Global stability of a system of exponential difference equations

Qamar Din
Department of Mathematics, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
E-mail: qamar.sms@gmail.com
Muhammad Asif Khan
Department of Mathematics, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
E-mail: asif31182@gmail.com

Abstract

We investigate the qualitative behavior of a second-order system of exponential difference equations. Particularly, we study boundedness and persistence, existence and uniqueness of positive steady-state, parametric conditions for local and global asymptotic stability of the unique positive equilibrium point and the rate of convergence of positive solutions of this system. Numerical simulations are provided to illustrate theoretical discussions.

Mathematics Subject Classification 2010: 39A10, 40A05
Key Words: difference equations; steady-states; boundedness and persistence; local and global stability

1 Introduction

Discrete dynamical systems in exponential form have rich dynamics. Such systems can be used to discuss population models. Due to adequate computational consequences discrete dynamical system are much better than allied systems in differential equations. Particularly, in case of non-overlapping generations difference equations are more apposite to study the behavior of population models [1, 18, 21, 22, 24]. For more detail of some amiable population models both in differential equations as well as in difference equations, we refer the interested reader to [2, 3, 17, 19]. Moreover, for some basic properties of nonlinear difference equations one can see [23, 29]. It is very curios to investigate the dynamics of solutions of systems of nonlinear difference equations and to discourse about the local and global asymptotic stability of their equilibrium points. For some notable results related to the qualitative behavior of difference equations, we refer the reader to (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

El-Metwally et al. [20] discussed the qualitative behavior of the following twodimensional population model:

$$
x_{n+1}=\alpha+\beta x_{n-1} e^{-x_{n}} .
$$

Papaschinopoulos et al. [25] discussed the qualitative behavior of the following twodimensional interactive and invasive species model:

$$
x_{n+1}=a+b x_{n-1} e^{-y_{n}}, y_{n+1}=c+d y_{n-1} e^{-x_{n}}
$$

Papaschinopoulos et al. [26] discussed the qualitative behavior of the following three systems of difference equations of exponential form:

$$
\begin{aligned}
& x_{n+1}=\frac{\alpha+\beta e^{-y_{n}}}{\gamma+y_{n-1}}, y_{n+1}=\frac{\delta+\epsilon e^{-x_{n}}}{\zeta+x_{n-1}} \\
& x_{n+1}=\frac{\alpha+\beta e^{-y_{n}}}{\gamma+x_{n-1}}, y_{n+1}=\frac{\delta+\epsilon e^{-x_{n}}}{\zeta+y_{n-1}}
\end{aligned}
$$

and

$$
x_{n+1}=\frac{\alpha+\beta e^{-x_{n}}}{\gamma+y_{n-1}}, y_{n+1}=\frac{\delta+\epsilon e^{-y_{n}}}{\zeta+x_{n-1}} .
$$

Papaschinopoulos et al. [27] discussed the qualitative behavior of the following two dif-
ference equations:

$$
x_{n+1}=a+b y_{n-1} e^{-y_{n}}, y_{n+1}=c+d x_{n-1} e^{-x_{n}}
$$

and

$$
x_{n+1}=a+b y_{n-1} e^{-x_{n}}, y_{n+1}=c+d x_{n-1} e^{-y_{n}} .
$$

Moreover, Din 5 investigated the global asymptotic stability of the following discretetime population model:

$$
x_{n+1}=\alpha x_{n} e^{-y_{n}}+\beta, y_{n+1}=\alpha x_{n}\left(1-e^{-y_{n}}\right) .
$$

Furthermore, Din [7] discussed the qualitative behavior of the following two-dimensional plant-herbivore system:

$$
x_{n+1}=\frac{\alpha x_{n}}{\beta x_{n}+e^{y_{n}}}, y_{n+1}=\gamma\left(x_{n}+1\right) y_{n}
$$

In [9] the author studied the qualitative behavior of the following modified host-parasitoid system:

$$
\begin{aligned}
H_{n+1} & =r N_{0}+r\left(H_{n}-N_{0}\right) \exp \left(-a P_{n}\right) \\
P_{n+1} & =e\left(H_{n}-N_{0}\right)\left(1-\exp \left(-a P_{n}\right)\right)
\end{aligned}
$$

In [16] the authors investigated the qualitative behavior of the following generalized Beddington model:

$$
\left\{\begin{array}{l}
N_{t+1}=N_{t} \exp \left[r\left(1-\frac{N_{t}}{k}\right)-a P_{t}\right] \\
P_{t+1}=\lambda N_{t}\left[1-\exp \left(-b P_{t}\right)\right]
\end{array}\right.
$$

Motivated by above study, our aim in this paper is to investigate the qualitative behavior the following two-dimensional discreet dynamical system of exponential form:

$$
\begin{equation*}
x_{n+1}=\frac{\alpha_{1}+\beta_{1} e^{-y_{n}}+\gamma_{1} e^{-y_{n-1}}}{a_{1}+b_{1} y_{n}+c_{1} y_{n-1}}, y_{n+1}=\frac{\alpha_{2}+\beta_{2} e^{-x_{n}}+\gamma_{2} e^{-x_{n-1}}}{a_{2}+b_{2} x_{n}+c_{2} x_{n-1}} \tag{1}
\end{equation*}
$$

where the parameters $\alpha_{i}, \beta_{i}, \gamma_{i}, a_{i}, b_{i}, c_{i}$ for $i \in\{1,2\}$ and initial conditions $x_{0}, x_{-1}, y_{0}, y_{-1}$ are positive real numbers.

Particularly, we study boundedness, existence and uniqueness of nontrivial steady-
state, parametric conditions for local and global asymptotic stability of the unique positive equilibrium point and the rate of convergence of positive solutions of system (1) which converge to its unique positive equilibrium point. In system (11), if we take $\gamma_{1}=\gamma_{2}=$ $b_{1}=b_{2}=0$ and $c_{1}=c_{2}=1$, then it reduces to a population model of two species which has been investigated in [26].

2 Existence and stability of positive equilibrium

Following theorem guarantees about the boundedness and persistence of every solution of (1).

Theorem 1. Every positive solution $\left\{\left(x_{n}, y_{n}\right)\right\}$ of system (1) is bounded and persists.
Proof. For any positive solution $\left\{\left(x_{n}, y_{n}\right)\right\}$ of system (1), one has

$$
\begin{equation*}
x_{n+1} \leq \frac{\alpha_{1}+\beta_{1}+\gamma_{1}}{a_{1}}=U_{1}, y_{n+1} \leq \frac{\alpha_{2}+\beta_{2}+\gamma_{2}}{a_{2}}=U_{2}, n=0,1,2, \cdots \tag{2}
\end{equation*}
$$

Furthermore, from system (11) and (2) we obtain that

$$
\begin{equation*}
x_{n+1} \geq \frac{\alpha_{1}+\beta_{1} e^{-U_{2}}+\gamma_{1} e^{-U_{2}}}{a_{1}+b_{1} U_{2}+c_{1} U_{2}}=L_{1}, y_{n+1} \geq \frac{\alpha_{2}+\beta_{2} e^{-U_{1}}+\gamma_{2} e^{-U_{1}}}{a_{2}+b_{2} U_{1}+c_{2} U_{1}}=L_{2}, n=2,3, \cdots \tag{3}
\end{equation*}
$$

From (22) and (3), it follows that

$$
L_{1} \leq x_{n} \leq U_{1}, L_{2} \leq y_{n} \leq U_{2}, n=3,4, \cdots
$$

Hence, theorem is proved.
Lemma 1. Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a positive solution of system (11). Then, $\left[L_{1}, U_{1}\right] \times\left[L_{2}, U_{2}\right]$ is invariant set for system (1).

Proof. The proof follows by induction.
Next, we consider the following general systems of two difference equations

$$
\begin{equation*}
x_{n+1}=f\left(y_{n}, y_{n-1}\right), y_{n+1}=g\left(x_{n}, x_{n-1}\right), \tag{4}
\end{equation*}
$$

where f, g are continuous functions and the initial conditions x_{i}, y_{i} for $i \in\{-1,0\}$ are positive real numbers. Arguing as in [26], we have following result for global behavior of (1).

Lemma 2. Assume that $f:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ and $g:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ be continuous functions and a, b, c, d are positive real numbers with $a<b, c<d$. Moreover, suppose that $f:[c, d] \times[c, d] \rightarrow[a, b]$ and $g:[a, b] \times[a, b] \rightarrow[c, d]$ such that following conditions are satisfied:
(i) $f\left(y_{1}, y_{2}\right)$ is decreasing in both y_{1} and $y_{2}, g\left(x_{1}, x_{2}\right)$ is decreasing in both x_{1} and x_{2}.
(ii) Let $m_{1}, M_{1}, m_{2}, M_{2}$ are real numbers such that
$m_{1}=f\left(M_{2}, M_{2}\right), M_{1}=f\left(m_{2}, m_{2}\right), m_{2}=g\left(M_{1}, M_{1}\right)$ and $M_{2}=g\left(m_{1}, m_{1}\right)$, then $m_{1}=M_{1}$ and $m_{2}=M_{2}$.

Then the system of difference equation (4) has a unique positive equilibrium point (\bar{x}, \bar{y}) and every positive solution of system of difference equations (4) which satisfies

$$
\begin{equation*}
x_{n_{0}} \in[a, b], x_{n_{0}+1} \in[a, b], y_{n_{0}} \in[c, d], y_{n_{0}+1} \in[c, d], n_{0} \in \mathbb{N} \tag{5}
\end{equation*}
$$

converges to the unique positive equilibrium of system (4).

Theorem 2. System (1) has a unique positive equilibrium (\bar{x}, \bar{y}) and every positive solution of system (1) converges to the unique positive equilibrium (\bar{x}, \bar{y}) as $n \rightarrow \infty$, if the following holds true:

$$
\begin{equation*}
\beta_{2}+\gamma_{2}<a_{1}, \beta_{1}+\gamma_{1}<a_{2}, b_{1}+c_{1}=b_{2}+c_{2} \tag{6}
\end{equation*}
$$

Proof. Consider the following functions:

$$
f(u, v)=\frac{\alpha_{1}+\beta_{1} e^{-u}+\gamma_{1} e^{-v}}{a_{1}+b_{1} u+c_{1} v}, g(z, w)=\frac{\alpha_{2}+\beta_{2} e^{-z}+\gamma_{2} e^{-w}}{a_{2}+b_{2} z+c_{2} w}
$$

where $z, w \in\left[L_{1}, U_{1}\right]=I_{1}$ and $u, v \in\left[L_{2}, U_{2}\right]=I_{2}$ which implies that $f(u, v) \in I_{1}$ and $g(z, w) \in I_{2}$ so that $f: I_{2} \times I_{2} \rightarrow I_{1}$ and $g: I_{1} \times I_{1} \rightarrow I_{2}$. Assume that $\left\{\left(x_{n}, y_{n}\right)\right\}$ be any positive solution of (11), then by Lemma 2 we have $x_{n} \in I_{1}$ and $y_{n} \in I_{2}$. Next, we assume that $m_{1}, M_{1}, m_{2}, M_{2}$ be the positive real numbers such that

$$
\begin{align*}
& M_{1}=\frac{\alpha_{1}+\beta_{1} e^{-m_{2}}+\gamma_{1} e^{-m_{2}}}{a_{1}+b_{1} m_{2}+c_{1} m_{2}}, m_{1}=\frac{\alpha_{1}+\beta_{1} e^{-M_{2}}+\gamma_{1} e^{-M_{2}}}{a_{1}+b_{1} M_{2}+c_{1} M_{2}} \\
& M_{2}=\frac{\alpha_{2}+\beta_{2} e^{-m_{1}}+\gamma_{2} e^{-m_{1}}}{a_{2}+b_{2} m_{1}+c_{2} m_{1}}, m_{2}=\frac{\alpha_{2}+\beta_{2} e^{-M_{1}}+\gamma_{2} e^{-M_{1}}}{a_{2}+b_{2} M_{1}+c_{2} M_{1}} \tag{7}
\end{align*}
$$

Let

$$
F(x)=\frac{\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-f(x)}}{a_{1}+\left(b_{1}+c_{1}\right) f(x)}-x
$$

where

$$
f(x)=\frac{\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-x}}{a_{2}+\left(b_{2}+c_{2}\right) x}, x \in I_{1} .
$$

Then F maps the interval I_{1} into itself. In order to show that the equation $F(x)=0$ has unique solution in I_{1} we have:

$$
\begin{align*}
& F^{\prime}(x)= \\
& -f^{\prime}(x)\left[\frac{\left(a_{1}+\left(b_{1}+c_{1}\right) f(x)\right)\left(\beta_{1}+\gamma_{1}\right) e^{-f(x)}+\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-f(x)}\right)\left(b_{1}+c_{1}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) f(x)\right)^{2}}\right]-1 \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
f^{\prime}(x)=-\left[\frac{\left(\beta_{2}+\gamma_{2}\right)\left(a_{2}+\left(b_{2}+c_{2}\right) x\right) e^{-x}-\left(b_{2}+c_{2}\right)\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right)\right) e^{-x}}{\left(a_{2}+\left(b_{2}+c_{2}\right) x\right)^{2}}\right] \tag{9}
\end{equation*}
$$

By using the fact that $F(\bar{x})=0$ together with (8) and (19) we obtain

$$
\begin{equation*}
F^{\prime}(\bar{x})=\left[\frac{\left(\beta_{2}+\gamma_{2}\right)+\left(b_{2}+c_{2}\right) f(\bar{x})}{a_{1}+\left(b_{1}+c_{1}\right) f(\bar{x})}\right] \times\left[\frac{\left(\beta_{1}+\gamma_{1}\right) e^{-f(\bar{x})}+\left(b_{1}+c_{1}\right) \bar{x}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}\right]-1 \tag{10}
\end{equation*}
$$

By using the condition define in (6) we have $F^{\prime}(\bar{x})<0$ and this implies that the equation $F(x)=0$ has unique positive solution in I_{1}. Furthermore, from (7) we see that M_{1} and m_{1} satisfy equation $F(x)=0$ which shows that $M_{1}=m_{1}$. Therefore from equation (7) it is clear that $M_{2}=m_{2}$. From Lemma 2 it follows that system (1) has unique positive equilibrium (\bar{x}, \bar{y}) and every positive solution of system equation (1) converges to the unique positive equilibrium point as $n \rightarrow \infty$. This completes the proof of the theorem.

In the following result we study the conditions for global asymptotic stability of unique positive equilibrium of system (1).

Theorem 3. The unique positive equilibrium of system (1) is globally asymptotically stable if condition (6) of Theorem 回 is satisfied.

Proof. As we know that (\bar{x}, \bar{y}) is nontrivial equilibrium of system (1), so one has

$$
\begin{equation*}
\bar{x}=\frac{\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}}, \bar{y}=\frac{\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}}{a 2+\left(b_{2}+c_{2}\right) \bar{x}} . \tag{11}
\end{equation*}
$$

The linearized system of (11) evaluated at unique positive equilibrium (\bar{x}, \bar{y}) together with equation (11) is given by

$$
\begin{aligned}
x_{n+1} & =-\frac{\beta_{1} e^{-\bar{y}}+b_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} y_{n}-\frac{\gamma_{1} e^{-\bar{y}}+c_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} y_{n-1} \\
y_{n+1} & =-\frac{\beta_{2} e^{-\bar{x}}+b_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} x_{n}-\frac{\gamma_{2} e^{-\bar{x}}+c_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} x_{n-1}
\end{aligned}
$$

which is equivalent to the following matrix form

$$
Z_{n+1}=F_{J}(\bar{x}, \bar{y}) Z_{n}
$$

where $Z_{n}=\left(\begin{array}{c}x_{n} \\ y_{n} \\ x_{n-1} \\ y_{n-1}\end{array}\right)$ and the Jacobian matrix $F_{J}(\bar{x}, \bar{y})$ evaluated at nontrivial equilibrium (\bar{x}, \bar{y}) of system (11) is given by

$$
F_{J}(\bar{x}, \bar{y})=\left(\begin{array}{cccc}
0 & A_{1} & 0 & A_{2} \\
B_{1} & 0 & B_{2} & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

where

$$
\begin{aligned}
A_{1} & =-\frac{b_{1} \bar{x}+\beta_{1} e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}}, A_{2}=-\frac{c_{1} \bar{x}+\gamma_{1} e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \\
B_{1} & =-\frac{b_{2} \bar{y}+\beta_{2} e^{-\bar{x}}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}, \quad B_{2}=-\frac{c_{2} \bar{y}+\gamma_{2} e^{-\bar{x}}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} .
\end{aligned}
$$

The characteristic equation of Jacobian matrix $F_{J}(\bar{x}, \bar{y})$ is given by

$$
\begin{equation*}
\lambda^{4}-A_{1} B_{1} \lambda^{2}-\left(A_{1} B_{2}+A_{2} B_{1}\right) \lambda-A_{2} B_{2}=0 \tag{12}
\end{equation*}
$$

Assume that condition (6) holds true and taking $\Omega=\left|A_{1} B_{1}\right|+\left|A_{1} B_{2}\right|+\left|A_{2} B_{1}\right|+\left|A_{2} B_{2}\right|$,
we have

$$
\begin{aligned}
\Omega= & \frac{\beta_{1} e^{-\bar{y}}+b_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\beta_{2} e^{-\bar{x}}+b_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}+\frac{\beta_{1} e^{-\bar{y}}+b_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\gamma_{2} e^{-\bar{x}}+c_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} \\
& +\frac{\gamma_{1} e^{-\bar{y}}+c_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\beta_{2} e^{-\bar{x}}+b_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}+\frac{\gamma_{1} e^{-\bar{y}}+c_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\gamma_{2} e^{-\bar{x}}+c_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} \\
\leq & \frac{\beta_{1}+b_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\beta_{2}+b_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}+\frac{\beta_{1}+b_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\gamma_{2}+c_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} \\
& +\frac{\gamma_{1}+c_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\beta_{2}+b_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}+\frac{\gamma_{1}+c_{1} \bar{x}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \times \frac{\gamma_{2}+c_{2} \bar{y}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} \\
= & {\left[\frac{\left(\beta_{2}+\gamma_{2}\right)+\left(b_{2}+c_{2}\right) \bar{y}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}}\right] \times\left[\frac{\left(\beta_{1}+\gamma_{1}\right)+\left(b_{1}+c_{1}\right) \bar{x}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}\right]<1 . }
\end{aligned}
$$

Then it follows that all the roots of equation (12) are of absolute less than one which sure that (\bar{x}, \bar{y}) is locally asymptotically stable. Using Theorem 2, we obtain that (\bar{x}, \bar{y}) is globally asymptotically stable. This completes the proof of the theorem.

3 Rate of convergence

In this section, we investigate the rate at which the nontrivial solution of system (1) converges to positive constant solution of (11).

The following results are fundamental in difference equations for the rate of convergence of solutions. First, we consider the following system of difference equations:

$$
\begin{equation*}
T_{n+1}=(C+D(n)) T_{n} \tag{13}
\end{equation*}
$$

where T_{n} is an m-dimensional vector, $C \in \mathbb{R}^{m \times m}$ is a constant matrix, and $D: \mathbb{Z}^{+} \rightarrow$ $\mathbb{R}^{m \times m}$ is a matrix function which holds

$$
\begin{equation*}
\|D(n)\| \rightarrow 0 \tag{14}
\end{equation*}
$$

as $n \rightarrow \infty$ where $\|\cdot\|$, indicate any arbitrary matrix norm which is associated with the vector norm

$$
\|(u, v)\|=\sqrt{u^{2}+v^{2}} .
$$

Proposition 1. (Perron's Theorem) [28] Suppose that condition (14) holds. If T_{n} is a
solution of (13), then either $T_{n}=0$ for all large n or

$$
\begin{equation*}
\tau=\lim _{n \rightarrow \infty}\left(\left\|T_{n}\right\|\right)^{1 / n} \tag{15}
\end{equation*}
$$

exists and is equal to the absolute of one the eigenvalues of matrix C.

Proposition 2. [28] Suppose that condition (14) holds. If T_{n} is a solution of (13), then either $T_{n}=0$ for all large n or

$$
\begin{equation*}
\tau=\lim _{n \rightarrow \infty} \frac{\left\|T_{n+1}\right\|}{\left\|T_{n}\right\|} \tag{16}
\end{equation*}
$$

exists and is equal to the absolute of one the eigenvalues of matrix C.

Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be any solution of the system (1) such that $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, and $\lim _{n \rightarrow \infty} y_{n}=\bar{y}$, where $\bar{x} \in\left[L_{1}, U_{1}\right]$ and $\bar{y} \in\left[L_{2}, U_{2}\right]$. To evaluate the error terms, one has from the system (1)

$$
\begin{aligned}
x_{n+1}-\bar{x} & =\frac{\alpha_{1}+\beta_{1} e^{-y n}+\gamma_{1} e^{-y_{n-1}}}{a_{1}+b_{1} y_{n}+c_{1} y_{n-1}}-\frac{\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}} \\
& =\frac{\beta_{1}\left(e^{-y_{n}}-e^{-\bar{y}}\right)}{\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)\left(y_{n}-\bar{y}\right)}\left(y_{n}-\bar{y}\right) \\
& -\frac{b_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)}\left(y_{n}-\bar{y}\right) \\
& +\frac{\gamma_{1}\left(e^{-y_{n-1}}-e^{-\bar{y}}\right)}{\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)\left(y_{n-1}-\bar{y}\right)}\left(y_{n-1}-\bar{y}\right) \\
& -\frac{c_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)}\left(y_{n-1}-\bar{y}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
y_{n+1}-\bar{y} & =\frac{\alpha_{2}+\beta_{2} e^{-x_{n}}+\gamma_{2} e^{-x_{n-1}}}{a_{2}+b_{2} x_{n}+c_{2} x_{n-1}}-\frac{\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}} \\
& =\frac{\beta_{2}\left(e^{-x_{n}}-e^{-\bar{x}}\right)}{\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)\left(x_{n}-\bar{x}\right)}\left(x_{n}-\bar{x}\right) \\
& -\frac{b_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)}\left(x_{n}-\bar{x}\right) \\
& +\frac{\gamma_{2}\left(e^{-x_{n-1}}-e^{-\bar{x}}\right)}{\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)\left(x_{n-1}-\bar{x}\right)}\left(x_{n-1}-\bar{x}\right) \\
& -\frac{c_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)}\left(x_{n-1}-\bar{x}\right) .
\end{aligned}
$$

Let $e_{n}^{1}=x_{n}-\bar{x}$, and $e_{n}^{2}=y_{n}-\bar{y}$, then one has

$$
e_{n+1}^{1}=a_{n} e_{n}^{2}+b_{n} e_{n-1}^{2},
$$

and

$$
e_{n+1}^{2}=c_{n} e_{n}^{1}+d_{n} e_{n-1}^{1},
$$

where

$$
\begin{aligned}
a_{n} & =\frac{\beta_{1}\left(e^{-y_{n}}-e^{-\bar{y}}\right)}{\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)\left(y_{n}-\bar{y}\right)}-\frac{b_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)}, \\
b_{n} & =\frac{\gamma_{1}\left(e^{-y_{n-1}}-e^{-\bar{y}}\right)}{\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)\left(y_{n-1}-\bar{y}\right)}-\frac{c_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)\left(a_{1}+b_{1} y_{n}+c_{1} y_{n-1}\right)}, \\
c_{n} & =\frac{\beta_{2}\left(e^{-x_{n}}-e^{-\bar{x}}\right)}{\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)\left(x_{n}-\bar{x}\right)}-\frac{b_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)}, \\
d_{n} & =\frac{\gamma_{2}\left(e^{-x_{n-1}}-e^{-\bar{x}}\right)}{\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)\left(x_{n-1}-\bar{x}\right)}-\frac{c_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)\left(a_{2}+b_{2} x_{n}+c_{2} x_{n-1}\right)} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=-\frac{\beta_{1} e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}}-\frac{b_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)^{2}}=A_{1}, \\
& \lim _{n \rightarrow \infty} b_{n}=-\frac{\gamma_{1} e^{-\bar{y}}}{a_{1}+\left(b_{1}+c_{1}\right) \bar{y}}-\frac{c_{1}\left(\alpha_{1}+\left(\beta_{1}+\gamma_{1}\right) e^{-\bar{y}}\right)}{\left(a_{1}+\left(b_{1}+c_{1}\right) \bar{y}\right)^{2}}=A_{2}, \\
& \lim _{n \rightarrow \infty} c_{n}=-\frac{\beta_{2} e^{-\bar{x}}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}-\frac{b_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)^{2}}=B_{1}, \\
& \lim _{n \rightarrow \infty} d_{n}=-\frac{\gamma_{2} e^{-\bar{x}}}{a_{2}+\left(b_{2}+c_{2}\right) \bar{x}}-\frac{c_{2}\left(\alpha_{2}+\left(\beta_{2}+\gamma_{2}\right) e^{-\bar{x}}\right)}{\left(a_{2}+\left(b_{2}+c_{2}\right) \bar{x}\right)^{2}}=B_{2} .
\end{aligned}
$$

Now the limiting system of error terms can be written as

$$
\left[\begin{array}{c}
e_{n+1}^{1} \\
e_{n+1}^{2} \\
e_{n}^{1} \\
e_{n}^{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & A_{1} & 0 & A_{2} \\
B_{1} & 0 & B_{2} & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
e_{n}^{1} \\
e_{n}^{2} \\
e_{n-1}^{1} \\
e_{n-1}^{2}
\end{array}\right]
$$

which is same as the linearized system of (1) about the equilibrium point (\bar{x}, \bar{y}).
Using Proposition i, one has following result.
Theorem 4. Assume that $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a positive solution of the system (1) such that
$\lim _{n \rightarrow \infty} x_{n}=\bar{x}$, and $\lim _{n \rightarrow \infty} y_{n}=\bar{y}$, where $\bar{x} \in\left[L_{1}, U_{1}\right]$ and $\bar{y} \in\left[L_{2}, U_{2}\right]$. Then, the error vector $e_{n}=\left(\begin{array}{c}e_{n}^{1} \\ e_{n}^{2} \\ e_{n-1}^{1} \\ e_{n-1}^{2}\end{array}\right)$ of every solution of (11) satisfies both of the following asymptotic relations

$$
\lim _{n \rightarrow \infty}\left(\left\|e_{n}\right\|\right)^{\frac{1}{n}}=\left|\lambda_{1,2,3,4} F_{J}(\bar{x}, \bar{y})\right|, \quad \lim _{n \rightarrow \infty} \frac{\left\|e_{n+1}\right\|}{\left\|e_{n}\right\|}=\left|\lambda_{1,2,3,4} F_{J}(\bar{x}, \bar{y})\right|
$$

where $\lambda_{1,2,3,4} F_{J}(\bar{x}, \bar{y})$ are the characteristic roots of Jacobian matrix $F_{J}(\bar{x}, \bar{y})$.

4 Numerical simulations and discussion

Example 1. Let $\alpha_{1}=0.002, \beta_{1}=0.2, \gamma_{1}=1.6, a_{1}=0.4, b_{1}=0.0008, c_{1}=0.07$, $\alpha_{2}=0.5, \beta_{2}=0.1, \gamma_{2}=0.7, a_{2}=0.99, b_{2}=0.0002, c_{2}=0.003$. Then, system (1) can be written as

$$
\begin{equation*}
x_{n+1}=\frac{0.002+0.2 e^{-y_{n}}+1.6 e^{-y_{n-1}}}{0.4+0.0008 y_{n}+0.07 y_{n-1}}, y_{n+1}=\frac{0.5+0.1 e^{-x_{n}}+0.7 e^{-x_{n-1}}}{0.99+0.0002 x_{n}+0.003 x_{n-1}}, \tag{17}
\end{equation*}
$$

with initial conditions $x_{-1}=2.2, x_{0}=2.1, y_{-1}=0.56, y_{0}=0.55$.
In this case the unique positive equilibrium point of system (17) is given by $(\bar{x}, \bar{y})=$ (2.28063, 0.583352). Moreover, in Fig. 1 the plot of x_{n} is shown in Fig. 1a and the plot of y_{n} is shown in Fig. 10 for system (17).

Figure 1: Plots for the system (17)

Example 2. Let $\alpha_{1}=2, \beta_{1}=12, \gamma_{1}=16, a_{1}=14, b_{1}=8, c_{1}=7, \alpha_{2}=5, \beta_{2}=9$,
$\gamma_{2}=11, a_{2}=13, b_{2}=1.1, c_{2}=30$. Then, system (1) can be written as

$$
\begin{equation*}
x_{n+1}=\frac{2+12 e^{-y_{n}}+16 e^{-y_{n-1}}}{14+8 y_{n}+7 y_{n-1}}, y_{n+1}=\frac{5+9 e^{-x_{n}}+11 e^{-x_{n-1}}}{13+1.1 x_{n}+30 x_{n-1}}, \tag{18}
\end{equation*}
$$

with initial conditions $x_{-1}=1.6, x_{0}=1.7, y_{-1}=0.14, y_{0}=0.15$.
In this case the unique positive equilibrium point of system (18) is given by $(\bar{x}, \bar{y})=$ (1.64, 0.138736). Moreover, in Fig. 圆 the plot of x_{n} is shown in Fig. 2a an the plot of y_{n} is shown in Fig. 26b of the system (18).

Figure 2: Plots for the system (18)

Concluding remarks

This work is related to the qualitative behavior of a discrete-time dynamical system, which may be considered as generalized population model discussed in [26]. Thus our results, considerably extend some previous investigations in literature. First it is investigated that system (11) is bounded and persists and then existence and uniqueness of positive equilibrium point is proved. We proved that the system (1) has a unique positive equilibrium point, which is locally asymptotically stable. The method of linearization is used to prove the local asymptotic stability of unique equilibrium point. Linear stability analysis shows that the positive steady-state of the system (1) is asymptotically stable under certain parametric conditions. The main objective of dynamical systems theory is to predict the global behavior of a system based on the knowledge of its present state. An approach to this problem consists of determining the possible global behaviors of the system and determining which parametric conditions lead to these long-term behaviors. In case of nonlinear dynamical systems, it is very crucial to discuss global behavior of the system. Moreover, we investigated the rate of convergence of a solution that converges to
the unique positive equilibrium point of system (11).

References

[1] R. P. Agarwal, Difference Equations and Inequalities: Theory, Method and Applications, Marcel Dekker, NewYork, (2000).
[2] L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Prentice Hall, New Jersey, 2007.
[3] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2000.
[4] Q. Din, Dynamics of a discrete Lotka-Volterra model, Adv. Differ. Equ., 2013:95, 2013.
[5] Q. Din, Global stability of a population model, Chaos Soliton Fract., 59:119-128, 2014.
[6] Q. Din, Stability analysis of a biological network, Network Biology, 4(3):123-129, 2014.
[7] Q. Din, Global behavior of a plant-herbivore model, Adv. Differ. Equ., 2015:119, 2015.
[8] Q. Din, Asymptotic behavior of an anti-competitive system of second-order difference equations, J. Egyptian Math. Soc., 24:37-43, 2016.
[9] Q. Din, Global behavior of a host-parasitoid model under the constant refuge effect, Appl. Math. Model., 40(4):2815-2826, 2016.
[10] Q. Din, Global Stability of Beddington Model, Qual. Theor. Dyn. Syst., DOI: 10.1007/s12346-016-0197-9, 25 p., 2016.
[11] Q. Din, T. Donchev, Global character of a host-parasite model, Chaos Soliton Fract., 54:1-7, 2013.
[12] Q. Din, E. M. Elsayed, Stability analysis of a discrete ecological model, Comput. Ecol. Softw., 4(2):89-103, 2014.
[13] Q. Din, T. F. Ibrahim, K. A. Khan, Behavior of a competitive system of secondorder difference equations, Sci. World J., 2014, Article ID 283982, 9 p., 2014.
[14] Q. Din, K. A. Khan, A. Nosheen, Stability analysis of a system of exponential difference equations, Discrete Dyn. Nat. Soc., 2014, Article ID 375890, 11 p., 2014.
[15] Q. Din, A. Q. Khan, M. N. Qureshi, Qualitative behavior of a host-pathogen model, Adv. Differ. Equ., 2013:263, 2013.
[16] Q. Din, M. A. Khan, U. Saeed, Qualitative Behaviour of Generalised Beddington Model, Z. Naturforsch. A, 71(2):145-155, 2016.
[17] L. Edelstein-Keshet, Mathematical Models in Biology, McGraw-Hill, New York, 1988.
[18] S. Elaydi, An Introduction to Difference Equations, second edition, Springer, 2005.
[19] S. Elaydi, Discrete chaos: With applications in science and engineering, second edition, Chapman and Hall/CRC, 2008.
[20] E. El-Metwally, E. A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation $x_{n+1}=\alpha+\beta x_{n-1} e^{-x_{n}}$, Nonlinear Analysis, 47:4623-4634, 2001.
[21] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, NewYork, 1980.
[22] B. S. Goh, Management and Analysis of Biological Populations, Elsevier Scientific, The Netherlands, 1980.
[23] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC Press, Boca Raton, 2004.
[24] J. D. Murray, Mathematical Biology, Springer, NewYork, 1989.
[25] G. Papaschinopoulos, M. A. Radin, C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1}=a+b x_{n-1} e^{-y_{n}}, y_{n+1}=c+d y_{n-1} e^{-x_{n}}$, Math. Comp. Model., 54:2969-2977, 2011.
[26] G. Papaschinopoulos, M. A. Radin, C. J. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, App. Math. Comp., 218:5310-5318, 2012.

Qamar Din, Muhammad Asif Khan, CMMPG, vol. 1, No. 2 (2016), 71-85
[27] G. Papaschinopoulos, C. J. Schinas, On the dynamics of two exponential type systems of difference equations, Comp. Math. Appl., 64(7):2326-2334, 2012.
[28] M. Pituk, More on Poincare's and Perron's theorems for difference equations, J. Diff. Eq. Appl., 8:201-216, 2002.
[29] H. Sedaghat, Nonlinear difference equations: Theory with applications to social science models, Kluwer Academic Publishers, Dordrecht, 2003.

