\right)=2$.
2) Suppose $G=K_{n}$ and $n+m \geq 4$. As before, $G \vee K_{m}$ is complete. Since every nontrivial convex set has at least three elements, we have $\varphi_{c n}\left(K_{n} \vee K_{m}\right)=2$.
3) Suppose G is noncomplete graph with diameter 2 . Let C be a proper convex subset of $X\left(G \vee K_{m}\right)$, which satisfies conditions of Theorem 2. It follows from Theorem 3 that $X(G) \cap C$ is convex set in G. Let $P_{\varphi_{c}}\left(G \vee K_{m}\right)$ be a minimum convex cover of $G \vee K_{m}$. We get family of sets $P(G)=\bigcup_{S \in ค_{\rho_{c}}\left(G \vee K_{m}\right)}\{X(G) \cap S\}$. It is clear that $P(G)$ has no set $X(G)$. This yields that $|P(P(G))| \leq \varphi_{c}\left(G \vee K_{m}\right)$. In fact, we obtain inequality $\varphi_{c}(G) \leq \varphi_{c}\left(G \vee K_{m}\right)$.

By Proposition 2, a connected graph G on $n \geq 3$ vertices has a minimum convex cover $\boldsymbol{P}_{\varphi_{c}}(G)$ such that for every set $S \in \mathcal{P}_{\varphi_{c}}(G)$ condition $|S| \geq 2$ holds. Hence, we obtain a nontrivial convex cover $\mathcal{P}\left(G \vee K_{m}\right)$ of $G \vee K_{m}$, adding $X\left(K_{m}\right)$ to Y_{i}, where $Y_{i} \in \mathcal{P}_{\varphi_{c}}(G)$, for $1 \leq i \leq \varphi_{c}(G)$. Note that $\left|\mathcal{P}\left(G \vee K_{m}\right)\right|=\varphi_{c}(G)$ and $\varphi_{c}\left(G \vee K_{m}\right) \leq \varphi_{c n}\left(G \vee K_{m}\right) \leq \varphi_{c}(G)$. Continuing this line of reasoning, we see that $\varphi_{c}\left(G \vee K_{m}\right)=\varphi_{c n}\left(G \vee K_{m}\right)=\varphi_{c}(G)$.
4) Now, assume that G is noncomplete and its diameter is at least 3. As above, it is easy to prove that every minimum convex cover of G, which satisfies Proposition 2, generates a nontrivial convex cover of $G \vee K_{m}$. Thence, $\varphi_{c n}\left(G \vee K_{m}\right) \leq \varphi_{c}(G)$. Note also that there are noncomplete graphs W, with diameter at least 3 , for which strict inequality $\varphi_{c n}\left(W \vee K_{m}\right)<\varphi_{c}(\mathrm{~W})$ holds. For instance, graph represented in Figure 1 is the join of graphs W and K_{1}, where $X\left(K_{1}\right)=\{k\}$. This graph has minimum nontrivial convex cover $P_{\varphi_{c n}}\left(W \vee K_{1}\right)=\left\{\left\{x_{1}, x_{7}, x_{9}, k\right\},\left\{x_{2}, x_{8}, x_{10}, k\right\},\left\{x_{3}, x_{5}, k\right\},\left\{x_{4}, x_{6}, k\right\}\right\}$, but graph W has minimum convex cover $P_{\varphi_{c}}(W)=\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{5}, x_{7}\right\},\left\{x_{2}, x_{4}\right\},\left\{x_{6}, x_{8}\right\},\left\{x_{9}\right\},\left\{x_{10}\right\}\right\}$ and further $\varphi_{c n}\left(W \vee K_{1}\right)=4$, but $\varphi_{c}(G)=6$.

We stress that nontrivial convex cover is a particular case of convex cover. Since any vertex of $k \in X\left(K_{m}\right)$ is universal in $G \vee K_{m}$, Consequence 2 implies that the equality holds $\varphi_{c}\left(G \vee K_{m}\right)=\varphi_{c n}\left(G \vee K_{m}\right)$. Thus, we obtain $\varphi_{c}\left(G \vee K_{m}\right)=\varphi_{c n}\left(G \vee K_{m}\right) \leq \varphi_{c}(G) . \square$

Fig.1.
Theorem 5 [9]. Let G and H be noncomplete connected graphs. Then a proper subset $C=S_{1} \cup S_{2}$ of $X(G \vee H)$, where $S_{1} \subseteq X(G)$ and $S_{2} \subseteq X(H)$, is convex in $G \vee H$ if and only if S_{1} and S_{2} are cliques in G and H respectively.

Theorem 6. Let G and H be noncomplete connected graphs. Then, the following equalities hold: $\theta(G \vee H)=\varphi_{c}(G \vee H)=\varphi_{c n}(G \vee H)=\max \{\theta(G), \theta(H)\}$.

Proof. From Theorem 5, we know that every convex set of $G \vee H$ is a clique. Further, every convex cover of $G \vee H$ is a clique cover. Therefore, we have $\varphi_{c}(G \vee H)=\theta(G \vee H)$. Let $P_{\varphi_{c}}(G \vee H)$ be a minimum convex cover of $G \vee H$. By Theorem 5, we obtain a family of sets $P(G)=\bigcup_{S \in P_{\rho_{c}(G \vee H)}}\{X(G) \cap S\}$. It is clear that $P(G)$ has no $X(G)$ and every set of $P(G)$ is a clique. This implies inequality $|P(P(G))| \leq \varphi_{c}(G \vee H)$. Thus, $\theta(G) \leq \varphi_{c}(G \vee H)$. Continuing in the same way, we see that $|P(P(H))| \leq \varphi_{c}(G \vee H)$, where $P(H)=\bigcup_{S \in \boldsymbol{\rho}_{\varphi_{c}}(G \vee H)}\{X(H) \bigcap S\}$, and further $\theta(H) \leq \varphi_{c}(G \vee H)$. Hence, $\max \{\theta(G), \theta(H)\} \leq \varphi_{c}(G \vee H)$.

By Proposition 3, consider minimum clique covers $\boldsymbol{P}_{\theta}(G)$ and $\boldsymbol{P}_{\theta}(H)$ of graphs G and H, such that every set of $P_{\theta}(G)$ and $P_{\theta}(H)$ has at least to vertices. If $\theta(G) \geq \theta(H)$ then we construct a nontrivial
clique cover $P(G \vee H)$, which satisfies the equality $|P(G \vee H)|=\theta(G)$. Since every convex set of $G \vee H$ is a clique, we unify sets X_{i} and Y_{i}, where $X_{i} \in \boldsymbol{P}_{\theta}(G)$ and $Y_{i} \in \boldsymbol{P}_{\theta}(H)$, for $1 \leq i \leq \theta(H)$, and after X_{i} unify with Y_{1}, for $\theta(H)+1 \leq i \leq \theta(G)$. Similarly, if $\theta(G)<\theta(H)$, then it can be constructed a nontrivial clique cover $\mathcal{P}(G \vee H)$, where $|\mathcal{P}(G \vee H)|=\theta(H)$. We obtain $\varphi_{c}(G \vee H) \leq \varphi_{c n}(G \vee H) \leq \max \{\theta(G), \theta(H)\}$. So, $\varphi_{c}(G \vee H)=\varphi_{c n}(G \vee H)=\max \{\theta(G), \theta(H)\} . \square$

Cartesian Product of Graphs

The cartesian product of graphs G and H is a graph $G \square H$ on vertex set $X(G) \times X(H)$ in which vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent if and only if either $g_{1}=g_{2}$ and $h_{1} h_{2} \in U(H)$ or $h_{1}=h_{2}$ and $g_{1} g_{2} \in U(\mathrm{G})$.

Theorem 7 [9]. Let G and H be two connected graphs. A set $C \subseteq X(G \sqcup H)$ is convex in $G \square H$ if and only if $p_{G}(C)$ is convex set in $G, p_{H}(C)$ is convex set in H, and $C=p_{G}(C) \times p_{H}(C)$.

Theorem 8. Let G be a connected graph on $n \geq 1$ vertices and K_{m} the complete graph of order $m \geq 1$ such that $n+m \geq 3$. Then, the following statements hold.

1) If $m=1$, then $\varphi_{c}\left(G \square K_{m}\right)=\varphi_{c}(G)$.
2) If $m=1$ and $n \geq 4$, then $\varphi_{c n}\left(G \square K_{m}\right)=\varphi_{c n}(G)$.
3) If $m \geq 2$, then $\varphi_{c}\left(G \square K_{m}\right)=2$.
4) If $m \geq 2$ and $n \geq 3$ or $m \geq 3$ and $n \geq 2$, then $\varphi_{c n}\left(G \square K_{m}\right)=2$.

Proof.

1) Suppose $m=1$. Here we see that $G=G \square K_{1}$. Since $n+m \geq 3$, it is obvious that $\varphi_{c}\left(G \square K_{k}\right)=\varphi_{c}(G)$. Further assume that $n \geq 4$. In this case $G \square K_{1}$ has a nontrivial convex cover if and only if graph G has a nontrivial convex cover. Consequently, we have $\varphi_{c n}\left(G \square K_{m}\right)=\varphi_{c n}(G)$. So, statement 2) also holds.
2) Suppose $m \geq 2$. We choose two different vertices $k_{1}, k_{2} \in X\left(K_{m}\right)$ and obtain two sets:

$$
C_{1}=\left\{(g, k): g \in X(G), k \in X\left(K_{m}\right) \backslash\left\{k_{1}\right\}\right\} \text { and } C_{2}=\left\{(g, k): g \in X(G), k \in X\left(K_{m}\right) \backslash\left\{k_{2}\right\}\right\}
$$

Since K_{m} is a complete graph, both sets C_{1} and C_{2} satisfy Theorem 7. Furthermore, sets C_{1} and C_{2} form a convex 2-cover of graph $G \square K_{m}$ and $\varphi_{c}\left(G \square K_{m}\right)=2$. If $n \geq 3$, then we see that C_{1} and C_{2} form a nontrivial convex 2-cover of $G \square K_{m}$ and further $\varphi_{c n}\left(G \square K_{m}\right)=2$. Similarly, if $m \geq 3$ and $n \geq 2$, then we also get $\varphi_{c n}\left(G \square K_{m}\right)=2$. Thus, statement 4) also holds. \square

Theorem 9. Let G and H be two noncomplete connected graphs and $P(G)=\bigcup_{S \in \mathcal{P}_{p_{c}}(G \unrhd H)}\left\{p_{G}(S)\right\}$. Then $|P(G)|=1$ or $|P(G) \backslash\{X(G)\}| \geq 2$.

Proof. Let $P_{\varphi_{c}}(G \square H)$ be minimum convex cover of $G \square H$. Let $|P(G)|=1$ and $C \in P(G)$. It means that $C=X(G)$. Now, assume that $|P(G) \backslash\{X(G)\}|=1$. Further, for a set $S \in P(G) \backslash\{X(G)\}$ there is $S^{\prime} \in \boldsymbol{P}_{\varphi_{c}}(G \square H)$ such that $p_{G}\left(S^{\prime}\right)=S$. If $\{X(G)\} \notin P(G)$, then we obtain a contradiction, because $X(G) \backslash S \neq \varnothing$, which means that $G \square H$ is not covered by convex sets. Suppose further $\{X(G)\} \in P(G)$. From definition of convex cover, we know that every set of $P_{\varphi_{c}}(G \square H)$ has at least one vertex that belongs only to this set. Hence, there is $h \in X(H)$ for which there is a vertex (g, h) of $G \square H$ that belongs to S^{\prime} and does not belong to $S^{\prime \prime} \in \mathcal{P}_{\varphi_{c}}(G \sqcup H)$, where $p_{G}\left(S^{\prime \prime}\right)=X(G)$. By Theorem 7, for h that we fixed before, and $g \in X(G) \backslash S$, vertices (g, h) remains uncovered in $G \square H$. It is a contradiction.

Consequence 3. Let G and H be two connected noncomplete graphs and $P(H)=\bigcup_{S \in \mathcal{P}_{\rho_{c}}(G \square H)}\left\{p_{H}(S)\right\}$. Then $|P(H)|=1$ or $|P(H) \backslash\{X(H)\}| \geq 2$.

Theorem 10. Let G and H be two connected noncomplete graphs. Then, the following equalities hold: $\varphi_{c}(G \square H)=\varphi_{c n}(G \square H)=\min \left\{\varphi_{c}(G), \varphi_{c}(H)\right\}$.

Proof. First, note that $|G| \geq 3$ and $|H| \geq 3$. By Proposition 2, there is a minimum convex cover $\mathcal{P}_{\varphi_{c}}(G)$ of G such that every set of $\boldsymbol{P}_{\varphi_{c}}(G)$ has at least two elements. Further, by Theorem 7, we obtain a nontrivial convex cover $\mathcal{P}(G \sqcup H)$, which consists of sets $C_{i}=\left\{(g, h): g \in S_{i}, h \in X(H)\right\}$, where $S_{i} \in \boldsymbol{P}_{\varphi_{c}}(G)$, $1 \leq i \leq \varphi_{c}(G)$. Note that $|\mathcal{P}(G \sqsubset H)|=\varphi_{c}(G)$. Thus, $\varphi_{c n}(G \square H) \leq \varphi_{c}(G)$. For the same reason, if $\boldsymbol{P}_{\varphi_{c}}(H)$ is a minimum convex cover of H, then we obtain a nontrivial convex cover $\mathcal{P}(G \square H)$ of $G \square H$ such that $|\boldsymbol{P}(G \square H)|=\varphi_{c}(H)$ and further $\varphi_{c n}(G \square H) \leq \varphi_{c}(H)$. We have $\varphi_{c}(G \square H) \leq \varphi_{c n}(G \square H) \leq \min \left\{\varphi_{c}(G), \varphi_{c}(H)\right\}$.

Let $\mathcal{P}_{\varphi_{c}}(G \square H)$ be a minimum convex cover of graph $G \square H$. Using Theorem 7, we get $P(G)=\bigcup_{S \in \mathcal{P}_{c}(G \square H)}\left\{p_{G}(S)\right\}, P(H)=\bigcup_{S \in \mathcal{P}_{\rho_{c}}(G-H)}\left\{p_{H}(S)\right\}$. Evidently, equalities $|P(G)|=1$ and $|P(H)|=1$ do not hold at the same time. By Theorem 9 and Consequence 3, let us consider three cases:

Suppose $|P(G)|=1$. In this case inequality $|P(H) \backslash\{X(H)\}| \geq 2$ holds. Consequently, for convex cover $\mathcal{P}(P(H))$ of G we get $|\mathcal{P}(P(H))| \leq \varphi_{c}(G \square H)$ and $\varphi_{c}(H) \leq \varphi_{c}(G \square H)$. Now, suppose $|P(H)|=1$. As above, we have $|\mathcal{P}(P(G))| \leq \varphi_{c}(G \sqcup H)$ and $\varphi_{c}(G) \leq \varphi_{c}(G \square H)$. Similarly, if $|P(G) \backslash\{X(G)\}| \geq 2$ and $|P(H) \backslash\{X(H)\}| \geq 2$, we have $\varphi_{c}(G) \leq \varphi_{c}(G \square H)$ and $\varphi_{c}(H) \leq \varphi_{c}(G \square H)$. Combining these three cases, we obtain that $\min \left\{\varphi_{c}(G), \varphi_{c}(H)\right\} \leq \varphi_{c}(G \square H)$. Finally, we have $\varphi_{c}(G \square H)=\varphi_{c n}(G \square H)=\min \left\{\varphi_{c}(G), \varphi_{c}(H)\right\}$. \square

Lexicographic Product of Graphs

The lexicographic product of graphs G and H, denoted $G \circ H$, is a graph on vertex set $X(G \circ H)=X(G) \times X(H)$, where vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent if and only if either $g_{1} g_{2} \in U(G)$ or $g_{1}=g_{2}$ and $h_{1} h_{2} \in U(H)$. The graph $G \circ H$ is called nontrivial if both graphs have at least two vertices.

Theorem 11 [11]. Let C be a proper subset of a nontrivial connected lexicographic product $G \circ H$. If C induces a noncomplete subgraph of $G \circ H$, then C is convex if and only if the following conditions hold:
(i) $p_{G}(C)$ is convex in G,
(ii) $\{g\} \times X(H) \subseteq C$ for every nonsimplicial vertex $g \in p_{G}(C)$,
(iii) H is complete.

Consequence 4. Let C be a proper subset of a nontrivial connected lexicographic product $G \circ H$, where H is noncomplete. Then C is convex if and only if it induces a complete subgraph of $G \circ H$ and the following conditions hold:
(i) $p_{G}(C)$ induces a complete subgraph of G,
(ii) For every $g \in p_{G}(C)$, set $p_{H}\left(C^{g}\right)$ induces a complete subgraph of H, where

$$
C^{g}=\{(g, h) \in C: \text { for any } h \in H\} .
$$

Theorem 12. Let G be a connected graph on $n \geq 1$ vertices and K_{m} the complete graph of order $m \geq 1$ such that $n+m \geq 3$. Then, the following statements hold.

1) If G is complete, then $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c}\left(K_{m} \circ G\right)=2$.
2) If G is complete and $n+m \geq 5$, or $n=2$ and $m=2$, then $\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c n}\left(K_{m} \circ G\right)=2$.
3) If G is noncomplete and $m=1$, then $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c}\left(K_{m} \circ G\right)=\varphi_{c}(G)$.
4) If G is noncomplete, $n \geq 4$ and $m=1$, then $\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c n}\left(K_{m} \circ G\right)=\varphi_{c n}(G)$.
5) If G is noncomplete, it has a simplicial vertex and $m \geq 2$, then $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c n}\left(G \circ K_{m}\right)=2$.
6) If G is noncomplete, it has no simplicial vertices and $m \geq 2$, then $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c}(G)$.
7) If G is noncomplete and $m \geq 2$, then $\varphi_{c}\left(K_{m} \circ G\right)=\varphi_{c n}\left(K_{m} \circ G\right)=\theta(G)$.

Proof.

1) Suppose G is complete. Then, it is obvious that obtained graph is complete and we have $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c}\left(K_{m} \circ G\right)=2$. In addition, suppose $n+m \geq 5$, or $n=2$ and $m=2$. Obtained complete graph with at least 4 vertices has a nontrivial convex 2-cover. Whence, $\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c n}\left(K_{m} \circ G\right)=2$. Statement 2) also holds.
2) Suppose G is noncomplete. If $m=1$, then graphs $G \circ K_{m}$ and $K_{m} \circ G$ are equal to G and further we have $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c}\left(K_{m} \circ G\right)=\varphi_{c}(G)$. In the same way, with condition $n \geq 4$, statement 4) holds. In other words $\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c n}\left(K_{m} \circ G\right)=\varphi_{c}(G)$. Assume that $m \geq 2$. If G has a simplicial vertex g^{\prime}, then we choose two different vertices $k_{1}, k_{2} \in X\left(K_{m}\right)$ and obtain two sets:

$$
\begin{gathered}
C_{1}=\left(X(G) \backslash\left\{g^{\prime}\right\} \times X\left(K_{m}\right)\right) \bigcup\left\{\left(g^{\prime}, k\right): k \in X\left(K_{m}\right) \backslash\left\{k_{1}\right\}\right\} \text { and } \\
C_{2}=\left(X(G) \backslash\left\{g^{\prime}\right\} \times X\left(K_{m}\right)\right) \bigcup\left\{\left(g^{\prime}, k\right): k \in X\left(K_{m}\right) \backslash\left\{k_{2}\right\}\right\} .
\end{gathered}
$$

Evidently, sets C_{1} and C_{2} satisfy Theorem 11 and these sets form a nontrivial convex 2-cover of $G \circ K_{m}$. Further, we have $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c n}\left(G \circ K_{m}\right)=2$. Statement 5) is satisfied.

Now assume that G has no simplicial vertices. We know from Theorem 11 that for every convex set C of $G \circ K_{m}$ the projection $p_{G}(C)$ must be convex in G. Let $\mathcal{P}_{\varphi_{c}}\left(G \circ K_{m}\right)$ be a minimum convex cover of $G \circ K_{m}$. We get family $P(G)=\bigcup_{S \in \varnothing_{p_{c}}\left(G \circ K_{m}\right)}\left\{p_{G}(S)\right\}$. Since noncomplete graph G has no simplicial vertices, it follows that $P(G)$ has no set $X(G)$. Obviously, for convex cover $\mathcal{P}(P(G))$ of graph G we have $|\mathcal{P}(P(G))| \leq \varphi_{c}(G \circ H)$. Consequently, $\varphi_{c}(G) \leq \varphi_{c}\left(G \circ K_{m}\right)$.

Let $\mathcal{P}_{\varphi_{c}}(G)$ be a minimum convex cover of G. Then, sets $S_{i}=C_{i} \times X\left(K_{m}\right), 1 \leq i \leq \varphi_{c}(G)$, form a convex cover of $G \circ K_{m}$, where $C_{i} \in \boldsymbol{P}_{\varphi_{c}}(G), 1 \leq i \leq \varphi_{c}(G)$, and further we get $\varphi_{c}\left(G \circ K_{m}\right) \leq \varphi_{c}(G)$. We have $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c}(G)$. From Proposition 2 we obtain $\varphi_{c}\left(G \circ K_{m}\right)=\varphi_{c n}\left(G \circ K_{m}\right)=\varphi_{c}(G)$. So, statement 6) also holds.

It follows from Consequence 4 that every proper convex subset of $K_{m} \circ G$ is a clique and further by Proposition 2 and Proposition 3 we have $\varphi_{c}\left(K_{m} \circ G\right)=\varphi_{c n}\left(K_{m} \circ G\right)=\theta(G)$. Furthermore, statement 7) also holds.

Theorem 13. Let G and H be two connected noncomplete graphs. Then, the following equalities hold: $\varphi_{c}(G \circ H)=\varphi_{c n}(G \circ H)=\theta_{c}(G \circ H)=\theta_{c}(G) \theta_{c}(H)$.

Proof. From Consequence 4 we know that every convex set of $G \circ H$ is a clique. Further, we have $\varphi_{c}(G \circ H)=\theta_{c}(G \circ H)$. Moreover, it can be checked that $\theta_{c}(G \circ H)=\theta_{c}(G) \theta_{c}(H)$. Taking into account Proposition 2 and Proposition 3, we get $\varphi_{c}(G \circ H)=\varphi_{c n}(G \circ H)$. Finally, we have inequalities $\varphi_{c}(G \circ H)=\varphi_{c n}(G \circ H)=\theta_{c}(G \circ H)=\theta_{c}(G) \theta_{c}(H)$.

Corona of Graphs

The corona of graphs G and H is the graph $G \square H$ obtained by taking one copy of G and n copies of H, where $|X(G)|=n$, and then joining by an edge the i th vertex of G to every vertex in the i th copy of H.

We consider a general version of corona of graphs. Let G be a connected graph on n vertices. Let $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\} \in X(G)$ and $H_{g_{1}}, H_{g_{2}}, \ldots, H_{g_{k}}$, where $1 \leq k \leq n$, be connected graphs of order at least one. Then by $\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square\left(H_{g_{1}}, H_{g_{2}}, \ldots, H_{g_{k}}\right)$ is denoted a graph obtained by taking one copy of G and after joining every vertex g_{i} to every vertex of $H_{g_{i}}$, where $1 \leq i \leq k$. If $H_{g_{1}}=H_{g_{2}}=\cdots=H_{g_{k}}=H$, then we simply denote $\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H$. If also $k=n$, then $\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H$ is the corona $G \square H$.

Theorem 14 [10]. Let G be a connected graph and H be any graph, with $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\} \subseteq X(G)$ and $H_{g_{1}}, H_{g_{2}}, \ldots, H_{g_{k}}$ being the corresponding copies of H. A nonempty set $C \subseteq X(G \square H)$ is convex in $G \square H$ if and only if it satisfies one of the following conditions:
(i) C is a convex set in G.
(ii) C induces a complete subgraph of H_{g} for a vertex $g \in X(G)$.
(iii) $G[C]=\left(G[S] ;\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}\right) \square\left(H_{s_{1}}^{*}, H_{s_{2}}^{*}, \ldots, H_{s_{l}}^{*}\right), S$ is convex in graph $G,\left\{s_{1}, s_{2}, \ldots, s_{l}\right\} \subseteq S$, $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\} \subseteq\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ and $X\left(s_{i} \vee H_{s_{i}}^{*}\right)$ is convex in $s_{i} \vee H_{s_{i}}$ for each $i=1,2, \ldots, l$.

Theorem 15. Let G and H be two connected graph on $n \geq 1$ and $m \geq 1$ vertices, with $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\} \subseteq X(G)$, where $1 \leq k \leq n$. Then, the following statements hold.

1) If $n=1$ and H is complete, then $\varphi_{c}(G \square H)=2$.
2) If $n=1, H$ is complete and $m \geq 3$, then $\varphi_{c n}(G \square H)=2$.
3) If $n=1, H$ is noncomplete with diameter 2 , then $\varphi_{c}(G \square H)=\varphi_{c n}(G \square H)=\varphi_{c}(G)$.
4) If $n=1, H$ is noncomplete with diameter at least 3 , then $\varphi_{c}\left(G \square K_{m}\right)=\varphi_{c n}\left(G \square K_{m}\right) \leq \varphi_{c}(G)$.
5) If $n \geq 2$, then $\varphi_{c}\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)=2$.
6) If $n \geq 2$ and $k^{*} m+n \geq 4$, then $\varphi_{c n}\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)=2$.

Proof. Suppose $n=1$. In fact, $\varphi_{c}\left(K_{1} \square H\right)=\varphi_{c}\left(K_{1} \vee H\right)$. Consequently, statements 1), 2), 3), 4) follow from Theorem 4.
5) Suppose $n \geq 2$. It can easily be checked that sets $X\left(H_{g_{1}}\right)$ and $X(G) \bigcup \bigcup_{i=2}^{k} X\left(H_{g_{i}}\right)$ satisfy conditions of Theorem 14 and further form a convex 2-cover of graph $\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H$. This implies that $\varphi_{c}\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)=2$.
6) Now suppose that $k^{*} m+n \geq 4$. In other words, the cardinality of set $X\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)$ must be at least 4. Taking into account Theorem 14, we show nontrivial convex 2 -covers of $\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H$ in two cases:
a) If $m=1$, then we choose a vertex $g^{\prime} \in \Gamma(g) \backslash X\left(H_{g}\right)$ for a vertex $g \in\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$, that yields a nontrivial convex 2-cover:

$$
P_{2}\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)=\left\{\left\{g, g^{\prime}\right\} \bigcup X\left(H_{g}\right), X(G) \bigcup \bigcup_{g^{\prime \prime} \in\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}, g^{\prime \prime} \neq g} X\left(H_{g^{\prime \prime}}\right)\right\}
$$

b) If $m \geq 2$, then we choose a vertex $h \in H_{g}$ for a vertex $g \in\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ and obtain a nontrivial convex 2-cover:

$$
P_{2}\left(\left(G ;\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}\right) \square H\right)=\left\{\{g\} \bigcup X\left(H_{g}\right),\{h\} \bigcup X(G) \bigcup \bigcup_{g^{\prime} \in\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}, g^{\prime} \neq g} X\left(H_{g^{\prime}}\right)\right\}
$$

The theorem is proved.

References:

1. BOLTEANSKY, V., SOLTAN, P. Combinatorial geometry of the various classes of convex sets. Chişinău, 1978, p. 282 (in Russian).
2. ARTIGAS, D., DANTAS, S., DOURADO, M.C., SXWARCFITER, J.L. Convex covers of graphs. In: Matematica Contemporanea, Sociedade Brasileira de Matematica, 2010, vol.39, p.31-38.
3. BERGE, C. Theory of graphs and its applications. Methuen, London, 1962.
4. BUZATU, R., CATARANCIUC, S. Convex graph covers. In: Computer Science Journal of Moldova, 2015, vol.23, no3(69), p.251-269.
5. CATARANCIUC, S., SUR N. D-convex simple and quasi-simple graphs. Chişinău: Moldova State University, 2009, p. 199 (in Romanian).
6. ARTIGAS, D., DANTAS, S., DOURADO, M.C., SXWARCFITER, J.L. Partitioning a graph into convex sets. In: Discrete Mathematics, 2011, vol.311, p.1968-1977.
7. BUZATU, R. Covers of graphs by two convex sets. In: Studia univ. Babeş-Bolyai, Series Informatica, vol.LXI, no1, 2016, p.5-22.
8. BUZATU, R., CATARANCIUC, S. Cover of undirected graph into nontrivial convex sets. In: Proceedings of the 5th International Conference: Mathematical Modeling, Optimization and Information Technology, March 22-25, Chişinău, Moldova, 2016, p.64-71 (in Romanian).
9. CANOY, S.R., GARCES, I.J.L. Convex sets under some graph operations. In: Graphs Combin., 2002, 18(4), p.787-793.
10. CANOY, S.R., LAJA, L. Convex Sets in the Corona and Conjunction of Graphs. In: Congressus numeratium, 2006, vol.180, p.207-216.
11. ANAND, B.S., CHANGAT, M., KLAVZAR, S., PETERIN, I. Convex sets in lexicographic products of graphs. In: Graphs Combin. 2012, 28, p.77-84.
