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Abstract

In this paper, we introduce a new class of bivariate distributions called the bivariate exponentiated extended Weibull distributions.
The model introduced here is of Marshall- Olkin type. This new class of bivariate distributions contains several bivariate lifetime
models. Some mathematical properties of the new class of distributions are studied. We provide the joint and conditional
density functions, the joint cumulative distribution function and the joint survival function. Special bivariate distributions
are investigated in some detail. The maximum likelihood estimators are obtained using the EM algorithm. We illustrate the
usefulness of the new class by means of application to two real data sets.
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1 Introduction

The Weibull distribution has assumed a prominent po-
sition as statistical model for data from reliability, en-
gineering and biological studies (McCool, 2012). The
Weibull distribution is a reasonable choice due to its
negatively and positively skewed density shapes. How-
ever, this distribution is not a good model for describing
phenomenon with non-monotone failure rates, which
can be found on data from applications in reliability
studies. Thus, extended forms of the Weibull model
have been sought in many applied areas. As a solution
for this issue, the inclusion of additional parameters to
a well-defined distribution has been indicated as a good
methodology for providing more flexible new classes of
distributions.

The class of extended Weibull (EW) distributions pio-
neered by Gurvich et al. (1997) has achieved a prominent
position in lifetime models. Its cumulative distribution
function (cdf) is given by

G (x; λ, ξ) = 1 − e−λH(x;ξ), x > 0, λ > 0, (1)

where H(x; ξ) is a non-negative monotonically increas-
ing function which depends on the parameter vector ξ.
The corresponding probability density function (pdf) is
given by

g (x; λ, ξ) = λh (x; ξ) e−λH(x;ξ), x > 0, λ > 0, (2)

where h (x; ξ) is the derivative of H(x; ξ). We emphasize
that several distributions could be expressed in the form
(1). Table 1 summarizes several of these models. Further,
we refer the reader to Nadarajah and Kotz (2005) and
Pham and Lai (2007).

In recent years, many authors worked on this class of
distributions such as the beta extended Weibull family by
Cordeiro et al. (2012), the extended Weibull power series
distributions by Silva et al. (2013), the complementary
extended Weibull power series class of distributions by
Cordeiro and Silva (2014), the Marshall-Olkin extended
Weibull family of distributions by Santos-Neto et al.
(2014) and the exponentiated extended Weibull power
series class of distributions by Tahmasebi and Jafari
(2015).

The aim of this paper is to introduce a new bivari-
ate exponentiated extended Weibull (BEEW) family of
distributions, whose marginals are exponentiated ex-
tended Weibull (EEW) distributions. It is obtained using
a method similar to that used to obtain Marshall-Olkin
bivariate exponential model (Marshall and Olkin, 1967).
The proposed BEEW class of distributions is constructed
from three independent EEW distributions using a max-
imization process. Creating a bivariate distribution with
given marginals using this technique is nothing new.

The joint cdf can be expressed as a mixture of an abso-
lutely continuous cdf and a singular cdf. The joint pdf
of the BEEW distributions can take different shapes and
the cdf can be expressed in a compact form. The joint
cdf, the joint pdf and the joint survival function (sf) are
in closed forms, which make it convenient to use in prac-
tice. The new class of bivariate distributions contains
as special models the bivariate generalized exponential
(Kundu and Gupta, 2009), bivariate generalized linear
failure rate (Sarhan et al., 2011), bivariate generalized
Gompertz (El-Sherpieny et al., 2013), bivariate expo-
nentiated generalized Weibull-Gompertz (El-Bassioun
et al., 2015), bivariate exponentiated modified Weibull
extension (El-Gohary and El-Morshedy, 2015) distribu-
tions. This class defines at least 46 (2 × 23) bivariate
sub-models as special cases.

The usual maximum likelihood estimators can be
obtained by solving non-linear equations in at least five
unknowns directly, which is not a trivial issue. To avoid
difficult computation we treat this problem as a miss-
ing value problem and use the EM algorithm, which
can be implemented more conveniently than the direct
maximization process. Another advantage of the EM al-
gorithm is that it can be used to obtain the observed
Fisher information matrix, which is helpful for con-
structing the asymptotic confidence intervals for the
parameters. Alternatively, it is possible to obtain approx-
imate maximum likelihood estimators by estimating the
marginals first and then estimating the dependence pa-
rameter through a copula function, as suggested by (Joe,
1997, Chapter 10), which has the same rate of conver-
gence as the maximum likelihood estimators. This is
computationally less involved compared to the MLE cal-
culations. This approach is not pursued here. Although
in this paper we mainly discuss the BEEW, many of our
results can be easily extended to the multivariate case.

The main reasons for introducing this new class of
bivariate distributions are: (i) This class of distributions
is an important model that can be used in a variety
of problems in modeling bivariate lifetime data. (ii) It
provides a reasonable parametric fit to skewed bivariate
data that cannot be properly fitted by other distributions.
(iii) The joint cdf and joint pdf should preferably have a
closed form representation; at least numerical evaluation
should be possible. (v) This class contains several special
bivariate models because of the general class of Weibull
distributions and the fact that the current generalization
provides means of its bivariate continuous extension to
still more complex situations; therefore it can be applied
in modeling bivariate lifetime data.

The rest of the paper is organized as follows. We
define the EEW and the BEEW class of distributions
in Section 2. Different properties of this family are
discussed in this section. The special cases of the BEEW
model are considered in Section 3. The EM algorithm
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Table 1: Special cases of EW distributions and corresponding H(x; ξ) function
Distribution Support H (x; ξ) λ ξ Reference
Exponential x ≥ 0 x λ ∅ Johnson et al. (1995)
Pareto x = k log(x/k) λ k Johnson et al. (1995)
Gompertz x ≥ 0 c−1 [exp (cx)− 1] λ c Gompertz (1825)
Weibull x ≥ 0 xγ λ γ Fréchet (1927)
Fréchet x ≥ 0 x−γ λ γ Fréchet (1927)
Lomax x ≥ 0 log(1 + x) λ ∅ Lomax (1954)
Weibull Kies 0 < µ < x < σ (x − µ)b1 /(σ − x)b2 λ (µ, σ, b1, b2) Kies (1958)
Log-logistic x ≥ 0 log(1 + xc) λ c Fisk (1961)
Linear failure rate x ≥ 0 ax + bx2/2 1 (a, b) Barlow (1968)
Log-Weibull −∞ < x < ∞ exp[(x − µ)/σ] 1 (µ, σ) White (1969)
Exponential power x ≥ 0 exp((cx)a − 1) 1 (a, c) Smith and Bain (1975)
Burr XII x ≥ 0 log(1 + xc) λ c Rodriguez (1977)
Rayleigh x ≥ 0 x2 λ ∅ Rayleigh (1880)
Phani 0 < µ < x < σ [(x − µ)/(σ − x)]b λ (µ, σ, b) Phani (1987)
Additive Weibull x ≥ 0 (x/β1)

α1 + (x/β2)
α2 1 (α1, α2, β1, β2) Xie and Lai (1995)

Chen x ≥ 0 exp(xb − 1) λ b Chen (2000)
Pham x ≥ 0 (ax)β − 1 1 (a, β) Pham (2002)
Weibull extension x ≥ 0 c

[
exp(cx)b − 1

]
λ (γ, b, c) Xie et al. (2002)

Modified Weibull x ≥ 0 xγexp(cx) λ (γ, c) Lai et al. (2003)
Traditional Wibull x ≥ 0 xdexp(cxa − 1) λ (a, b, c) Nadarajah and Kotz (2005)

Generalized Weibull power x ≥ 0 [1 + (x/a)b]
c
− 1 1 (a, b, c) Nikulin and Haghighi (2006)

Flexible Weibull extension x ≥ 0 exp (α1x − β1/x) 1 (α1, β1) Bebbington et al. (2007)
Almalki Additive Weibull x ≥ 0 axθ + bxγecx 1 (a, b, c, θ, γ) Almalki and Yuan (2013)

Table 2: The MLE’s, log-likelihood, AIC, AICC, BIC, K-S, and LRT statistics for six sub-models of BEEW distribution
of first data set.

Distribution
Statistic BGE BGLFR BEW BGG BEWG BEMWE

α̂1 1.4452 0.4920 0.2179 0.6596 0.2474 0.1574
(s.e.) (0.4160) (0.0810) (0.6663) (0.2559) (0.1185) (0.2276)

α̂2 0.4681 0.1661 0.0770 0.2366 0.0896 0.0573
(s.e.) (0.1879) (0.0535) (0.2219) (0.1093) (0.0498) (0.0833)

α̂3 1.1704 0.4110 0.1880 0.5821 0.2223 0.1419
(s.e.) (0.2866) (0.0331) (0.3446) (0.1964) (0.1016) (0.2009)

λ̂ 0.0390 — 1.914e-4 0.0098 0.1622 0.0246
(s.e.) (0.0056) — (1.83e-5) (0.0061) (0.6398) (0.0526)

β̂ — 1.990e-4 3.7136 0.0304 0.4168 85.9181
(s.e.) — 1.237e-4 (0.2811) (0.0112) (0.9648) (34.1193)

γ̂ — 7.971e-4 — — 2.624e-5 4.5054
(s.e.) — 1.497e-4 — — 7.304e-5 (2.0339)

δ̂ — — — — 2.4645 —
(s.e.) — — — — (0.5969) —

−log(�) 296.901 293.376 291.681 291.855 291.132 290.981
AIC 601.801 596.752 593.361 593.710 596.263 593.962

AICC 603.051 598.688 595.297 595.646 600.125 596.762
BIC 608.245 604.807 601.416 601.765 607.540 603.628

K-S (X1) 0.1034 0.07082 0.0962 0.1042 0.1140 0.1182
(p-value) (0.8240) (0.9925) (0.8829) (0.8157) (0.7218) (0.6789)
K-S (X2) 0.1001 0.0968 0.1167 0.1243 0.1196 0.1187
(p-value) (0.8527) (0.8786) (0.6939) (0.6161) (0.6644) (0.6738)

K-S (max(X1, X2) ) 0.1431 0.1104 0.0942 0.0984 0.1272 0.1366
(p-value) (0.4344) (0.7574) 0.8978 (0.8661) (0.5865) (0.4940)

LRT — 7.050 10.440 10.092 11.538 11.840
(p-value) — (0.0079) (0.0012) (0.0015) (0.0091) (0.0026)

Ciência e Natura, v. 38 2, 2016, p. 564–576 566

to compute the MLEs of the unknown parameters is
provided in Section 4. The analysis of two real data sets
are provided in Section 5. Finally, we conclude the paper
in Section 6.

2 The BEEW model

In this section, we introduce the BEEW distributions us-
ing a method similar to that which was used by Marshall
and Olkin (1967) to define the Marshall Olkin bivariate
exponential (MOBE) distribution.

First, consider the univariate EEW class of distribu-
tions with cdf given by

FEEW (x; α, λ, ξ) =
(

1 − e−λH(x;ξ)
)α

, x > 0, α > 0, λ > 0.
(3)

The corresponding pdf is

fEEW (x; α, λ, ξ) = αλ h (x; ξ) e−λH(x;ξ)
(

1 − e−λH(x;ξ)
)α−1

.
(4)

From now on a EEW class of distributions with the
shape parameter α, the scale parameter λ and parame-
ter vector ξ will be denoted by EEW(α, λ, ξ). Note that
many well-known models could be expressed in the
form (3), such as exponentiated Weibull (Mudholkar
and Srivastava, 1993), generalized exponential (Gupta
and Kundu, 1999), Weibull extension (Chen, 2000), gen-
eralized Rayleigh (Surles and Padgett, 2001; Kundu and
Raqab, 2005), modified Weibull extension (Xie et al.,
2002), generalized modified Weibull (Carrasco et al.,
2008) generalized linear failure rate (Sarhan and Kundu,
2009), generalized Gompertz (El-Gohary et al., 2013),
and exponentiated modified Weibull extension (Sarhan
and Apaloo, 2013) distributions.

When α is a positive integer, the EEW model can
be interpreted as the lifetime distribution of a parallel
system consisting of α independent and identical units
whose lifetime follows the EEW distributions.

From now on unless otherwise mentioned, it is as-
sumed that α1 > 0; α2 > 0; α3 > 0 and λ > 0. Sup-
pose U1 ∼ EEW(α1, λ, ξ), U2 ∼ EEW(α2, λ, ξ) and U3 ∼
EEW(α3, λ, ξ) and they are mutually independent. Here
“∼” means follows or has the distribution. Now de-
fine X1 = max{U1, U3} and X2 = max{U2, U3}. Then,
we say that the bivariate vector (X1, X2) has a bivari-
ate exponentiated extended Weibull distribution with
the shape parameters α1, α2 and α3, the scale param-
eter λ and parameter vector ξ. We will denote it by
BEEW(α1, α2, α3, λ, ξ). Before providing the joint cdf or
pdf, we first mention how it may occur in practice.

According to Kundu and Gupta (2009), suppose a
system has two components and it is assumed that each
component has been maintained independently and also
there is an overall maintenance. Due to component

maintenance, suppose the lifetime of the individual com-
ponent is increased by Ui amount and because of the
overall maintenance, the lifetime of each component is
increased by U3 amount. Therefore, the increased life-
times of the two component are X1 = max{U1, U3} and
X2 = max{U2, U3}, respectively.

We now study the joint cdf of the bivariate random
vector (X1, X2) in the following theorem.

Theorem 2.1. If (X1, X2) ∼BEEW(α1, α2, α3, λ, ξ), then
the joint cdf of (X1, X2) for x1 > 0, x2 > 0, is

FBEEW (x1, x2) =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2

× (1 − e−λH(z;ξ))
α3 , (5)

where z = min{x1, x2}.

Proof. Since the joint cdf of the random variables X1 and
X2 is defined as

FBEEW (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (max {U1, U3} ≤ x1,

max {U2, U3} ≤ x2)

= P(U1 ≤ x1, U2 ≤ x2, U3 ≤
min(x1, x2)).

As the random variables Ui, (i = 1, 2, 3) are mutually
independent, we directly obtain

FBEEW(x1, x2; α1, α2, α3, λ, ξ) = FEEW(x1; α1, λ, ξ)

×FEEW(x2; α2, λ, ξ)FEEW(z; α3, λ, ξ). (6)

Substituting from 3 into 6, we obtain 5, which completes
the proof of the theorem.

Corollary 1. The joint cdf the BEEW(α1, α2, α3, λ, ξ) can
also written as

FBEEW (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2

(7)

=




c1 if x1 < x2
c2 if x2 < x1
c0 if x1 = x2 = x,

where

b1 =
(

1 − e−λH(x1;ξ)
)α1+α3

(
1 − e−λH(x2;ξ)

)α2
,

b2 =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2+α3
,

c1 = FEEW (x1; α1 + α3, λ, ξ) FEEW (x2; α2, λ, ξ) ,

c2 = FEEW (x1; α1, λ, ξ) FEEW (x2; α2 + α3, λ, ξ) ,

c0 = FEEW (x; α1 + α2 + α3, λ, ξ) .

The following theorem gives the joint pdf of the
random variables X1 and X2 which is the joint pdf of
BEEW(α1, α2, α3, λ, ξ).
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Table 1: Special cases of EW distributions and corresponding H(x; ξ) function
Distribution Support H (x; ξ) λ ξ Reference
Exponential x ≥ 0 x λ ∅ Johnson et al. (1995)
Pareto x = k log(x/k) λ k Johnson et al. (1995)
Gompertz x ≥ 0 c−1 [exp (cx)− 1] λ c Gompertz (1825)
Weibull x ≥ 0 xγ λ γ Fréchet (1927)
Fréchet x ≥ 0 x−γ λ γ Fréchet (1927)
Lomax x ≥ 0 log(1 + x) λ ∅ Lomax (1954)
Weibull Kies 0 < µ < x < σ (x − µ)b1 /(σ − x)b2 λ (µ, σ, b1, b2) Kies (1958)
Log-logistic x ≥ 0 log(1 + xc) λ c Fisk (1961)
Linear failure rate x ≥ 0 ax + bx2/2 1 (a, b) Barlow (1968)
Log-Weibull −∞ < x < ∞ exp[(x − µ)/σ] 1 (µ, σ) White (1969)
Exponential power x ≥ 0 exp((cx)a − 1) 1 (a, c) Smith and Bain (1975)
Burr XII x ≥ 0 log(1 + xc) λ c Rodriguez (1977)
Rayleigh x ≥ 0 x2 λ ∅ Rayleigh (1880)
Phani 0 < µ < x < σ [(x − µ)/(σ − x)]b λ (µ, σ, b) Phani (1987)
Additive Weibull x ≥ 0 (x/β1)

α1 + (x/β2)
α2 1 (α1, α2, β1, β2) Xie and Lai (1995)

Chen x ≥ 0 exp(xb − 1) λ b Chen (2000)
Pham x ≥ 0 (ax)β − 1 1 (a, β) Pham (2002)
Weibull extension x ≥ 0 c

[
exp(cx)b − 1

]
λ (γ, b, c) Xie et al. (2002)

Modified Weibull x ≥ 0 xγexp(cx) λ (γ, c) Lai et al. (2003)
Traditional Wibull x ≥ 0 xdexp(cxa − 1) λ (a, b, c) Nadarajah and Kotz (2005)

Generalized Weibull power x ≥ 0 [1 + (x/a)b]
c
− 1 1 (a, b, c) Nikulin and Haghighi (2006)

Flexible Weibull extension x ≥ 0 exp (α1x − β1/x) 1 (α1, β1) Bebbington et al. (2007)
Almalki Additive Weibull x ≥ 0 axθ + bxγecx 1 (a, b, c, θ, γ) Almalki and Yuan (2013)

Table 2: The MLE’s, log-likelihood, AIC, AICC, BIC, K-S, and LRT statistics for six sub-models of BEEW distribution
of first data set.

Distribution
Statistic BGE BGLFR BEW BGG BEWG BEMWE

α̂1 1.4452 0.4920 0.2179 0.6596 0.2474 0.1574
(s.e.) (0.4160) (0.0810) (0.6663) (0.2559) (0.1185) (0.2276)

α̂2 0.4681 0.1661 0.0770 0.2366 0.0896 0.0573
(s.e.) (0.1879) (0.0535) (0.2219) (0.1093) (0.0498) (0.0833)

α̂3 1.1704 0.4110 0.1880 0.5821 0.2223 0.1419
(s.e.) (0.2866) (0.0331) (0.3446) (0.1964) (0.1016) (0.2009)

λ̂ 0.0390 — 1.914e-4 0.0098 0.1622 0.0246
(s.e.) (0.0056) — (1.83e-5) (0.0061) (0.6398) (0.0526)

β̂ — 1.990e-4 3.7136 0.0304 0.4168 85.9181
(s.e.) — 1.237e-4 (0.2811) (0.0112) (0.9648) (34.1193)

γ̂ — 7.971e-4 — — 2.624e-5 4.5054
(s.e.) — 1.497e-4 — — 7.304e-5 (2.0339)

δ̂ — — — — 2.4645 —
(s.e.) — — — — (0.5969) —

−log(�) 296.901 293.376 291.681 291.855 291.132 290.981
AIC 601.801 596.752 593.361 593.710 596.263 593.962

AICC 603.051 598.688 595.297 595.646 600.125 596.762
BIC 608.245 604.807 601.416 601.765 607.540 603.628

K-S (X1) 0.1034 0.07082 0.0962 0.1042 0.1140 0.1182
(p-value) (0.8240) (0.9925) (0.8829) (0.8157) (0.7218) (0.6789)
K-S (X2) 0.1001 0.0968 0.1167 0.1243 0.1196 0.1187
(p-value) (0.8527) (0.8786) (0.6939) (0.6161) (0.6644) (0.6738)

K-S (max(X1, X2) ) 0.1431 0.1104 0.0942 0.0984 0.1272 0.1366
(p-value) (0.4344) (0.7574) 0.8978 (0.8661) (0.5865) (0.4940)

LRT — 7.050 10.440 10.092 11.538 11.840
(p-value) — (0.0079) (0.0012) (0.0015) (0.0091) (0.0026)
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to compute the MLEs of the unknown parameters is
provided in Section 4. The analysis of two real data sets
are provided in Section 5. Finally, we conclude the paper
in Section 6.

2 The BEEW model

In this section, we introduce the BEEW distributions us-
ing a method similar to that which was used by Marshall
and Olkin (1967) to define the Marshall Olkin bivariate
exponential (MOBE) distribution.

First, consider the univariate EEW class of distribu-
tions with cdf given by

FEEW (x; α, λ, ξ) =
(

1 − e−λH(x;ξ)
)α

, x > 0, α > 0, λ > 0.
(3)

The corresponding pdf is

fEEW (x; α, λ, ξ) = αλ h (x; ξ) e−λH(x;ξ)
(

1 − e−λH(x;ξ)
)α−1

.
(4)

From now on a EEW class of distributions with the
shape parameter α, the scale parameter λ and parame-
ter vector ξ will be denoted by EEW(α, λ, ξ). Note that
many well-known models could be expressed in the
form (3), such as exponentiated Weibull (Mudholkar
and Srivastava, 1993), generalized exponential (Gupta
and Kundu, 1999), Weibull extension (Chen, 2000), gen-
eralized Rayleigh (Surles and Padgett, 2001; Kundu and
Raqab, 2005), modified Weibull extension (Xie et al.,
2002), generalized modified Weibull (Carrasco et al.,
2008) generalized linear failure rate (Sarhan and Kundu,
2009), generalized Gompertz (El-Gohary et al., 2013),
and exponentiated modified Weibull extension (Sarhan
and Apaloo, 2013) distributions.

When α is a positive integer, the EEW model can
be interpreted as the lifetime distribution of a parallel
system consisting of α independent and identical units
whose lifetime follows the EEW distributions.

From now on unless otherwise mentioned, it is as-
sumed that α1 > 0; α2 > 0; α3 > 0 and λ > 0. Sup-
pose U1 ∼ EEW(α1, λ, ξ), U2 ∼ EEW(α2, λ, ξ) and U3 ∼
EEW(α3, λ, ξ) and they are mutually independent. Here
“∼” means follows or has the distribution. Now de-
fine X1 = max{U1, U3} and X2 = max{U2, U3}. Then,
we say that the bivariate vector (X1, X2) has a bivari-
ate exponentiated extended Weibull distribution with
the shape parameters α1, α2 and α3, the scale param-
eter λ and parameter vector ξ. We will denote it by
BEEW(α1, α2, α3, λ, ξ). Before providing the joint cdf or
pdf, we first mention how it may occur in practice.

According to Kundu and Gupta (2009), suppose a
system has two components and it is assumed that each
component has been maintained independently and also
there is an overall maintenance. Due to component

maintenance, suppose the lifetime of the individual com-
ponent is increased by Ui amount and because of the
overall maintenance, the lifetime of each component is
increased by U3 amount. Therefore, the increased life-
times of the two component are X1 = max{U1, U3} and
X2 = max{U2, U3}, respectively.

We now study the joint cdf of the bivariate random
vector (X1, X2) in the following theorem.

Theorem 2.1. If (X1, X2) ∼BEEW(α1, α2, α3, λ, ξ), then
the joint cdf of (X1, X2) for x1 > 0, x2 > 0, is

FBEEW (x1, x2) =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2

× (1 − e−λH(z;ξ))
α3 , (5)

where z = min{x1, x2}.

Proof. Since the joint cdf of the random variables X1 and
X2 is defined as

FBEEW (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (max {U1, U3} ≤ x1,

max {U2, U3} ≤ x2)

= P(U1 ≤ x1, U2 ≤ x2, U3 ≤
min(x1, x2)).

As the random variables Ui, (i = 1, 2, 3) are mutually
independent, we directly obtain

FBEEW(x1, x2; α1, α2, α3, λ, ξ) = FEEW(x1; α1, λ, ξ)

×FEEW(x2; α2, λ, ξ)FEEW(z; α3, λ, ξ). (6)

Substituting from 3 into 6, we obtain 5, which completes
the proof of the theorem.

Corollary 1. The joint cdf the BEEW(α1, α2, α3, λ, ξ) can
also written as

FBEEW (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2

(7)

=




c1 if x1 < x2
c2 if x2 < x1
c0 if x1 = x2 = x,

where

b1 =
(

1 − e−λH(x1;ξ)
)α1+α3

(
1 − e−λH(x2;ξ)

)α2
,

b2 =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2+α3
,

c1 = FEEW (x1; α1 + α3, λ, ξ) FEEW (x2; α2, λ, ξ) ,

c2 = FEEW (x1; α1, λ, ξ) FEEW (x2; α2 + α3, λ, ξ) ,

c0 = FEEW (x; α1 + α2 + α3, λ, ξ) .

The following theorem gives the joint pdf of the
random variables X1 and X2 which is the joint pdf of
BEEW(α1, α2, α3, λ, ξ).
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to compute the MLEs of the unknown parameters is
provided in Section 4. The analysis of two real data sets
are provided in Section 5. Finally, we conclude the paper
in Section 6.

2 The BEEW model

In this section, we introduce the BEEW distributions us-
ing a method similar to that which was used by Marshall
and Olkin (1967) to define the Marshall Olkin bivariate
exponential (MOBE) distribution.

First, consider the univariate EEW class of distribu-
tions with cdf given by

FEEW (x; α, λ, ξ) =
(

1 − e−λH(x;ξ)
)α

, x > 0, α > 0, λ > 0.
(3)

The corresponding pdf is

fEEW (x; α, λ, ξ) = αλ h (x; ξ) e−λH(x;ξ)
(

1 − e−λH(x;ξ)
)α−1

.
(4)

From now on a EEW class of distributions with the
shape parameter α, the scale parameter λ and parame-
ter vector ξ will be denoted by EEW(α, λ, ξ). Note that
many well-known models could be expressed in the
form (3), such as exponentiated Weibull (Mudholkar
and Srivastava, 1993), generalized exponential (Gupta
and Kundu, 1999), Weibull extension (Chen, 2000), gen-
eralized Rayleigh (Surles and Padgett, 2001; Kundu and
Raqab, 2005), modified Weibull extension (Xie et al.,
2002), generalized modified Weibull (Carrasco et al.,
2008) generalized linear failure rate (Sarhan and Kundu,
2009), generalized Gompertz (El-Gohary et al., 2013),
and exponentiated modified Weibull extension (Sarhan
and Apaloo, 2013) distributions.

When α is a positive integer, the EEW model can
be interpreted as the lifetime distribution of a parallel
system consisting of α independent and identical units
whose lifetime follows the EEW distributions.

From now on unless otherwise mentioned, it is as-
sumed that α1 > 0; α2 > 0; α3 > 0 and λ > 0. Sup-
pose U1 ∼ EEW(α1, λ, ξ), U2 ∼ EEW(α2, λ, ξ) and U3 ∼
EEW(α3, λ, ξ) and they are mutually independent. Here
“∼” means follows or has the distribution. Now de-
fine X1 = max{U1, U3} and X2 = max{U2, U3}. Then,
we say that the bivariate vector (X1, X2) has a bivari-
ate exponentiated extended Weibull distribution with
the shape parameters α1, α2 and α3, the scale param-
eter λ and parameter vector ξ. We will denote it by
BEEW(α1, α2, α3, λ, ξ). Before providing the joint cdf or
pdf, we first mention how it may occur in practice.

According to Kundu and Gupta (2009), suppose a
system has two components and it is assumed that each
component has been maintained independently and also
there is an overall maintenance. Due to component

maintenance, suppose the lifetime of the individual com-
ponent is increased by Ui amount and because of the
overall maintenance, the lifetime of each component is
increased by U3 amount. Therefore, the increased life-
times of the two component are X1 = max{U1, U3} and
X2 = max{U2, U3}, respectively.

We now study the joint cdf of the bivariate random
vector (X1, X2) in the following theorem.

Theorem 2.1. If (X1, X2) ∼BEEW(α1, α2, α3, λ, ξ), then
the joint cdf of (X1, X2) for x1 > 0, x2 > 0, is

FBEEW (x1, x2) =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2

× (1 − e−λH(z;ξ))
α3 , (5)

where z = min{x1, x2}.

Proof. Since the joint cdf of the random variables X1 and
X2 is defined as

FBEEW (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

= P (max {U1, U3} ≤ x1,

max {U2, U3} ≤ x2)

= P(U1 ≤ x1, U2 ≤ x2, U3 ≤
min(x1, x2)).

As the random variables Ui, (i = 1, 2, 3) are mutually
independent, we directly obtain

FBEEW(x1, x2; α1, α2, α3, λ, ξ) = FEEW(x1; α1, λ, ξ)

×FEEW(x2; α2, λ, ξ)FEEW(z; α3, λ, ξ). (6)

Substituting from 3 into 6, we obtain 5, which completes
the proof of the theorem.

Corollary 1. The joint cdf the BEEW(α1, α2, α3, λ, ξ) can
also written as

FBEEW (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2

(7)

=




c1 if x1 < x2
c2 if x2 < x1
c0 if x1 = x2 = x,

where

b1 =
(

1 − e−λH(x1;ξ)
)α1+α3

(
1 − e−λH(x2;ξ)

)α2
,

b2 =
(

1 − e−λH(x1;ξ)
)α1

(
1 − e−λH(x2;ξ)

)α2+α3
,

c1 = FEEW (x1; α1 + α3, λ, ξ) FEEW (x2; α2, λ, ξ) ,

c2 = FEEW (x1; α1, λ, ξ) FEEW (x2; α2 + α3, λ, ξ) ,

c0 = FEEW (x; α1 + α2 + α3, λ, ξ) .

The following theorem gives the joint pdf of the
random variables X1 and X2 which is the joint pdf of
BEEW(α1, α2, α3, λ, ξ).
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Theorem 2.2. If (X1, X2) ∼ BEEW(α1, α2, α3, λ, ξ) then
the joint pdf of (X1, X2) for x1 > 0, x2 > 0, is

fBEEW (x1, x2) =




f1 (x1, x2) if 0 < x1 < x2
f2 (x1, x2) if 0 < x2 < x1
f0 (x) if 0 < x1 = x2 = x,

(8)
where

f1 (x1, x2) = fEEW (x1; α1 + α3, λ, ξ) fEEW (x2; α2, λ, ξ)

= (α1 + α3) α2λ2 h (x1; ξ) h (x2; ξ)

×
(

1 − e−λH(x1;ξ)
)α1+α3−1

×
(

1 − e−λH(x2;ξ)
)α2−1

e−λH(x1;ξ)−λH(x2;ξ)

(9)

f2(x1, x2) = fEEW (x1; α1, λ, ξ) fEEW (x2; α2 + α3, λ, ξ)

= (α2 + α3) α1λ2 h (x1; ξ) h (x2; ξ)

×
(

1 − e−λH(x1;ξ)
)α1−1

×
(

1 − e−λH(x2;ξ)
)α2+α3−1

e−λH(x1;ξ)−λH(x2;ξ)

(10)

f0 (x) =
α3

α1 + α2 + α3
fEEW (x; α1+α2 + α3, λ, ξ)

=α3λ h (x; ξ)
(

1 − e−λH(x;ξ)
)α1+α2+α3−1

× e−λH(x;ξ). (11)

Proof. First assume that x1 < x2. Then, the expression
for f1 (x1, x2) can be obtained simply by differentiating
the joint cdf FBEEW (x1, x2) given in (7) with respect to
x1 and x2. Similarly, we find the expression of f2 (x1, x2)
when x2 < x1. But f0 (x) cannot be derived in the same
way. Using the facts that
∫ ∞

0

∫ x2

0
f1 (x1, x2) dx1dx2

+
∫ ∞

0

∫ x1

0
f2 (x1, x2) dx2dx1 +

∫ ∞

0
f0 (x) dx = 1,

∫ ∞

0

∫ x2

0
f1 (x1, x2) dx1dx2

= α2

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx,

and
∫ ∞

0

∫ x1

0
f2 (x1, x2) dx2dx1

= α1

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx.

Note that
∫ ∞

0
f0 (x) dx

= α3

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx

=
α3

α1 + α2 + α3
.

Thus, the result follows.

The following theorem gives the marginal pdf’s of
X1 and X2.

Theorem 2.3. The marginal distributions of X1 and X2 are
EEW(α1 + α3, λ, ξ) and EEW(α2 +α3, λ, ξ), respectively.

Proof. The marginal cdf for Xi is

FXi (xi) =P (Xi ≤ xi)

=P (max {Ui, U3} ≤ xi)

=P(Ui ≤ xi, U3 ≤ xi).

Since the random variables Ui, (i = 1, 2) are mutually
independent, we obtain

FXi (xi) = P (Ui ≤ xi) P(U3 ≤ xi)

= FEEW (xi; αi, λ, ξ) FEEW (xi; α3, λ, ξ)

= FEEW (xi; αi + α3, λ, ξ) . (12)

From 12, we can derive the pdf of Xi by differentiation.

The BEEW model has both an absolute continuous
part and a singular part, similar to Marshall and Olkin’s
bivariate exponential model. The joint cdf of X1 and
X2 has a singular part along the line x1 = x2, with
weight α3

α1+α2+α3
, and has an absolutely continuous part

on 0 < x1 �= x2 < ∞ with weight α1+α2
α1+α2+α3

.
Interestingly, the BEEW model can be obtained by us-

ing the Marshall-Olkin (MO) copula with the marginals
as the EEW distributions. To every bivariate cdf FX1,X2 with
continuous marginals FX1 and FX2 there corresponds a
unique bivariate cdf with uniform margins C : [0, 1]2 →
[0, 1] called a copula, such that FX1,X2 (x1, x2) = C{FX1

(x1) , FX2 (x2)} holds for all (x1, x2) ∈ R2 (Nelson, 1999).
The MO copula is

Cθ1,θ2 (u1, u2) = u1−θ1
1 u1−θ2

2 min
{

uθ1
1 , uθ2

2

}
,

for 0 < θ1 < 1 and 0 < θ2 < 1. Using ui = FXi (xi)
where Xi is EEW(αi + α3, λ, ξ) and θi =

α3
αi+α3

, i = 1, 2, 3,
gives the same joint cdf FX1,X2 as (7).

The following result will provide explicitly the abso-
lute continuous part and the singular part of the BEEW
cdf.

Theorem 2.4. If (X1, X2) ∼ BEEW(α1, α2, α3, λ, ξ), then

FX1,X2 (x1, x2) =
α1 + α2

α1 + α2 + α3
Fa (x1, x2)

+
α3

α1 + α2 + α3
Fs (x1, x2) ,



568 Roozegar 1and Jafari et al: On Bivariate Exponentiated Extended Weibull...
567 Roozegar and Jafari: On Bivariate Exponentiated Extended Weibull Family of Distributions

Theorem 2.2. If (X1, X2) ∼ BEEW(α1, α2, α3, λ, ξ) then
the joint pdf of (X1, X2) for x1 > 0, x2 > 0, is

fBEEW (x1, x2) =





f1 (x1, x2) if 0 < x1 < x2
f2 (x1, x2) if 0 < x2 < x1
f0 (x) if 0 < x1 = x2 = x,

(8)
where

f1 (x1, x2) = fEEW (x1; α1 + α3, λ, ξ) fEEW (x2; α2, λ, ξ)

= (α1 + α3) α2λ2 h (x1; ξ) h (x2; ξ)

×
(

1 − e−λH(x1;ξ)
)α1+α3−1

×
(

1 − e−λH(x2;ξ)
)α2−1

e−λH(x1;ξ)−λH(x2;ξ)

(9)

f2(x1, x2) = fEEW (x1; α1, λ, ξ) fEEW (x2; α2 + α3, λ, ξ)

= (α2 + α3) α1λ2 h (x1; ξ) h (x2; ξ)

×
(

1 − e−λH(x1;ξ)
)α1−1

×
(

1 − e−λH(x2;ξ)
)α2+α3−1

e−λH(x1;ξ)−λH(x2;ξ)

(10)

f0 (x) =
α3

α1 + α2 + α3
fEEW (x; α1+α2 + α3, λ, ξ)

=α3λ h (x; ξ)
(

1 − e−λH(x;ξ)
)α1+α2+α3−1

× e−λH(x;ξ). (11)

Proof. First assume that x1 < x2. Then, the expression
for f1 (x1, x2) can be obtained simply by differentiating
the joint cdf FBEEW (x1, x2) given in (7) with respect to
x1 and x2. Similarly, we find the expression of f2 (x1, x2)
when x2 < x1. But f0 (x) cannot be derived in the same
way. Using the facts that
∫ ∞

0

∫ x2

0
f1 (x1, x2) dx1dx2

+
∫ ∞

0

∫ x1

0
f2 (x1, x2) dx2dx1 +

∫ ∞

0
f0 (x) dx = 1,

∫ ∞

0

∫ x2

0
f1 (x1, x2) dx1dx2

= α2

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx,

and
∫ ∞

0

∫ x1

0
f2 (x1, x2) dx2dx1

= α1

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx.

Note that
∫ ∞

0
f0 (x) dx

= α3

∫ ∞

0
λh(x; ξ)

(
1 − e−λH(x;ξ)

)α1+α2+α3−1
e−λH(x;ξ)dx

=
α3

α1 + α2 + α3
.

Thus, the result follows.

The following theorem gives the marginal pdf’s of
X1 and X2.

Theorem 2.3. The marginal distributions of X1 and X2 are
EEW(α1 + α3, λ, ξ) and EEW(α2 +α3, λ, ξ), respectively.

Proof. The marginal cdf for Xi is

FXi (xi) =P (Xi ≤ xi)

=P (max {Ui, U3} ≤ xi)

=P(Ui ≤ xi, U3 ≤ xi).

Since the random variables Ui, (i = 1, 2) are mutually
independent, we obtain

FXi (xi) = P (Ui ≤ xi) P(U3 ≤ xi)

= FEEW (xi; αi, λ, ξ) FEEW (xi; α3, λ, ξ)

= FEEW (xi; αi + α3, λ, ξ) . (12)

From 12, we can derive the pdf of Xi by differentiation.

The BEEW model has both an absolute continuous
part and a singular part, similar to Marshall and Olkin’s
bivariate exponential model. The joint cdf of X1 and
X2 has a singular part along the line x1 = x2, with
weight α3

α1+α2+α3
, and has an absolutely continuous part

on 0 < x1 �= x2 < ∞ with weight α1+α2
α1+α2+α3

.
Interestingly, the BEEW model can be obtained by us-

ing the Marshall-Olkin (MO) copula with the marginals
as the EEW distributions. To every bivariate cdf FX1,X2 with
continuous marginals FX1 and FX2 there corresponds a
unique bivariate cdf with uniform margins C : [0, 1]2 →
[0, 1] called a copula, such that FX1,X2 (x1, x2) = C{FX1

(x1) , FX2 (x2)} holds for all (x1, x2) ∈ R2 (Nelson, 1999).
The MO copula is

Cθ1,θ2 (u1, u2) = u1−θ1
1 u1−θ2

2 min
{

uθ1
1 , uθ2

2

}
,

for 0 < θ1 < 1 and 0 < θ2 < 1. Using ui = FXi (xi)
where Xi is EEW(αi + α3, λ, ξ) and θi =

α3
αi+α3

, i = 1, 2, 3,
gives the same joint cdf FX1,X2 as (7).

The following result will provide explicitly the abso-
lute continuous part and the singular part of the BEEW
cdf.

Theorem 2.4. If (X1, X2) ∼ BEEW(α1, α2, α3, λ, ξ), then

FX1,X2 (x1, x2) =
α1 + α2

α1 + α2 + α3
Fa (x1, x2)

+
α3

α1 + α2 + α3
Fs (x1, x2) ,
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where for x = min {x1, x2},

Fs (x1, x2) =
(

1 − e−λH(x;ξ)
)α1+α2+α3

,

and

Fa (x1, x2) =
α1 + α2 + α3

α1 + α2

(
1 − e−λH(x1;ξ)

)α1

×
(

1 − e−λH(x2;ξ)
)α2

(
1 − e−λH(x;ξ)

)α3

− α3

α1 + α2

(
1 − e−λH(x;ξ)

)α1+α2+α3
,

here Fs (., .) and Fa (., .) are the singular and the absolute
continuous parts, respectively.

Proof. To find Fa (x1, x2) from FX1,X2 (x1, x2) = aFa (x1, x2)
+ (1 − a) Fs (x1, x2) , 0 ≤ a ≤ 1, we compute

∂2FX1,X2(x1, x2)

∂x1 ∂x2
=a fa(x1, x2)

=

{
f1(x1, x2) if x1 < x2
f2(x1, x2) if x1 > x2,

from which a may be obtained as

a =
∫ ∞

0

∫ x2

0
f1 (x1, x2) dx1dx2

+
∫ ∞

0

∫ x1

0
f2 (x1, x2) dx2dx1 =

α1 + α2

α1 + α2 + α3
,

and
Fa (x1, x2) =

∫ x1

0

∫ x2

0
fa (s, t) ds dt.

Once a and Fa (., .) are determined, Fs (., .) can be ob-
tained by subtraction.

Corollary 2. The joint pdf of X1 and X2 can be written as
follows for x = min {x1, x2};

fX1,X2(x1, x2) =
α1 + α2

α1 + α2 + α3
fa(x1, x2)

+
α3

α1 + α2 + α3
fs(x),

where

fa (x1, x2) =
α1 + α2 + α3

α1 + α2
×

{
d1 if x1 < x2,
d2 if x1 > x2,

and

d1 = fEEW (x1; α1 + α3, λ, ξ) fEEW (x2; α2, λ, ξ) ,

d2 = fEEW (x1; α1, λ, ξ) fEEW (x2; α2 + α3, λ, ξ) ,

fs (x) = fEEW (x; α1 + α2 + α3, λ, ξ) .

Clearly, here fa (x1, x2) and fs (x) are the absolute continuous
part and singular part, respectively.

Having obtained the marginal pdf of X1 and X2, we
can now derive the pdf’s as presented in the following
theorem.

Theorem 2.5. The conditional pdf of Xi given Xj = xj,
denoted by fXi |Xj

(
xi|xj

)
, i �= j = 1, 2, is given by

fXi |Xj

(
xi|xj

)
=




f (1)Xi |Xj

(
xi|xj

)
if 0 < xi < xj

f (2)Xi |Xj

(
xi|xj

)
if 0 < xj < xi

f (3)Xi |Xj

(
xi|xj

)
if xi = xj > 0,

(13)
where

f (1)Xi |Xj

(
xi|xj

)
=

(αi + α3) αjλh (xi; ξ)

(α2 + α3)
(

1 − e−λH(xj ;ξ)
)α3

×
(

1 − e−λH(xi ;ξ)
)αi+α3−1

e−λH(xi ;ξ),

f (2)Xi |Xj

(
xi|xj

)
= αiλ h (xi; ξ)

(
1 − e−λH(xi ;ξ)

)αi−1

×e−λH(xi ;ξ)

f (3)Xi |Xj

(
xi|xj

)
=

α3

αj + α3

(
1 − e−λH(xi ;ξ)

)αi
.

Proof. The proof follows readily upon substituting the
joint pdf of (X1, X2) given in Theorem 2.2 and the marginal
pdf of Xj, given in Theorem 2.3, using the following re-
lation

fXi |Xj

(
xi|xj

)
=

fXi ,Xj(xi, xj)

fXj(xj)
, i = 1, 2. (14)

Proposition 1. Since the joint sf and the joint cdf have the
following relation

SX1,X2 (x1, x2) = 1− FX1 (x1)− FX2 (x2)+ FX1,X2 (x1, x2) ,
(15)

therefore, the joint sf of X1 and X2 also can be expressed in a
compact form.

Proposition 2. Basu (1971) defined the bivariate failure rate
function hX1,X2 (x1, x2) for the random vector (X1, X2) as
the following relation

hX1,X2 (x1, x2) =
fX1,X2 (x1, x2)

SX1,X2 (x1, x2)
. (16)

We can obtained the bivariate failure rate function hX1,X2(x1,
x2) for the random vector (X1, X2) by substituting from (8)
and (15) in (16).

Lemma 1. The cdf of Υ = max{X1, X2} is given as

FΥ (y) =
(

1 − e−λH(y;ξ)
)α1+α2+α3

. (17)
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Proof. Since

FΥ (y) = P (Υ ≤ y) = P (max{X1, X2} ≤ y)
= P (X1 ≤ y, X2 ≤ y)
= P (max{U1, U3} ≤ y, max{U2, U3} ≤ y)
= P (U1 ≤ y, U2 ≤ y, U3 ≤ y) ,

where the random variables Ui (i = 1, 2, 3) are mutually
independent, we directly obtain the result.

Lemma 2. The cdf of T = min{X1, X2} is given as

FT (t) =
(

1 − e−λH(t;ξ)
)α1+α3

+
(

1 − e−λH(t;ξ)
)α2+α3

−
(

1 − e−λH(t;ξ)
)α1+α2+α3

.

Proof. It is easy to prove that by using Equations (15)
and (17).

3 Special cases

In this Section, we consider some special cases of the
BEEW distributions.

3.1 Bivariate generalized exponential distri-
bution

If H (x; ξ) = x, then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,

where

b1 =
(

1 − e−λx1
)α1+α3

(
1 − e−λx2

)α2
,

b2 =
(

1 − e−λx1
)α1

(
1 − e−λx2

)α2+α3
,

which is the joint cdf of bivariate generalized exponen-
tial (BGE) distribution introduced by Kundu and Gupta
(2009). By Theorem 12, the marginal distributions of X1
and X2 are GE(α1 + α3, λ) and GE (α2 + α3, λ) , respec-
tively.

3.2 Bivariate generalized linear failure rate
distribution

If H (x; ξ) = βx + γ
2 x2 and λ = 1, then the joint cdf (7)

becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,

where

b1 =
(

1 − e−βx1− γ
2 x2

1

)α1+α3
(

1 − e−βx2− γ
2 x2

2

)α2
,

b2 =
(

1 − e−βx1− γ
2 x2

1

)α1
(

1 − e−βx2− γ
2 x2

2

)α2+α3
,

which is the joint cdf of bivariate generalized linear
failure rate (BGLFR) distribution introduced by Sarhan
et al. (2011). By Theorem 12, the marginal distributions
of X1 and X2 are GLFR(α1 + α3, β, γ) and GLFR(α2 + α3,
β, γ), respectively.

3.3 Bivariate exponentiated Weibull distri-
bution

If H (x; ξ) =xβ, then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 i f x1 ≤ x2
b2 i f x1>x2,

where

b1 =

(
1−e−λxβ

1

)α1+α3
(

1−e−λxβ
2

)α2

,

b2 =

(
1−e−λxβ

1

)α1
(

1−e−λxβ
2

)α2+α3

.

We call this, bivariate exponentiated Weibull (BEW) dis-
tribution. By Theorem 12, the marginal distributions of
X1 and X2 are EW(α1 + α3, λ, β) and EW (α2 + α3, λ, β) ,
respectively.

3.4 Bivariate generalized Gompertz distri-
bution

If H (x; ξ) = β−1(eβx − 1), then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,

where

b1 =
(

1 − e−λβ−1(eβx1−1)
)α1+α3

(
1 − e−λβ−1(eβx2−1)

)α2
,

b2 =
(

1 − e−λβ−1(eβx1−1)
)α1

(
1 − e−λβ−1(eβx2−1)

)α2+α3
,

which is the joint cdf of bivariate generalized Gompertz
(BGG) distribution introduced by El-Sherpieny et al.
(2013). By Theorem 12, the marginal distributions of
X1 and X2 are GG(α1 + α3, λ, β) and GG (α2 + α3, λ, β) ,
respectively.

3.5 Bivariate exponentiated generalized Weibull
- Gompertz distribution

If H (x; ξ) = xβ(eγxδ − 1), then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,
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Proof. Since

FΥ (y) = P (Υ ≤ y) = P (max{X1, X2} ≤ y)
= P (X1 ≤ y, X2 ≤ y)
= P (max{U1, U3} ≤ y, max{U2, U3} ≤ y)
= P (U1 ≤ y, U2 ≤ y, U3 ≤ y) ,

where the random variables Ui (i = 1, 2, 3) are mutually
independent, we directly obtain the result.

Lemma 2. The cdf of T = min{X1, X2} is given as

FT (t) =
(
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+
(

1 − e−λH(t;ξ)
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−
(

1 − e−λH(t;ξ)
)α1+α2+α3

.

Proof. It is easy to prove that by using Equations (15)
and (17).
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Proof. Since

FΥ (y) = P (Υ ≤ y) = P (max{X1, X2} ≤ y)
= P (X1 ≤ y, X2 ≤ y)
= P (max{U1, U3} ≤ y, max{U2, U3} ≤ y)
= P (U1 ≤ y, U2 ≤ y, U3 ≤ y) ,

where the random variables Ui (i = 1, 2, 3) are mutually
independent, we directly obtain the result.
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Proof. Since
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et al. (2011). By Theorem 12, the marginal distributions
of X1 and X2 are GLFR(α1 + α3, β, γ) and GLFR(α2 + α3,
β, γ), respectively.

3.3 Bivariate exponentiated Weibull distri-
bution

If H (x; ξ) =xβ, then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 i f x1 ≤ x2
b2 i f x1>x2,

where

b1 =

(
1−e−λxβ

1

)α1+α3
(

1−e−λxβ
2

)α2

,

b2 =

(
1−e−λxβ

1

)α1
(

1−e−λxβ
2

)α2+α3

.

We call this, bivariate exponentiated Weibull (BEW) dis-
tribution. By Theorem 12, the marginal distributions of
X1 and X2 are EW(α1 + α3, λ, β) and EW (α2 + α3, λ, β) ,
respectively.

3.4 Bivariate generalized Gompertz distri-
bution

If H (x; ξ) = β−1(eβx − 1), then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,

where

b1 =
(

1 − e−λβ−1(eβx1−1)
)α1+α3

(
1 − e−λβ−1(eβx2−1)

)α2
,

b2 =
(

1 − e−λβ−1(eβx1−1)
)α1

(
1 − e−λβ−1(eβx2−1)

)α2+α3
,

which is the joint cdf of bivariate generalized Gompertz
(BGG) distribution introduced by El-Sherpieny et al.
(2013). By Theorem 12, the marginal distributions of
X1 and X2 are GG(α1 + α3, λ, β) and GG (α2 + α3, λ, β) ,
respectively.

3.5 Bivariate exponentiated generalized Weibull
- Gompertz distribution

If H (x; ξ) = xβ(eγxδ − 1), then the joint cdf (7) becomes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,
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where

b1 =

(
1 − e−λxβ

1 (e
γxδ

1−1)
)α1+α3

(
1 − e−λxβ

2 (e
γxδ

2−1)
)α2

,

b2 =

(
1 − e−λxβ

1 (e
γxδ

1−1)
)α1

(
1 − e−λxβ

2 (e
γxδ

2−1)
)α2+α3

,

which is the joint cdf of bivariate exponentiated gen-
eralized Weibull-Gompertz (BEGWG) distribution in-
troduced by El-Bassioun et al. (2015). By Theorem 12,
the marginal distributions of X1 and X2 are EGWG(α1 +
α3, λ, β, γ, δ) and EGWG (α2 + α3, λ, β, γ, δ) , respectively.

3.6 Bivariate exponentiated modified Weibull
extension distribution

If H (x; ξ) = β(e(x/β)γ
− 1), then the joint cdf (7) be-

comes

FX1,X2 (x1, x2) =

{
b1 if x1 ≤ x2
b2 if x1 > x2,

where

b1 =
(

1 − e−λβ(e(x1/β)γ−1)
)α1+α3 (

1 − e−λβ(e(x2/β)γ−1)
)α2

,

b2 =
(

1 − e−λβ(e(x1/β)γ−1)
)α1 (

1 − e−λβ(e(x2/β)γ−1)
)α2+α3

,

which is the joint cdf of bivariate exponentiated modified
Weibull extension (BEMWE) distribution introduced by
El-Gohary and El-Morshedy (2015). By Theorem 12, the
marginal distributions of X1 and X2 are EMWE(α1 +
α3, λ, β, γ) and EMWE (α2 + α3, λ, β, γ) , respectively.

4 Maximum likelihood estimation

In this section, we first study the maximum likelihood
estimations (MLE’s) of the parameters. Then, we pro-
pose an Expectation-Maximization (EM) algorithm to
estimate the parameters.

Let (x11, x12) , . . . , (x1n, x2n) be an observed sample
with size n from BEEW distribution with parameters
Θ = (α1, α2, α3, λ, ζ)′. Also, consider

I0 = {i : x1i = x2i = xi} , I1 = {i : x1i < x2i} ,

I2 = {i : x1i > x2i} , i = 1, . . . , n,

and

n0 = |I0| , n1 = |I1| , n2 = |I2| , n = n0 +n1 +n2.

Therefore, the log-likelihood function can be written as

� (Θ) = ∑
i∈I1

log ( f1 (x1i, x2i)) + ∑
i∈I2

log ( f2 (x1i, x2i))

+ ∑
i∈I0

log ( f0 (xi))

= (2n1 + 2n2 + n0) log (λ) + n1log (α2)

+ n2log (α1) + n0log (α3)

+ n1log (α1 + α3) + n2log (α2 + α3)

+ ∑
i∈I1∪I2

log (h (x1i; ξ))

+ ∑
i∈I1∪I2

log (h (x2i; ξ)) + ∑
i∈I0

log (h (xi; ξ))

+ (α1 + α3 − 1)

(
∑
i∈I1

log
(

1 − e−λH(x1i ;ξ)
)

+ ∑
i∈I2

log
(

1 − e−λH(x2i ;ξ)
))

+ (α2 − 1) ∑
i∈I1

log
(

1 − e−λH(x2i ;ξ)
)

+ (α1 − 1) ∑
i∈I2

log
(

1 − e−λH(x1i ;ξ)
)

+ (α1 + α2 + α3 − 1) ∑
i∈I0

log
(

1 − e−λH(xi ;ξ)
)

+ λ

(
∑
i∈I0

xi + ∑
i∈I1∪I2

x1i + ∑
i∈I1∪I2

x2i

)
, (18)

where f1, f2 and f0 are given in (9), (10) and (11), respec-
tively. We can obtain the MLE’s of the parameters by
maximizing � (Θ) in (18) with respect to the unknown
parameters. This is clearly a (k + 4)-dimensional prob-
lem. However, no explicit expressions are available for
the MLE’s. We need to solve (k + 4) non-linear equa-
tions simultaneously, which may not be very simple.
Therefore, we present an expectation-maximization (EM)
algorithm to find the MLE’s of parameters. It may be
noted that if instead of (X1, X2), we observe U1, U2, and
U3, the MLE’s of the parameters can be obtained by
solving a two-dimensional optimization process, which
is clearly much more convenient than solving a (k + 4)-
dimensional optimization process. For this reason, we
treat this problem as a missing value problem.

Assumed that for the bivariate random vector (X1,
X2), there is an associated random vectors

Λ1 =

{
0 U1 > U3
1 U1 < U3

and Λ2 =

{
0 U2 > U3
1 U2 < U3.

Note that if X1 = X2, then Λ1 = Λ2 = 0. But if X1 <
X2 or X1 > X2, then (Λ1, Λ2) is missing. If (X1, X2) ∈ I1
then the possible values of (Λ1, Λ2) are (1, 0) or (1, 1),
and If (X1, X2) ∈ I2 then the possible values of (Λ1, Λ2)
are (0, 1) or (1, 1) with non-zero probabilities.

Now, we are in a position to provide the EM al-
gorithm. In the E-step of the EM-algorithm, we treat
it as complete observation when they belong to I0. If
the observation belong to I1, we form the ‘pseudo’ log-
likelihood function by fractioning (x1, x2) to two par-
tially complete “pseudo” observations of the form (x1, x2,
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which is the joint cdf of bivariate exponentiated gen-
eralized Weibull-Gompertz (BEGWG) distribution in-
troduced by El-Bassioun et al. (2015). By Theorem 12,
the marginal distributions of X1 and X2 are EGWG(α1 +
α3, λ, β, γ, δ) and EGWG (α2 + α3, λ, β, γ, δ) , respectively.
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which is the joint cdf of bivariate exponentiated modified
Weibull extension (BEMWE) distribution introduced by
El-Gohary and El-Morshedy (2015). By Theorem 12, the
marginal distributions of X1 and X2 are EMWE(α1 +
α3, λ, β, γ) and EMWE (α2 + α3, λ, β, γ) , respectively.

4 Maximum likelihood estimation

In this section, we first study the maximum likelihood
estimations (MLE’s) of the parameters. Then, we pro-
pose an Expectation-Maximization (EM) algorithm to
estimate the parameters.

Let (x11, x12) , . . . , (x1n, x2n) be an observed sample
with size n from BEEW distribution with parameters
Θ = (α1, α2, α3, λ, ζ)′. Also, consider

I0 = {i : x1i = x2i = xi} , I1 = {i : x1i < x2i} ,

I2 = {i : x1i > x2i} , i = 1, . . . , n,

and

n0 = |I0| , n1 = |I1| , n2 = |I2| , n = n0 +n1 +n2.

Therefore, the log-likelihood function can be written as

� (Θ) = ∑
i∈I1

log ( f1 (x1i, x2i)) + ∑
i∈I2

log ( f2 (x1i, x2i))

+ ∑
i∈I0

log ( f0 (xi))

= (2n1 + 2n2 + n0) log (λ) + n1log (α2)
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+ n1log (α1 + α3) + n2log (α2 + α3)
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i∈I1∪I2
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x2i

)
, (18)

where f1, f2 and f0 are given in (9), (10) and (11), respec-
tively. We can obtain the MLE’s of the parameters by
maximizing � (Θ) in (18) with respect to the unknown
parameters. This is clearly a (k + 4)-dimensional prob-
lem. However, no explicit expressions are available for
the MLE’s. We need to solve (k + 4) non-linear equa-
tions simultaneously, which may not be very simple.
Therefore, we present an expectation-maximization (EM)
algorithm to find the MLE’s of parameters. It may be
noted that if instead of (X1, X2), we observe U1, U2, and
U3, the MLE’s of the parameters can be obtained by
solving a two-dimensional optimization process, which
is clearly much more convenient than solving a (k + 4)-
dimensional optimization process. For this reason, we
treat this problem as a missing value problem.

Assumed that for the bivariate random vector (X1,
X2), there is an associated random vectors

Λ1 =

{
0 U1 > U3
1 U1 < U3

and Λ2 =

{
0 U2 > U3
1 U2 < U3.

Note that if X1 = X2, then Λ1 = Λ2 = 0. But if X1 <
X2 or X1 > X2, then (Λ1, Λ2) is missing. If (X1, X2) ∈ I1
then the possible values of (Λ1, Λ2) are (1, 0) or (1, 1),
and If (X1, X2) ∈ I2 then the possible values of (Λ1, Λ2)
are (0, 1) or (1, 1) with non-zero probabilities.

Now, we are in a position to provide the EM al-
gorithm. In the E-step of the EM-algorithm, we treat
it as complete observation when they belong to I0. If
the observation belong to I1, we form the ‘pseudo’ log-
likelihood function by fractioning (x1, x2) to two par-
tially complete “pseudo” observations of the form (x1, x2,
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u1(Θ)) and (x1, x2, u2 (Θ)), where u1 (Θ) and u2 (Θ)
are the conditional probabilities that (Λ1, Λ2) takes val-
ues (1, 0) and (1, 1), respectively. It is clear that

u1 (Θ) =
α1

α1 + α3
, u2 (Θ) =

α3

α1 + α3
.

Similarly, If the observation belong to I2, we form
the ‘pseudo’ log-likelihood function of the from (y1, y2,
v1 (Θ)) and (x1, x2, v2 (Θ)), where v1 (Θ) and v2 (Θ) are
the conditional probabilities that (Λ1, Λ2) takes values
(0, 1) and (1, 1), respectively. Therefore,

v1 (Θ) =
α2

α2 + α3
, v2 (Θ) =

α3

α2 + α3
.

For brevity, we write u1 (Θ), u2 (Θ), v1 (Θ), v2 (Θ) as
u1, u2, v1, v2, respectively.

E-step: Consider bi = E(N|y1i, y2i, Θ). The log- like-
lihood function without the additive constant can be
written as follows:

�pseudo (Θ) = (n0 + 2n1 + 2n2) log (λ)

+ (u1n1 + n2) log (α1)

+ (n1 + v1n2) log (α2)

+ (n0 + u2n1 + v2n2) log (α3)

+ ∑
i∈I0

log (h (xi; ξ)) + ∑
i∈I1∪I2

log (h (x1i; ξ))

+ ∑
i∈I1∪I2

log (h (x2i; ξ))

+ (α1 + α2 + α3 − 1) ∑
i∈I0

log
(

1 − e−λH(xi ;ξ)
)

+ (α1 + α3 − 1) ∑
i∈I1

log
(

1 − e−λH(x1i ;ξ)
)

+ (α2 + α3 − 1) ∑
i∈I2

log
(

1 − e−λH(x2i ;ξ)
)

+ (α2 − 1) ∑
i∈I1

log
(

1 − e−λH(x2i ;ξ)
)

+ (α1 − 1) ∑
i∈I2

log
(

1 − e−λH(x1i ;ξ)
)

− λ

(
∑
i∈I0

H (xi; ξ) + ∑
i∈I1∪I2

H (x1i; ξ)

+ ∑
i∈I1∪I2

H (x2i; ξ)

)

M-step: At this step, �pseudo (Θ) is maximized with
respect to α1, α2, α3, λ and ξ. For fixed λ and ξ, the
maximization occurs at

α̂1 (λ, ξ) =
u1n1 + n2

∑i∈I0
W(xi) + ∑i∈I1∪I2

W(x1i)
, (19)

α̂2 (λ) =
n1 + v1n2

∑i∈I0
W(xi) + ∑i∈I1∪I2

W(x2i)
, (20)

α̂3(λ) =
n0 + u2n1 + v2n2

∑i∈I0
W(xi) + ∑i∈I1

W(x1i) + ∑i∈I2
W(x2i)

,

(21)

where W(x) = log
(

1 − e−λH(x;ξ)
)

. For fixed α1, α2, α3

and ξ, �pseudo (Θ) is maximized with respect to λ as a
solution of the following equation:

n0 + 2n1 + 2n2

g(λ)
= λ, (22)

where

g (λ) =− (α1 + α2 + α3 − 1) ∑
i∈I0

H (xi; ξ) e−λH(xi ;ξ)

1 − e−λH(xi ;ξ)

− (α1 + α3 − 1) ∑
i∈I1

H(x1i; ξ)e−λH(x1i ;ξ)

1 − e−λH(x1i ;ξ)

− (α2 + α3 − 1) ∑
i∈I2

H(x2i; ξ)e−λH(x2i ;ξ)

1 − e−λH(x2i ;ξ)

− (α2 − 1) ∑
i∈I1

H(x2i; ξ)e−λH(x2i ;ξ)

1 − e−λH(x2i ;ξ)

− (α1 − 1) ∑
i∈I2

H(x1i; ξ)e−λH(x1i ;ξ)

1 − e−λH(x1i ;ξ)

+ ∑
i∈I0

H (xi; ξ) + ∑
i∈I1∪I2

H (x1i; ξ)

+ ∑
i∈I1∪I2

H (x2i; ξ).

Finally, for fixed α1, α2, α3 and λ, �pseudo (Θ) is max-
imized with respect to ξ as a solution of the following
equation:

∂

∂ξ
�pseudo (Θ) = 0. (23)

The following steps can be used to compute the
MLE’s of the parameters via the EM algorithm:
Step 1: Take some initial value of Θ, say Θ(0) = (α

(0)
1 ,

α
(0)
2 , α

(0)
3 , λ(0), ξ(0))′.

Step 2: Compute u1, u2, v1, and v2.
Step 3: Find λ̂ by solving the equation (22), say λ̂(1).
Step 4: Find ξ̂ by solving the equation (23), say ξ̂(1).
Step 5: Compute α̂

(1)
i = α̂i(λ̂

(1), ξ̂(1)), i = 1, 2, 3 from
(19)-(21).
Step 6: Replace Θ(0) by Θ̂(1) = (α̂

(1)
1 , α̂

(1)
2 , α̂

(1)
3 , λ̂(1), ξ̂(1)),

go back to step 1 and continue the process until conver-
gence take place.

5 Two real examples

We consider BEEW distributions for fitting these two
data sets. But, this family of distributions is a large class
of distributions. Here, we consider six sub-models of
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u1(Θ)) and (x1, x2, u2 (Θ)), where u1 (Θ) and u2 (Θ)
are the conditional probabilities that (Λ1, Λ2) takes val-
ues (1, 0) and (1, 1), respectively. It is clear that

u1 (Θ) =
α1

α1 + α3
, u2 (Θ) =

α3

α1 + α3
.

Similarly, If the observation belong to I2, we form
the ‘pseudo’ log-likelihood function of the from (y1, y2,
v1 (Θ)) and (x1, x2, v2 (Θ)), where v1 (Θ) and v2 (Θ) are
the conditional probabilities that (Λ1, Λ2) takes values
(0, 1) and (1, 1), respectively. Therefore,

v1 (Θ) =
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solution of the following equation:

n0 + 2n1 + 2n2

g(λ)
= λ, (22)

where

g (λ) =− (α1 + α2 + α3 − 1) ∑
i∈I0

H (xi; ξ) e−λH(xi ;ξ)

1 − e−λH(xi ;ξ)

− (α1 + α3 − 1) ∑
i∈I1

H(x1i; ξ)e−λH(x1i ;ξ)

1 − e−λH(x1i ;ξ)

− (α2 + α3 − 1) ∑
i∈I2

H(x2i; ξ)e−λH(x2i ;ξ)

1 − e−λH(x2i ;ξ)

− (α2 − 1) ∑
i∈I1

H(x2i; ξ)e−λH(x2i ;ξ)

1 − e−λH(x2i ;ξ)

− (α1 − 1) ∑
i∈I2

H(x1i; ξ)e−λH(x1i ;ξ)

1 − e−λH(x1i ;ξ)

+ ∑
i∈I0

H (xi; ξ) + ∑
i∈I1∪I2

H (x1i; ξ)

+ ∑
i∈I1∪I2

H (x2i; ξ).

Finally, for fixed α1, α2, α3 and λ, �pseudo (Θ) is max-
imized with respect to ξ as a solution of the following
equation:

∂

∂ξ
�pseudo (Θ) = 0. (23)

The following steps can be used to compute the
MLE’s of the parameters via the EM algorithm:
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(0)
1 ,

α
(0)
2 , α

(0)
3 , λ(0), ξ(0))′.

Step 2: Compute u1, u2, v1, and v2.
Step 3: Find λ̂ by solving the equation (22), say λ̂(1).
Step 4: Find ξ̂ by solving the equation (23), say ξ̂(1).
Step 5: Compute α̂

(1)
i = α̂i(λ̂

(1), ξ̂(1)), i = 1, 2, 3 from
(19)-(21).
Step 6: Replace Θ(0) by Θ̂(1) = (α̂

(1)
1 , α̂

(1)
2 , α̂

(1)
3 , λ̂(1), ξ̂(1)),

go back to step 1 and continue the process until conver-
gence take place.

5 Two real examples

We consider BEEW distributions for fitting these two
data sets. But, this family of distributions is a large class
of distributions. Here, we consider six sub-models of
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BEEW distributions: BGE, BGLFR, BEW, BGG, BEGWG,
and BEMWE. Some of them are suggested in literature.

Using the proposed EM algorithm, these models are
fitted to the bivariate data set, and the MLE’s and their
corresponding log-likelihood values are calculated. The
standard errors (s.e.) based on the observed information
matrix are obtained.

For each fitted model, the Akaike Information Crite-
rion (AIC), the corrected Akaike information criterion
(AICC) and the Bayesian information criterion (BIC) are
calculated. We also obtain the Kolmogorov-Smirnov (K-
S) distances between the fitted distribution, the empirical
distribution function, and the corresponding p-values
(in parenthesis) for X1, X2 and max(X1, X2). For more
information about this criteria of model selection, we
refer the reader to Burnham and Anderson (1998) and
Sullivan and Joyce (2005) Finally, we make use the like-
lihood ratio test (LRT) and the corresponding p-values
for testing the BGE against other models.

Example 1. The data set is given from Meintanis (2007) and
is obtained from the group stage of the UEFA Champion’s
League for the years 2004-05 and 2005-2006. In addition,
Kundu and Gupta (2009) and Sarhan et al. (2011) analyzed
this data. The data represent the football (soccer) data where
at least one goal scored by the home team and at least one goal
scored directly from a kick goal (like penalty kick, foul kick
or any other direct kick) by any team have been considered.
Here X1 represents the time in minutes of the first kick goal
scored by any team and X2 represents the first goal of any
type scored by the home team.

In Table 2 we provide the MLEs of the unknown
parameters of six sub models of BEEW distributions. We
have also included the AIC, AICC, and BIC values for
model selection purposes. From this data, we find the
values of the all unknown parameters with its standard
errors and the log-likelihood for the six models. Using
the EM algorithm we obtain the MLEs of all parameters.
By substituting the MLE of unknown parameters, we
get the estimation of the variance covariance matrix. The
likelihood ratio test statistic and the associated p values
for marginal distributions showed that all marginal dis-
tributions provide significant fit to this data. It is clear
that all six models are appropriate for this data set but
among these all six models, the BEW and BGG mod-
els are preferable, on the basis of both AIC, AICC, and
BIC values. The AIC, AICC, and BIC values for BEW
(BGG) models are 593.361 (593.710), 595.297 (595.646),
and 601.416 (601.765), respectively.

Example 2. The data set was first published in ‘Washington
Post’ and is available in Csörgö and Welsh (1989). It is
represent the American Football League for the matches on
three consecutive weekends in 1986. Here, X1 represents the
‘game time’ to the first points scored by kicking the ball between

goal posts, and represents the ‘game time’ to the first points
scored by moving the ball into the end zone. Kundu and Gupta
(2010) Jamalizadeh and Kundu (2013), and Balakrishna and
Shiji (2014) analyzed this data. We divided all the data by
100.

Table 3 displays the MLE’s of the parameters (with
corresponding standard errors in parentheses) for the
bivariate distributions which are obtained by the EM
algorithm given in Section 4. To test the goodness-of
fit of the marginal distributions, we calculated the Kol-
mogorov - Smirnov (K-S) statistic with its respective
p-value. From K-S in this table, it can be concluded that
all marginal distributions of six models are appropriate
for this data set. Since the values of the AIC (−65.340),
BIC (−64.258), and AICC (−58.389) are smaller for the
BGE distribution compared with those values of the
other models, this bivariate distribution seems to be a
very competitive model for these data.

6 Conclusions

In this paper we have introduced the new bivariate expo-
nentiated extended Weibull distribution whose marginal
are exponentiated extended Weibull distributions. It
contains a number of known special submodels (at
least 46 bivariate distributions) such as bivariate gen-
eralized exponential, bivariate generalized linear failure
rate, bivariate exponentiated Weibull, bivariate general-
ized Gompertz, and bivariate exponentiated modified
Weibull extension distributions, among others. We think
the formulas derived are manageable by using modern
computer resources with analytic and numerical capa-
bilities. The proposed bivariate model has a singular
distribution, and it can be used quite effectively instead
of the Marshall-Olkin bivariate exponential model or
the bivariate generalized exponential model when there
are ties in the data. This new bivariate distribution has
several interesting properties and it can be used as an
alternative to the several bivariate distributions. The
generation of random samples from proposed bivariate
distribution is very simple, and therefore Monte Carlo
simulation can be performed very easily for different
statistical inference purpose. Maximum likelihood esti-
mates of the new bivariate model are discussed. It may
be mentioned that an EM algorithm along the same lines
as the bivariate case may be developed. Alternatively, us-
ing the copula structure, other estimators may be used
and their properties can be established. Analyses of
two real data sets indicate the good performance and
usefulness of the new model.
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Table 1: Special cases of EW distributions and corresponding H(x; ξ) function
Distribution Support H (x; ξ) λ ξ Reference
Exponential x ≥ 0 x λ ∅ Johnson et al. (1995)
Pareto x = k log(x/k) λ k Johnson et al. (1995)
Gompertz x ≥ 0 c−1 [exp (cx)− 1] λ c Gompertz (1825)
Weibull x ≥ 0 xγ λ γ Fréchet (1927)
Fréchet x ≥ 0 x−γ λ γ Fréchet (1927)
Lomax x ≥ 0 log(1 + x) λ ∅ Lomax (1954)
Weibull Kies 0 < µ < x < σ (x − µ)b1 /(σ − x)b2 λ (µ, σ, b1, b2) Kies (1958)
Log-logistic x ≥ 0 log(1 + xc) λ c Fisk (1961)
Linear failure rate x ≥ 0 ax + bx2/2 1 (a, b) Barlow (1968)
Log-Weibull −∞ < x < ∞ exp[(x − µ)/σ] 1 (µ, σ) White (1969)
Exponential power x ≥ 0 exp((cx)a − 1) 1 (a, c) Smith and Bain (1975)
Burr XII x ≥ 0 log(1 + xc) λ c Rodriguez (1977)
Rayleigh x ≥ 0 x2 λ ∅ Rayleigh (1880)
Phani 0 < µ < x < σ [(x − µ)/(σ − x)]b λ (µ, σ, b) Phani (1987)
Additive Weibull x ≥ 0 (x/β1)

α1 + (x/β2)
α2 1 (α1, α2, β1, β2) Xie and Lai (1995)

Chen x ≥ 0 exp(xb − 1) λ b Chen (2000)
Pham x ≥ 0 (ax)β − 1 1 (a, β) Pham (2002)
Weibull extension x ≥ 0 c

[
exp(cx)b − 1

]
λ (γ, b, c) Xie et al. (2002)

Modified Weibull x ≥ 0 xγexp(cx) λ (γ, c) Lai et al. (2003)
Traditional Wibull x ≥ 0 xdexp(cxa − 1) λ (a, b, c) Nadarajah and Kotz (2005)

Generalized Weibull power x ≥ 0 [1 + (x/a)b]
c
− 1 1 (a, b, c) Nikulin and Haghighi (2006)

Flexible Weibull extension x ≥ 0 exp (α1x − β1/x) 1 (α1, β1) Bebbington et al. (2007)
Almalki Additive Weibull x ≥ 0 axθ + bxγecx 1 (a, b, c, θ, γ) Almalki and Yuan (2013)

Table 2: The MLE’s, log-likelihood, AIC, AICC, BIC, K-S, and LRT statistics for six sub-models of BEEW distribution
of first data set.

Distribution
Statistic BGE BGLFR BEW BGG BEWG BEMWE

α̂1 1.4452 0.4920 0.2179 0.6596 0.2474 0.1574
(s.e.) (0.4160) (0.0810) (0.6663) (0.2559) (0.1185) (0.2276)

α̂2 0.4681 0.1661 0.0770 0.2366 0.0896 0.0573
(s.e.) (0.1879) (0.0535) (0.2219) (0.1093) (0.0498) (0.0833)

α̂3 1.1704 0.4110 0.1880 0.5821 0.2223 0.1419
(s.e.) (0.2866) (0.0331) (0.3446) (0.1964) (0.1016) (0.2009)

λ̂ 0.0390 — 1.914e-4 0.0098 0.1622 0.0246
(s.e.) (0.0056) — (1.83e-5) (0.0061) (0.6398) (0.0526)

β̂ — 1.990e-4 3.7136 0.0304 0.4168 85.9181
(s.e.) — 1.237e-4 (0.2811) (0.0112) (0.9648) (34.1193)

γ̂ — 7.971e-4 — — 2.624e-5 4.5054
(s.e.) — 1.497e-4 — — 7.304e-5 (2.0339)

δ̂ — — — — 2.4645 —
(s.e.) — — — — (0.5969) —

−log(�) 296.901 293.376 291.681 291.855 291.132 290.981
AIC 601.801 596.752 593.361 593.710 596.263 593.962

AICC 603.051 598.688 595.297 595.646 600.125 596.762
BIC 608.245 604.807 601.416 601.765 607.540 603.628

K-S (X1) 0.1034 0.07082 0.0962 0.1042 0.1140 0.1182
(p-value) (0.8240) (0.9925) (0.8829) (0.8157) (0.7218) (0.6789)
K-S (X2) 0.1001 0.0968 0.1167 0.1243 0.1196 0.1187
(p-value) (0.8527) (0.8786) (0.6939) (0.6161) (0.6644) (0.6738)

K-S (max(X1, X2) ) 0.1431 0.1104 0.0942 0.0984 0.1272 0.1366
(p-value) (0.4344) (0.7574) 0.8978 (0.8661) (0.5865) (0.4940)

LRT — 7.050 10.440 10.092 11.538 11.840
(p-value) — (0.0079) (0.0012) (0.0015) (0.0091) (0.0026)
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BEEW distributions: BGE, BGLFR, BEW, BGG, BEGWG,
and BEMWE. Some of them are suggested in literature.

Using the proposed EM algorithm, these models are
fitted to the bivariate data set, and the MLE’s and their
corresponding log-likelihood values are calculated. The
standard errors (s.e.) based on the observed information
matrix are obtained.

For each fitted model, the Akaike Information Crite-
rion (AIC), the corrected Akaike information criterion
(AICC) and the Bayesian information criterion (BIC) are
calculated. We also obtain the Kolmogorov-Smirnov (K-
S) distances between the fitted distribution, the empirical
distribution function, and the corresponding p-values
(in parenthesis) for X1, X2 and max(X1, X2). For more
information about this criteria of model selection, we
refer the reader to Burnham and Anderson (1998) and
Sullivan and Joyce (2005) Finally, we make use the like-
lihood ratio test (LRT) and the corresponding p-values
for testing the BGE against other models.

Example 1. The data set is given from Meintanis (2007) and
is obtained from the group stage of the UEFA Champion’s
League for the years 2004-05 and 2005-2006. In addition,
Kundu and Gupta (2009) and Sarhan et al. (2011) analyzed
this data. The data represent the football (soccer) data where
at least one goal scored by the home team and at least one goal
scored directly from a kick goal (like penalty kick, foul kick
or any other direct kick) by any team have been considered.
Here X1 represents the time in minutes of the first kick goal
scored by any team and X2 represents the first goal of any
type scored by the home team.

In Table 2 we provide the MLEs of the unknown
parameters of six sub models of BEEW distributions. We
have also included the AIC, AICC, and BIC values for
model selection purposes. From this data, we find the
values of the all unknown parameters with its standard
errors and the log-likelihood for the six models. Using
the EM algorithm we obtain the MLEs of all parameters.
By substituting the MLE of unknown parameters, we
get the estimation of the variance covariance matrix. The
likelihood ratio test statistic and the associated p values
for marginal distributions showed that all marginal dis-
tributions provide significant fit to this data. It is clear
that all six models are appropriate for this data set but
among these all six models, the BEW and BGG mod-
els are preferable, on the basis of both AIC, AICC, and
BIC values. The AIC, AICC, and BIC values for BEW
(BGG) models are 593.361 (593.710), 595.297 (595.646),
and 601.416 (601.765), respectively.

Example 2. The data set was first published in ‘Washington
Post’ and is available in Csörgö and Welsh (1989). It is
represent the American Football League for the matches on
three consecutive weekends in 1986. Here, X1 represents the
‘game time’ to the first points scored by kicking the ball between

goal posts, and represents the ‘game time’ to the first points
scored by moving the ball into the end zone. Kundu and Gupta
(2010) Jamalizadeh and Kundu (2013), and Balakrishna and
Shiji (2014) analyzed this data. We divided all the data by
100.

Table 3 displays the MLE’s of the parameters (with
corresponding standard errors in parentheses) for the
bivariate distributions which are obtained by the EM
algorithm given in Section 4. To test the goodness-of
fit of the marginal distributions, we calculated the Kol-
mogorov - Smirnov (K-S) statistic with its respective
p-value. From K-S in this table, it can be concluded that
all marginal distributions of six models are appropriate
for this data set. Since the values of the AIC (−65.340),
BIC (−64.258), and AICC (−58.389) are smaller for the
BGE distribution compared with those values of the
other models, this bivariate distribution seems to be a
very competitive model for these data.

6 Conclusions

In this paper we have introduced the new bivariate expo-
nentiated extended Weibull distribution whose marginal
are exponentiated extended Weibull distributions. It
contains a number of known special submodels (at
least 46 bivariate distributions) such as bivariate gen-
eralized exponential, bivariate generalized linear failure
rate, bivariate exponentiated Weibull, bivariate general-
ized Gompertz, and bivariate exponentiated modified
Weibull extension distributions, among others. We think
the formulas derived are manageable by using modern
computer resources with analytic and numerical capa-
bilities. The proposed bivariate model has a singular
distribution, and it can be used quite effectively instead
of the Marshall-Olkin bivariate exponential model or
the bivariate generalized exponential model when there
are ties in the data. This new bivariate distribution has
several interesting properties and it can be used as an
alternative to the several bivariate distributions. The
generation of random samples from proposed bivariate
distribution is very simple, and therefore Monte Carlo
simulation can be performed very easily for different
statistical inference purpose. Maximum likelihood esti-
mates of the new bivariate model are discussed. It may
be mentioned that an EM algorithm along the same lines
as the bivariate case may be developed. Alternatively, us-
ing the copula structure, other estimators may be used
and their properties can be established. Analyses of
two real data sets indicate the good performance and
usefulness of the new model.
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League for the years 2004-05 and 2005-2006. In addition,
Kundu and Gupta (2009) and Sarhan et al. (2011) analyzed
this data. The data represent the football (soccer) data where
at least one goal scored by the home team and at least one goal
scored directly from a kick goal (like penalty kick, foul kick
or any other direct kick) by any team have been considered.
Here X1 represents the time in minutes of the first kick goal
scored by any team and X2 represents the first goal of any
type scored by the home team.

In Table 2 we provide the MLEs of the unknown
parameters of six sub models of BEEW distributions. We
have also included the AIC, AICC, and BIC values for
model selection purposes. From this data, we find the
values of the all unknown parameters with its standard
errors and the log-likelihood for the six models. Using
the EM algorithm we obtain the MLEs of all parameters.
By substituting the MLE of unknown parameters, we
get the estimation of the variance covariance matrix. The
likelihood ratio test statistic and the associated p values
for marginal distributions showed that all marginal dis-
tributions provide significant fit to this data. It is clear
that all six models are appropriate for this data set but
among these all six models, the BEW and BGG mod-
els are preferable, on the basis of both AIC, AICC, and
BIC values. The AIC, AICC, and BIC values for BEW
(BGG) models are 593.361 (593.710), 595.297 (595.646),
and 601.416 (601.765), respectively.

Example 2. The data set was first published in ‘Washington
Post’ and is available in Csörgö and Welsh (1989). It is
represent the American Football League for the matches on
three consecutive weekends in 1986. Here, X1 represents the
‘game time’ to the first points scored by kicking the ball between

goal posts, and represents the ‘game time’ to the first points
scored by moving the ball into the end zone. Kundu and Gupta
(2010) Jamalizadeh and Kundu (2013), and Balakrishna and
Shiji (2014) analyzed this data. We divided all the data by
100.

Table 3 displays the MLE’s of the parameters (with
corresponding standard errors in parentheses) for the
bivariate distributions which are obtained by the EM
algorithm given in Section 4. To test the goodness-of
fit of the marginal distributions, we calculated the Kol-
mogorov - Smirnov (K-S) statistic with its respective
p-value. From K-S in this table, it can be concluded that
all marginal distributions of six models are appropriate
for this data set. Since the values of the AIC (−65.340),
BIC (−64.258), and AICC (−58.389) are smaller for the
BGE distribution compared with those values of the
other models, this bivariate distribution seems to be a
very competitive model for these data.

6 Conclusions

In this paper we have introduced the new bivariate expo-
nentiated extended Weibull distribution whose marginal
are exponentiated extended Weibull distributions. It
contains a number of known special submodels (at
least 46 bivariate distributions) such as bivariate gen-
eralized exponential, bivariate generalized linear failure
rate, bivariate exponentiated Weibull, bivariate general-
ized Gompertz, and bivariate exponentiated modified
Weibull extension distributions, among others. We think
the formulas derived are manageable by using modern
computer resources with analytic and numerical capa-
bilities. The proposed bivariate model has a singular
distribution, and it can be used quite effectively instead
of the Marshall-Olkin bivariate exponential model or
the bivariate generalized exponential model when there
are ties in the data. This new bivariate distribution has
several interesting properties and it can be used as an
alternative to the several bivariate distributions. The
generation of random samples from proposed bivariate
distribution is very simple, and therefore Monte Carlo
simulation can be performed very easily for different
statistical inference purpose. Maximum likelihood esti-
mates of the new bivariate model are discussed. It may
be mentioned that an EM algorithm along the same lines
as the bivariate case may be developed. Alternatively, us-
ing the copula structure, other estimators may be used
and their properties can be established. Analyses of
two real data sets indicate the good performance and
usefulness of the new model.
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Table 3: The MLE’s, log-likelihood, AIC, AICC, BIC, K-S, and LRT statistics for six sub-models of BEEW distribution
of second data set.

Distribution
Statistic BGE BGLFR BEW BGG BEWG BEMWE

α̂1 0.0921 0.0921 0.1367 0.0921 0.1501 0.1374
(s.e.) (0.0653) (0.0667) (0.1351) (0.0653) (0.2570) (0.1355)

α̂2 0.5722 0.5722 0.8483 0.5722 0.9313 0.8523
(s.e.) (0.1614) (0.1824) (0.6283) (0.1614) (1.4720) (0.6290)

α̂3 1.1519 1.1519 1.7113 1.1519 1.8788 1.7195
(s.e.) (0.2388) (0.2945) (1.2318) (0.2388) (2.9542) (1.2328)

λ̂ 9.6187 — 8.5587 9.6187 3.4632 3.0614
(s.e.) (1.5569) — (1.9069) (1.5590) (2.8867) (9.3275)

β̂ — 9.6187 0.8117 2.1e-12 0.5548 211.651
(s.e.) — (2.7455) (0.2828) (0.0455) (0.0328) (88.5725)

γ̂ — 2.351e-4 — — 1.2553 0.8088
(s.e.) — 1.297e-4 — — (0.8749) (0.2814)

δ̂ — — — — 0.1462 —
(s.e.) — — — — (1.9357) —

log(�) 36.670 36.670 36.857 36.670 36.859 36.857
AIC -65.340 -63.340 -63.714 -63.340 -59.717 -61.714

AICC -64.258 -61.673 -62.048 -61.673 -56.423 -59.314
BIC -58.389 -54.652 -55.026 -54.651 -47.553 -51.288

K-S (X1) 0.1808 0.1808 0.1678 0.1808 0.1679 0.1680
(p-value) (0.1282) (0.1282) (0.1872) (0.1282) (0.1869) (0.1866)
K-S (X2) 0.1410 0.1411 0.1289 0.1410 0.1290 0.1291
(p-value) (0.3408) (0.3408) (0.4499) (0.3408) (0.4490) (0.4484)

K-S (max(X1, X2) ) 0.1350 0.1350 0.1197 0.1350 0.1198 0.1198
(p-value) (0.3929) (0.3929) (0.5438) (0.3929) (0.5428) (0.5422)

LRT — 0.000 0.374 0.000 0.378 0.374
(p-value) — 1.0000 (0.5408) 1.0000 0.9447 0.8294
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BEEW distributions: BGE, BGLFR, BEW, BGG, BEGWG,
and BEMWE. Some of them are suggested in literature.
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standard errors (s.e.) based on the observed information
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information about this criteria of model selection, we
refer the reader to Burnham and Anderson (1998) and
Sullivan and Joyce (2005) Finally, we make use the like-
lihood ratio test (LRT) and the corresponding p-values
for testing the BGE against other models.

Example 1. The data set is given from Meintanis (2007) and
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parameters of six sub models of BEEW distributions. We
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model selection purposes. From this data, we find the
values of the all unknown parameters with its standard
errors and the log-likelihood for the six models. Using
the EM algorithm we obtain the MLEs of all parameters.
By substituting the MLE of unknown parameters, we
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for marginal distributions showed that all marginal dis-
tributions provide significant fit to this data. It is clear
that all six models are appropriate for this data set but
among these all six models, the BEW and BGG mod-
els are preferable, on the basis of both AIC, AICC, and
BIC values. The AIC, AICC, and BIC values for BEW
(BGG) models are 593.361 (593.710), 595.297 (595.646),
and 601.416 (601.765), respectively.

Example 2. The data set was first published in ‘Washington
Post’ and is available in Csörgö and Welsh (1989). It is
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‘game time’ to the first points scored by kicking the ball between

goal posts, and represents the ‘game time’ to the first points
scored by moving the ball into the end zone. Kundu and Gupta
(2010) Jamalizadeh and Kundu (2013), and Balakrishna and
Shiji (2014) analyzed this data. We divided all the data by
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Table 3 displays the MLE’s of the parameters (with
corresponding standard errors in parentheses) for the
bivariate distributions which are obtained by the EM
algorithm given in Section 4. To test the goodness-of
fit of the marginal distributions, we calculated the Kol-
mogorov - Smirnov (K-S) statistic with its respective
p-value. From K-S in this table, it can be concluded that
all marginal distributions of six models are appropriate
for this data set. Since the values of the AIC (−65.340),
BIC (−64.258), and AICC (−58.389) are smaller for the
BGE distribution compared with those values of the
other models, this bivariate distribution seems to be a
very competitive model for these data.

6 Conclusions

In this paper we have introduced the new bivariate expo-
nentiated extended Weibull distribution whose marginal
are exponentiated extended Weibull distributions. It
contains a number of known special submodels (at
least 46 bivariate distributions) such as bivariate gen-
eralized exponential, bivariate generalized linear failure
rate, bivariate exponentiated Weibull, bivariate general-
ized Gompertz, and bivariate exponentiated modified
Weibull extension distributions, among others. We think
the formulas derived are manageable by using modern
computer resources with analytic and numerical capa-
bilities. The proposed bivariate model has a singular
distribution, and it can be used quite effectively instead
of the Marshall-Olkin bivariate exponential model or
the bivariate generalized exponential model when there
are ties in the data. This new bivariate distribution has
several interesting properties and it can be used as an
alternative to the several bivariate distributions. The
generation of random samples from proposed bivariate
distribution is very simple, and therefore Monte Carlo
simulation can be performed very easily for different
statistical inference purpose. Maximum likelihood esti-
mates of the new bivariate model are discussed. It may
be mentioned that an EM algorithm along the same lines
as the bivariate case may be developed. Alternatively, us-
ing the copula structure, other estimators may be used
and their properties can be established. Analyses of
two real data sets indicate the good performance and
usefulness of the new model.
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