THE INFLUENCE OF SUSPENDING RODS ELASTICITY ON CIRCULAR MOTION OF A PLANSIFTER FOR SIFTING MILL PRODUCTS

INFLUENȚA ELASTICITĂȚII TIJELOR DE SUSPENDARE ASUPRA MIŞCĂRII CIRCULARE A SITEI PLANE PENTRU CERNEREA PRODUSELOR DE MĂCINIȘ

Ph.D. Stud. Eng. Ivancu B., Prof. Ph.D. Eng. Voicu Gh., Prof. Ph.D. Eng. Filip I.,

Polytechnic University of Bucharest, Faculty of Biotechnical Systems Engineering / Romania E-mail: ivancu_bogdan@yahoo.com

Abstract: In this paper is studied, based on the calculation model of plansifter SPP 618 A. the influence of the elastic suspending rods on the circular movement described by the plansifter. The operating regime of the plansifter must transmit to the material an adequate relative motion that should meet the requirements of a good separation. Thus, each grid point of the plansifter must describe a circle of radius equal to the eccentricity between the vertical long axis of the plansifter and the short axis of the counterweights. For usual construction of plansifters, the radius of the described circle has the value of r = 45 mm. Based on the calculation model, we determined the own pulsations, the stiffness of the suspending system and thus the radius of the circle described by the movement of the plansifter. This study was conducted in order to establish dependencies between dimensions of elastic rods and materials they are made of and the radius of the circle described by the movement of the plansifter.

Keywords: plansifter, circular plan motion, eccentricity, suspension rods, elastic elements.

INTRODUCTION

The use of plansifters for sifting intermediate products, resulted in the milling process is known for over a century, during which time they have undergone many changes to improve product quality, production capacity, specific charging and reducing energy consumption. The principle of sifting was preserved regardless the type of construction of the plansifters. The plansifter assembly consists of several overlapped sieves, which are simultaneously put in motion by an oscillating mechanism, determining a circular plan motion to sieving surfaces. The plansifter offers the possibility of sorting a mixture of milled products into several fractions of the same particle size or appropriate granulations. The relative movement of the material on plansifter is ensured by transmitting to the sieve a circular motion by using a crank type mechanism. The operating regime of the plansifter must transmit to the material an adequate relative movement that should meet the requirements of a good separation [3].

The efficiency of the sifting process on sieve is ensured by a relative movement in both ways without the detachment of the material. At the same time, the material on the sieve must have a forward movement to the opposite end of feeding, to allow the discharge of the material. In order to achieve quality in sifting, the plansifter vibration parameters (amplitude and frequency) must be correlated with other parameters so as to be, simultaneously, achieved the required values for the height and the length of the material grain jumps on the sieve [2].

Most often, the vibration generator is composed of

Rezumat: În această lucrare este studiată, pe baza modelului de calcul al sitei plane SPP 618 A. influenta tijelor elastice de suspendare asupra miscării circulare descrise de sita plană. Regimul de functionare al sitei trebuie să asigure materialului o miscare relativă corespunzătoare care să îndeplinească cerințele unei bune separări. Astfel, fiecare punct al sitei plane trebuie să descrie un cerc de rază egală cu excentricitatea dintre axul lung vertical al sitei plane și axul scurt al contragreutăților. Pentru construcții uzuale de sită plană raza cercului descris are valoarea r = 45 mm. Pe baza modelului de calcul au fost determinate pulsatiile proprii, rigiditatea sistemului de suspendare și, implicit, raza cercului descris de miscarea plan circulară a sitei. Acest studiu a fost realizat în vederea stabilirii unei dependente între dimensiunile și materialele din care sunt confecționate tijele elastice și raza cercului descris de miscarea sitei plane.

Cuvinte cheie: sita plană, mişcare plan circulară, excentricitate, tije de suspendare, elemente elastice.

INTRODUCERE

Folosirea sitelor plane pentru cernerea produselor intermediare, rezultate în procesul de măcinare este cunoscută de peste un secol, timp în care acestea au suferit numeroase modificări pentru a îmbunătătii calitatea produselor, capacitatea de producție, încărcarea specifică și reducerea consumului de energie. Principiul de cernere a fost păstrat indiferent de tipul constructiv al sitei. Ansamblul sită plană este formată din mai multe site așezate suprapus, care sunt acționate simultan de un mecanism liber oscilant, imprimând suprafețelor de cernere, o mişcare plan circulară. Sita plană oferă posibilitatea sortării unui amestec de produse măcinate în mai multe fracțiuni de aceeași granulație sau de granulații apropiate. Deplasarea relativă a materialului pe sita plană se asigură imprimând sitei o miscare circulară cu ajutorul unui mecanism de tip bielă-manivelă (cel mai des întâlnit). Regimul de funcționare al sitei trebuie să imprime materialului o miscare relativă corespunzătoare care să îndeplinească cerințele unei bune separări [3].

Mişcarea relativă care asigură desfăşurarea eficientă a procesului de separare pe sită este cel de deplasare relativă în ambele sensuri fără desprindere. Totodată materialul de pe sită trebuie să aibă o mişcare de înaintare către capătul opus alimentării, pentru a permite evacuarea refuzului. Pentru a realiza o cernere de calitate, trebuie ca parametrii vibrațiilor sitei (amplitudine şi frecvență) să fie corelați cu ceilalți parametri, astfel încât să se realizeze simultan valorile necesare pentru înălțimea şi lungimea saltului granulelor de material pe sită [2].

Cel mai adesea, generatorul de vibrații se compune dintr-un motor electric cu flanșă și șaibă de antrenare. an electric motor with flange and a driving sheave.

The motor assembly is fitted in the interior of the central frame through a metal plate which allows the displacement of the entire system through V-belts, which ensure transmission of the motion from the drive shaft to the axis of the central mechanism for generating the rotational movement of the sieve, [1]. To achieve circular vibration and thus a circular movement, it takes only one vibration generator placed at the bottom of the plansifter.

Each grid point of the plansifter must describe a circle of radius equal to the eccentricity between the vertical long axis of the plansifter and the short axis of the counterweights in order to achieve a good separation of the product in question [5]. For usual construction of plansifters, the radius of the described circle, r = 45 mm [5]. The sieves block are suspended by a frame mounted on the ceiling by means of suspending rods that are made from different materials (e.g. elastic reed, bamboo, boiled beech, glass fiber etc.).

MATERIAL AND METHOD

The plansifter SPP 618 A has 24 elastic suspension rods, divided by 6 in 4 attachment points that are supporting the sieves block with a weight of approximately 3935 kg and is shown in Figure 1. The suspending rods were made of fiber glass and had a length of about 1585 mm.

The plansifter SPP 618 A is equipped with a vibration generator having a mass $m_0 = 345$ kg. Its revolution speed is n = 220 [rev/min] and eccentricity e = 260 mm. The plansifter SPP 618 A with square frames has 6 compartments. It sums up a large number of overlapping screening surfaces (18 pcs.) that are put into motion simultaneously with a weight of M = 3935 kg.

Ansamblul motor este fixat în interiorul cadrului central prin interiorul unei plăci metalice care permite deplasarea întregului sistem prin intermediul curelelor trapezoidale, ce asigură transmiterea mişcării de la arborele motor la axul mecanismului central de generare a mişcării de rotație a sitei, [1]. Pentru realizarea unor vibrații circulare și, implicit, a unei mişcări circulare, este nevoie de un singur generator de vibrații amplasat la partea inferioară a cadrului sitei.

Fiecare punct al sitei plane trebuie să descrie un cerc de rază egală cu excentricitatea dintre axul lung vertical al sitei plane și axul scurt al contragreutăților pentru a obține o bună separare pentru produsul în cauză, [5]. Pentru construcții uzuale de sită plană raza cercului descris, r =45 mm, [5]. Blocul cu site este suspendat de un schelet montat pe tavan cu ajutorul tijelor de suspendare elastice care pot fi confecționate din diferite materiale (ex. trestie, bambus, fag fiert, fibra de sticlă etc.).

MATERIAL ȘI METODĂ

Sita plană SPP 618 A prezintă 24 de tije elastice de suspendare, repartizate câte 6 în 4 puncte de prindere care susțin blocul de site cu o greutatea de aproximativ 3935 kg și este prezentată în Figura 1. Tijele de suspendare au fost confecționate din fibră de sticlă și au o lungime de aproximativ 1585 mm.

Sita plană SPP 618 A, este echipată cu un generator de vibrații cu o masă m_0 = 345 kg. Turația acestuia este de n = 220 rot/min, iar ecentricitatea e = 260 mm. Sita plană cu rame pătrate SPP 618 face parte din grupa sitelor plane cu 6 compartimente. Ea însumează un număr mare de suprafețe de cernere suprapuse (18 buc.) puse în mișcare simultan și au o greutate M = 3935 kg.

Fig.1 - The plansifter SPP 618 A with square frames [3]

The method used is based on the calculation model of the plansifter and graphical representation of motion described by the plansifter according to Figure 2. For the application of the calculation model (see Figure 2b) it was based on the following considerations:

- The location of the center of mass C_M of the sieves block and the center of mass C_{m0} of vibration generator is symmetrical about the position of the center of mass of the whole system, *C* (see Figure 2-a);
- The two centers of mass are moving on concentric circles centered in *C*, equilibrating the sifting system (see Figure 2-a);
- It is neglected the effect of elastic elements

Metoda utilizată are la bază modelul de calcul al sitei plane, precum și reprezentarea grafică a mișcării descrise de sita plană în conformitate cu Figura 2. Pentru aplicarea modelului de calcul (v. Figura 2-b) s-a pornit de la următoarele considerente:

- poziția centrului de masa al blocului de site C_M și centrul de masa al generatorului de vibrații C_{m0} se află în poziție simetrică cu poziția centrului de masa al întregului sistem, C (v. Figura 2-a);
- cele două centre de masă se deplasează pe cercuri concentrice cu centrul în *C*, echilibrând sistemul de cernere (v. Figura 2-a);
- este neglijat efectul de masă a elementelor

- mass and their nonlinear effects;
- The amplitude of the plansifter vibrations is approximated as being the radius of the circle described by its own circular motion.

a) The trajectory described by the center of mass $C_{\rm M}$ of the sieves block and the center of mass $C_{\rm m0}$ of vibration generator

elastice și efectele lor neliniare;

amplitudinea vibrațiilor sitei plane este aproximată ca fiind raza cercului descris de mişcarea circulară a sitei plane.

b) The calculation model of the plansifter SPP 618 A

The differential equations of motion for the model in Figure 2 were determined in paper [5], where was shown that each point of the plansifter describes a circle of radius equal to the amplitude of vibration A_0 (calculated with relation 1).

Ecuațiile diferențiale ale mișcării pentru modelul din Figura 2 au fost determinate în lucrarea [5], unde s-a demonstrat faptul că fiecare punct al sitei plane descrie un cerc de rază egală cu amplitudinea vibrațiilor A_0 (calculată cu relația 1).

$$A_0 = \frac{\frac{F_0}{k}}{\left|1 - \left(\frac{\omega}{\omega_0}\right)^2\right|} \tag{1}$$

where, $F_0 = m_0 \cdot e \cdot \omega^2$ is the inertia force of the vibration generator, [N], m_0 is the mass of the vibration generator, [kg], e eccentricity of the vibration generator, [mm], $\omega = \frac{\pi \cdot n}{30}$ is the angular velocity of the vibration generator, [rad/s], n is the revolution speed of the vibration generator, [rad/s], n is the revolution speed of the vibration generator, [rot/min], $k = z \cdot \frac{12 \cdot E \cdot I}{l^3}$ is the suspending system, [N/m], z is the number of the elastic suspending rods, E is the elasticity modulus, [N/mm²], $I = \frac{\pi \cdot d^4}{64}$ is the axial inertia moment of the rod, [mm⁴], d represent the diameter of the elastic rod, [mm], l is the length of the elastic rod, [mm], $\omega_0^2 = \frac{k}{M + m_0}$ is the own pulsation of the system,

[rad/s] and Mis the mass of the sieves block, [kg].

RESULTS

It is noted that the stiffness of the suspending system might influence the radius of the circle described by the movement of the plansifter. To determine this influence we calculated the amplitude of vibration of SPP 618 A plansifter for elastic suspension rods made of different materials and of different sizes. The materials used in the simulation for the elastic suspension rods are shown in Table 1. în care, $F_0 = m_0 \cdot e \cdot \omega^2$ este forța de inerție a generatorului de vibrații, [N], m_0 este masa generatorului de vibrații, [kg], e este excentricitatea generatorului de vibrații, [mm], $\omega = \frac{\pi \cdot n}{30}$ este viteza unghiulară a generatorului de vibrații, [rad/s], n este turația generatorului de vibrații, [rad/s], n este turația generatorului de vibrații [rot/min], $k = z \cdot \frac{12 \cdot E \cdot I}{l^3}$ este rigiditatea sistemului de suspendare, [N/m], z este numărul de tije elastice de suspendare, E este modulul de elasticitate [N/mm²], $I = \frac{\pi \cdot d^4}{64}$ este momentul de inerție axial al tijei de suspendare, [mm⁴], d reprezintă diametrul tijei elastice [mm], l este lungimea tijelor de suspendare, [mm], $\omega_0^2 = \frac{k}{M + m_0}$ este pulsația proprie a sistemului, [rad/s] iar M este greutatea blocului de site [kg].

REZULTATE

Se observă faptul că rigiditatea sistemului de suspendare ar putea influența raza cercului descris de mişcarea sitei plane. Pentru a determina această influență am calculat amplitudinea vibrațiilor sitei plane SPP 618 A, pentru tijele elastice de suspendare confecționate din diferite materiale și de diferite dimensiuni. Materialele folosite în studiu, sunt prezentate în Tabelul 1.

Table 1

Material	Density [kg/m³]	Poisson ratio	Elastic Modulus [MPa]	Damping					
Boiled beech	760	0,20,394	10000	0.194					
Fiber glass	2550	0,210,23	80000	0.02					
Bamboo	600	0,220,31	16170	0.2					

Characteristics of the materials used in study

For these, we calculated the stiffness of the suspending system, k and amplitude of vibration, A_0 using relation (1). The results have been listed in Table 2 and Table 3.

Pentru aceasta s-a calculat rigiditatea sistemului de suspendare k și amplitudinea vibrațiilor A_0 cu ajutorul relației (1). Rezultatele obținute sunt prezentate in Tabelul 2 și Tabelul 3.

Table 2

The s	stiffness	and the	vibration	amplitude	e for rod	s with Φ	12 and Φ	14 diameter
-------	-----------	---------	-----------	-----------	-----------	----------	----------	-------------

		The diameter of elastic rods								
	Elastic	[mm]								
Material		d = 12				d = 14				
	length	Suspending	Own	Pulsation	Vibration	Suspending	Own	Pulsation	Vibration	
	[mm]	stiffness	pulsation	ratio	amplitude	stiffness	pulsation	ratio	amplitude	
		k [NI/m]	ω [red/o]	ω/ω ₀	A ₀	k [N/m]	ω [red/o]	ω/ω ₀	A ₀	
	1005	1381.754		40.550				00 70 4		
	1285	1103 547	0.568	40.550	20.970	2559.558	0.773	29.794	20.981	
	1385	905 294	0.508	45.374	20.968	2044.208	0.691	33.338	20.977	
	1485	090.204	0.457	50.376	20.966	1658.422	0.622	37.013	20.973	
Boiled	1585	736.296	0.415	55.549	20.965	1363.912	0.565	40.814	20.970	
Beech	1685	612.831	0.378	60.888	20.963	1135.206	0.515	44.737	20.968	
	1785	515.496	0.347	66.388	20.962	954.904	0.472	48.778	20.967	
	1885	437.730	0.320	72.045	20.962	810.849	0.435	52.934	20.965	
	1985	374.851	0.296	77.853	20.961	694.373	0.403	57.202	20.964	
	1285	11054.036	1.607	14.337	21.060	20476.461	2.187	10.534	21.148	
	1385	8828.378	1.436	16.042	21.039	16353.660	1.955	11.787	21.110	
	1485	7162.273	1.294	17.811	21.024	13267.373	1.761	13.086	21.081	
Fiber	1585	5890.368	1.173	19.640	21.012	10911.300	1.597	14.430	21.059	
glass	1685	4902.646	1.070	21.527	21.003	9081.646	1.457	15.817	21.042	
	1785	4123.971	0.982	23.472	20.996	7639.231	1.336	17.246	21.028	
	1885	3501.839	0.905	25.472	20.990	6486.796	1.231	18.715	21.018	
	1985	2998.808	0.837	27.525	20.985	5554.983	1.139	20.224	21.009	
	1285	2234.297	0.723	31.888	20.978	4138.805	0.983	23.430	20.996	
	1385	1784.436	0.646	35.682	20.974	3305.484	0.879	26.217	20.988	
	1485	1447.675	0.582	39.616	20.971	2681.668	0.792	29.107	20.982	
Bamboo	1585	1190.591	0.527	43.684	20.969	2205.446	0.718	32.096	20.978	
Damboo	1685	990.947	0.481	47.883	20.967	1835.628	0.655	35.181	20.975	
	1785	833.558	0.441	52.208	20.965	1544.080	0.601	38.359	20.972	
	1885	707.809	0.407	56.656	20.964	1311.144	0.553	41.627	20.970	
	1985	606.134	0.376	61.224	20.963	1122.801	0.512	44.983	20.968	

Table 3

٦

The stiffness and the vibration amplitude for rods with d 16 and d 18 diameter

	Elastic rod length [mm]	[mm]								
Motorial			d ='	16		d = 18				
		I = 3217 mm ⁴				I = 5153 mm ⁴				
Waterial		Suspending stiffness	Own pulsation	Pulsation ratio	Vibration amplitude	Suspending stiffness	Own pulsation	Pulsation ratio	Vibration amplitude	
		k	. ω	ω/ω ₀	A0	k	. ω	ω/ω ₀	A0	
		[N/m]	[rad/s]		[mm]	[N/m]	[rad/s]		[mm]	
Boiled	1285	4366.507	1.010	22.811	20.998	6994.284	1.278	18.023	21.022	
Beech	1385	3487.339	0.903	25.525	20.990	5586.031	1.142	20.168	21.009	

		The diameter of elastic rods								
		[mm]								
	Elastic		d ='	16			d =	18		
Material	rod	l = 3217 mm⁴				I = 5153 mm ⁴				
Waterial	length	Suspending	Own	Pulsation	Vibration	Suspending	Own	Pulsation	Vibration	
	[mm]	stiffness	pulsation	ratio	amplitude	stiffness	pulsation	ratio	amplitude	
		k	ω	ω/ω ₀	A ₀	k	ω	ω/ω ₀	A ₀	
		[N/m]	[rad/s]		[mm]	[N/m]	[rad/s]		[mm]	
	1485	2829.204	0.813	28.338	20.984	4531.826	1.029	22.391	21.000	
	1585	2326.782	0.737	31.248	20.979	3727.047	0.933	24.690	20.992	
	1685	1936.617	0.673	34.252	20.976	3102.079	0.851	27.063	20.986	
	1785	1629.029	0.617	37.346	20.973	2609.384	0.781	29.508	20.982	
	1885	1383.278	0.569	40.527	20.970	2215.739	0.720	32.022	20.978	
	1985	1184.574	0.526	43.795	20.969	1897.453	0.666	34.603	20.975	
	1285	34932.056	2.857	8.065	21.285	55954.270	3.616	6.372	21.487	
	1385	27898.716	2.553	9.024	21.218	44688.245	3.231	7.130	21.378	
	1485	22633.628	2.300	10.019	21.169	36254.612	2.910	7.916	21.298	
Fiber	1585	18614.258	2.085	11.048	21.131	29816.373	2.639	8.729	21.236	
glass	1685	15492.939	1.903	12.110	21.102	24816.635	2.408	9.568	21.189	
	1785	13032.234	1.745	13.204	21.079	20875.071	2.208	10.433	21.152	
	1885	11066.224	1.608	14.329	21.060	17725.911	2.035	11.321	21.123	
	1985	9476.588	1.488	15.484	21.046	15179.626	1.883	12.234	21.099	
	1285	7060.642	1.284	17.938	21.023	11309.757	1.626	14.174	21.063	
	1385	5639.028	1.148	20.073	21.010	9032.611	1.453	15.860	21.041	
Bamboo	1485	4574.822	1.034	22.285	21.000	7327.963	1.308	17.608	21.026	
	1585	3762.407	0.938	24.574	20.992	6026.634	1.187	19.416	21.013	
	1685	3131.510	0.855	26.936	20.987	5016.062	1.083	21.283	21.004	
	1785	2634.140	0.785	29.369	20.982	4219.374	0.993	23.205	20.997	
	1885	2236.761	0.723	31.871	20.978	3582.850	0.915	25.182	20.991	
	1985	1915.455	0.669	34.440	20.975	3068.182	0.847	27.212	20.986	

In addition, we notice that the stiffness of the suspending system decreases proportionally with increasing length of elastic rods. In Figure 3 is represented graphically the variation of vibration amplitude with diameter of elastic rod made of boiled beech for its length values.

De asemenea, observăm că rigiditatea sistemului de suspendare scade direct proporțional cu creșterea lungimii tijelor elastice. În Figura 3 este reprezentată grafic variația amplitudinii vibrației cu diametrul tijei elastice confecționată din fag fiert pentru valorile lungimii acesteia.

→ l=1285 mm → l=1485 mm → l=1.585 mm → l=1.785 mm ↓=1385 mm → l=1.585 mm → l=1.685 mm → l=1.885 mm

Fig.3 - The variation of vibration amplitude with the diameter of elastic rod made of boiled beech for its length values

The final relation that describes the amplitude dependence of the system parameters is represented by:

Relația finală care descrie dependența amplitudinii funcție de parametrii sistemului este reprezentată de:

$$A_{0} = \frac{m_{0} \cdot e \cdot \omega^{2}}{\left|\frac{12 \cdot \pi \cdot z \cdot E \cdot d^{4}}{64 \cdot l^{3}} - (M + m_{0})\omega^{2}\right|}$$
(2)

In Figure 4 is shown the variation of the amplitude of vibration with the length and the diameter of the elastic rod made of beech boiled. The step along the length of the rod is 0.1 m, the length considered: between 1 and 2

În figura 4 este reprezentată variația amplitudinii sitei cu diametrul și cu lungimea tijei confecționată din fag fiert. Pasul în lungimea tijei este de 0.1 m, lungimea m. The step in the diameter of the rod is 0.001 m, the diameter considered: between 0.01 and 0.03 m.

considerată: între 1 și 2 m. Pasul în diametrul tijei este 0.001 m, diametrul considerat: între 0.01 și 0.03 m.

The length of the elastic rod, divisions

Fig.4 - The variation of vibration amplitude with diameter and the length of elastic rod made of boiled beech

CONCLUSIONS

From the obtained results it is noted that the stiffness of the elastic suspending system has influenced in small amount the radius of the circle described by the movement of the plansifter.

In Figure 3 can be noted that the amplitude of vibration, has remained constant around the value of 21 mm for all cases we studied.

From Figure 4 is seen that the amplitude of the vibration increases with rod diameter increasing and decreases along with the length of the rod. For the model we studied it is observed that each grid point of the plansifter has described a circle of radius 21 mm, which is concentric with the circle described by the movement of the vibration generator radius of 260 mm.

The study establishes a dependence between the stiffness the suspending system and the circular movement described by the plansifter and provides important data on the construction of plansifter.

REFERENCES

 [1]. Constantin G. A., Moise V., Voicu Gh., Ştefan E.M.,
(2013) - Structural model for an actuation mechanism of plansifters in wheat mills, Proceedings of the 41th.
International symposium on agricultural engineering, Opatija, Croatia, pp.268-278;

[2]. Ene Gh., Sima T., (2013) – Aspects of sifting materials on vibrating screeners II, Synthesis of theoretical and applied mechanics, vol. 4, no. 2, Bucharest;

[3]. Găgeanu P., (2001) – Research on assimilating in manufacturing of plansifters with square frames of highyield from medium and high capacity wheat mills, INMA Bucharest.

[4]. Radeş M., (2008) – *Mechanical vibrations*, Printech Publisher, Bucharest;

[5]. Voicu G., Constantin G.A., Plosceanu B., Stefan E.M., Voicu P., Stoica D., (2015) – *Vibratory movement analysis of plansifters from milling plants*, Actual Tasks on Agricultural Engineering, Opatija, Croatia, pp.24-27.

CONCLUZII

Din rezultatele obținute se observă că rigiditatea sistemului elastic de suspendare influențează în mică măsură raza cercului descris de mişcarea circulară a sitei plane.

Din Figura 3 se observă că amplitudinea vibrațiilor, rămâne constantă în jurul valorii de 21 mm pentru toate cazurile studiate.

Din Figura 4 se observă că amplitudinea vibrației crește cu creșterea diametrului tijei și scade odată cu creșterea lungimii tijei . Pentru modelul studiat se observă ca fiecare punct al sitei plane descrie în mișcare un cerc de rază 21 mm, cerc care este concentric cu cel descris de mișcarea generatorului de vibrații cu raza de 260 mm.

Studiul realizat stabilește o dependență între rigiditatea sistemului de suspendare și mișcarea circulară descrisă de sita plană și furnizează date importante referitoare la construcția sitelor plane.

BIBLIOGRAFIE

[1]. Constantin G. A., Moise V., Voicu Gh., Ștefan E.M., (2013) – *Model structural pentru un sistem de acționare de la sitele plane din industria morăritului*, Lucrările simpozionului internațional nr. 41, în Ingineria agricolă, Opatija, Croatia, pag. 268-278;

[2]. Ene Gh., Sima T., (2013) – Aspecte privind cernerea materialelor pe ciururile vibratoare II, Sinteze de Mecanica Teoretica si Aplicata, vol. 4, nr. 2, Bucureş ti;

[3]. Găgeanu P., (2001) – Cercetări privind asimilarea în fabricație a sitelor plane cu rame pătrate de mare randament din morile de grâu de medie și mare capacitate, INMA București.

[4]. Radeş M., (2008) – *Vibrații mecanice*, Editura Printech, Bucuresti;

[5]. Voicu G., Constantin G.A., Plosceanu B., Ştefan E.M., Voicu P., Stoica D., (2015) – *Analiza mişcării vibratorii a sitelor plane din industria morăritului*, Activități actuale privind ingineria agricolă, Opatija, Croatia, pag.24-27.